Search results for: radial basis function networks
9365 English and Information and Communication Technology: Zones of Exclusion in Education in Low-Income Countries
Authors: Ram A. Giri, Amna Bedri, Abdou Niane
Abstract:
Exclusion in education on the basis of language in multilingual contexts operates at multiple levels. Learners of diverse ethnolinguistic backgrounds are often expected to learn through English and are pushed further down the learning ladder if they also have to access education through Information and Communication Technology (ICT). The paper explores marginalized children’s lived experiences in accessing technology and English in four low-income countries in Africa and Asia. Based on the findings of the first phase of a multinational qualitative research study, we report on the factors or barriers that affect children’s access, opportunities and motivation for learning through technology and English. ICT and English - the language of ICT and education - can enhance learning and can even be essential. However, these two important keys to education can also function as barriers to accessing quality education, and therefore as zones of exclusion. This paper looks into how marginalized children (aged 13-15) engage in learning through ICT and English and to what extent the restrictive access and opportunities contribute to the widening of the already existing gap in education. By applying the conceptual frameworks of “access and accessibility of learning” and “zones of exclusion,” the paper elucidates how the barriers prevent children’s effective engagement with learning and addresses such questions as to how marginalized children access technology and English for learning; whether the children value English, and what their motivation and opportunity to learn it are. In addition, the paper will point out policy and pedagogic implications.Keywords: exclusion, inclusion, inclusive education, marginalization
Procedia PDF Downloads 2309364 Mycoflora and Aflatoxin Contamination of Kokoro: A Nigerian Maize Snack
Authors: D. A. Onifade
Abstract:
Kokoro is maize snack which is very popular among poor masses in Nigeria who consume it along with gari(a cassava product) as lunch on a regular basis. In this study, fungal contaminants of kokoro were characterized and its aflatoxin content determined. A total of 30 fungal isolates were obtained from kokoro samples and they belong to 3 different species. Aspergillus flavus had the highest frequency of occurrence of 73.33% while Penicillium species had the lowest (6.66%). Different concentration of aflatoxin B1 was detected in some of the kokoro samples analyzed. Sample D had the highest concentration of 7.25 parts per billion (ppb). The lowest concentration detected was 0.06 ppb in sample P. No aflatoxin G1 and G2 was detected in all the kokoro samples with exception of sample P which contained 2.54 ppb aflatoxin G1.According to international standards some of the kokoro samples are not suitable for human consumption because of high-level aflatoxin which was above the recommended level. Therefore, production of kokoro should be standardized and appropriate packaging materials utilized to prevent the growth of aflatoxigenic fungi. This is to safeguard the health of many poor Nigerians who consume it on a regular basis.Keywords: kokoro, maize snack, aflatoxin, contamination, mould, Nigeria
Procedia PDF Downloads 3279363 Prediction of Rolling Forces and Real Exit Thickness of Strips in the Cold Rolling by Using Artificial Neural Networks
Authors: M. Heydari Vini
Abstract:
There is a complicated relation between effective input parameters of cold rolling and output rolling force and exit thickness of strips.in many mathematical models, the effect of some rolling parameters have been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips,the width of the strips,rolling speeds,mandrill tensions and the required exit thickness of strips with rolling force and the real exit thickness of the rolled strip. First of all, in this paper the effective parameters of cold rolling process modeled using an artificial neural network according to the optimum network achieved by using a written program in MATLAB,it has been shown that the prediction of rolling stand parameters with different properties and new dimensions attained from prior rolled strips by an artificial neural network is applicable.Keywords: cold rolling, artificial neural networks, rolling force, real rolled thickness of strips
Procedia PDF Downloads 5059362 Smart Oxygen Deprivation Mask: An Improved Design with Biometric Feedback
Authors: Kevin V. Bui, Richard A. Claytor, Elizabeth M. Priolo, Weihui Li
Abstract:
Oxygen deprivation masks operate through the use of restricting valves as a means to reduce respiratory flow where flow is inversely proportional to the resistance applied. This produces the same effect as higher altitudes where lower pressure leads to reduced respiratory flow. Both increased resistance with restricting valves and reduce the pressure of higher altitudes make breathing difficultier and force breathing muscles (diaphragm and intercostal muscles) working harder. The process exercises these muscles, improves their strength and results in overall better breathing efficiency. Currently, these oxygen deprivation masks are purely mechanical devices without any electronic sensor to monitor the breathing condition, thus not be able to provide feedback on the breathing effort nor to evaluate the lung function. That is part of the reason that these masks are mainly used for high-level athletes to mimic training in higher altitude conditions, not suitable for patients or customers. The design aims to improve the current method of oxygen deprivation mask to include a larger scope of patients and customers while providing quantitative biometric data that the current design lacks. This will be accomplished by integrating sensors into the mask’s breathing valves along with data acquisition and Bluetooth modules for signal processing and transmission. Early stages of the sensor mask will measure breathing rate as a function of changing the air pressure in the mask, with later iterations providing feedback on flow rate. Data regarding breathing rate will be prudent in determining whether training or therapy is improving breathing function and quantify this improvement.Keywords: oxygen deprivation mask, lung function, spirometer, Bluetooth
Procedia PDF Downloads 2189361 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection
Authors: S. Shankar Bharathi
Abstract:
Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision
Procedia PDF Downloads 4289360 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques
Authors: Gizem Eser Erdek
Abstract:
This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet
Procedia PDF Downloads 779359 Measuring Text-Based Semantics Relatedness Using WordNet
Authors: Madiha Khan, Sidrah Ramzan, Seemab Khan, Shahzad Hassan, Kamran Saeed
Abstract:
Measuring semantic similarity between texts is calculating semantic relatedness between texts using various techniques. Our web application (Measuring Relatedness of Concepts-MRC) allows user to input two text corpuses and get semantic similarity percentage between both using WordNet. Our application goes through five stages for the computation of semantic relatedness. Those stages are: Preprocessing (extracts keywords from content), Feature Extraction (classification of words into Parts-of-Speech), Synonyms Extraction (retrieves synonyms against each keyword), Measuring Similarity (using keywords and synonyms, similarity is measured) and Visualization (graphical representation of similarity measure). Hence the user can measure similarity on basis of features as well. The end result is a percentage score and the word(s) which form the basis of similarity between both texts with use of different tools on same platform. In future work we look forward for a Web as a live corpus application that provides a simpler and user friendly tool to compare documents and extract useful information.Keywords: Graphviz representation, semantic relatedness, similarity measurement, WordNet similarity
Procedia PDF Downloads 2389358 Assessment of Post-surgical Donor-Site Morbidity in Vastus lateralis Free Flap for Head and Neck Reconstructive Surgery: An Observational Study
Authors: Ishith Seth, Lyndel Hewitt, Takako Yabe, James Wykes, Jonathan Clark, Bruce Ashford
Abstract:
Background: Vastus lateralis (VL) can be used to reconstruct defects of the head and neck. Whilst the advantages are documented, donor-site morbidity is not well described. This study aimed to assess donor-site morbidity after VL flap harvest. The results will determine future directions for preventative and post-operative care to improve patient health outcomes. Methods: Ten participants (mean age 55 years) were assessed for the presence of donor-site morbidity after VL harvest. Musculoskeletal (pain, muscle strength, muscle length, tactile sensation), quality of life (SF-12), and lower limb function (lower extremity function, gait (function and speed), sit to stand were assessed using validated and standardized procedures. Outcomes were compared to age-matched healthy reference values or the non-operative side. Analyses were conducted using descriptive statistics and non-parametric tests. Results: There was no difference in muscle strength (knee extension), muscle length, ability to sit-to-stand, or gait function (all P > 0.05). Knee flexor muscle strength was significantly less on the operated leg compared to the non-operated leg (P=0.02) and walking speed was slower than age-matched healthy values (P<0.001). Thigh tactile sensation was impaired in 89% of participants. Quality of life was significantly less for the physical health component of the SF-12 (P<0.001). The mental health component of the SF-12 was similar to healthy controls (P=0.26). Conclusion: There was no effect on donor site morbidity with regards to knee extensor strength, pain, walking function, ability to sit-to-stand, and muscle length. VL harvest affected donor-site knee flexion strength, walking speed, tactile sensation, and physical health-related quality of life.Keywords: vastus lateralis, morbidity, head and neck, surgery, donor-site morbidity
Procedia PDF Downloads 2429357 Utilization of Secure Wireless Networks as Environment for Learning and Teaching in Higher Education
Authors: Mohammed A. M. Ibrahim
Abstract:
This paper investigate the utilization of wire and wireless networks to be platform for distributed educational monitoring system. Universities in developing countries suffer from a lot of shortages(staff, equipment, and finical budget) and optimal utilization of the wire and wireless network, so universities can mitigate some of the mentioned problems and avoid the problems that maybe humble the education processes in many universities by using our implementation of the examinations system as a test-bed to utilize the network as a solution to the shortages for academic staff in Taiz University. This paper selects a two areas first one quizzes activities is only a test bed application for wireless network learning environment system to be distributed among students. Second area is the features and the security of wireless, our tested application implemented in a promising area which is the use of WLAN in higher education for leering environment.Keywords: networking wire and wireless technology, wireless network security, distributed computing, algorithm, encryption and decryption
Procedia PDF Downloads 3379356 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: deep learning, long short term memory, energy, renewable energy load forecasting
Procedia PDF Downloads 2669355 An Energy-Balanced Clustering Method on Wireless Sensor Networks
Authors: Yu-Ting Tsai, Chiun-Chieh Hsu, Yu-Chun Chu
Abstract:
In recent years, due to the development of wireless network technology, many researchers have devoted to the study of wireless sensor networks. The applications of wireless sensor network mainly use the sensor nodes to collect the required information, and send the information back to the users. Since the sensed area is difficult to reach, there are many restrictions on the design of the sensor nodes, where the most important restriction is the limited energy of sensor nodes. Because of the limited energy, researchers proposed a number of ways to reduce energy consumption and balance the load of sensor nodes in order to increase the network lifetime. In this paper, we proposed the Energy-Balanced Clustering method with Auxiliary Members on Wireless Sensor Networks(EBCAM)based on the cluster routing. The main purpose is to balance the energy consumption on the sensed area and average the distribution of dead nodes in order to avoid excessive energy consumption because of the increasing in transmission distance. In addition, we use the residual energy and average energy consumption of the nodes within the cluster to choose the cluster heads, use the multi hop transmission method to deliver the data, and dynamically adjust the transmission radius according to the load conditions. Finally, we use the auxiliary cluster members to change the delivering path according to the residual energy of the cluster head in order to its load. Finally, we compare the proposed method with the related algorithms via simulated experiments and then analyze the results. It reveals that the proposed method outperforms other algorithms in the numbers of used rounds and the average energy consumption.Keywords: auxiliary nodes, cluster, load balance, routing algorithm, wireless sensor network
Procedia PDF Downloads 2749354 Design and Control of a Knee Rehabilitation Device Using an MR-Fluid Brake
Authors: Mina Beheshti, Vida Shams, Mojtaba Esfandiari, Farzaneh Abdollahi, Abdolreza Ohadi
Abstract:
Most of the people who survive a stroke need rehabilitation tools to regain their mobility. The core function of these devices is a brake actuator. The goal of this study is to design and control a magnetorheological brake which can be used as a rehabilitation tool. In fact, the fluid used in this brake is called magnetorheological fluid or MR that properties can change by variation of the magnetic field. The braking properties can be set as control by using this feature of the fluid. In this research, different MR brake designs are first introduced in each design, and the dimensions of the brake have been determined based on the required torque for foot movement. To calculate the brake dimensions, it is assumed that the shear stress distribution in the fluid is uniform and the fluid is in its saturated state. After designing the rehabilitation brake, the mathematical model of the healthy movement of a healthy person is extracted. Due to the nonlinear nature of the system and its variability, various adaptive controllers, neural networks, and robust have been implemented to estimate the parameters and control the system. After calculating torque and control current, the best type of controller in terms of error and control current has been selected. Finally, this controller is implemented on the experimental data of the patient's movements, and the control current is calculated to achieve the desired torque and motion.Keywords: rehabilitation, magnetorheological fluid, knee, brake, adaptive control, robust control, neural network control, torque control
Procedia PDF Downloads 1519353 Public Procurement Development Stages in Georgia
Authors: Giorgi Gaprindashvili
Abstract:
One of the best examples, in evolution of the public procurement, from post-soviet countries are reforms carried out in Georgia, which brought them close to international standards of procurement. In Georgia, public procurement legislation started functioning in 1998. The reform has passed several stages and came in the form as it is today. It should also be noted, that countries with economy in transition, including Georgia, implemented all the reforms in public procurement based on recommendations and support of World Bank, the United Nations and other international organizations. The first law on public procurement in Georgia was adopted on December 9, 1998 which aimed regulation of the procurement process of budget-organizations, transparent and competitive environment for private companies to access state funds legally. The priorities were identified quite clearly in the wording of the law, but operation/function of this law could not be reached on its level, because of some objective and subjective reasons. The high level of corruption in all levels of governance, can be considered as a main obstacle reason and of course, it is natural, that it had direct impact on the procurement process, as well as on transparency and rational use of state funds. This circumstances were the reasons that reforms in this sphere continued, to improve procurement process, in particular, the first wave of reforms began in 2001. Public procurement agency carried out reform with World Bank with main purpose of smartening the procurement legislation and its harmonization with international treaties and agreements. Also with the support of World Bank various activities were carried out to raise awareness of participants involved in procurement system. Further major changes in the legislation were filed in May 2005, which was also directed towards the improvement and smarten of the procurement process. The third wave of the reform began in 2010, which more or less guaranteed the transparency of the procurement process, which later became the basis for the rational spending of state funds. The reform of the procurement system completely changed the procedures. Carried out reform in Georgia resulted in introducing new electronic tendering system, which benefit the transparency of the process, after this became the basis for the further development of a competitive environment, which become a prerequisite for the state rational spending. Increased number of supplier organizations participating in the procurement process resulted in reduction of the estimated cost and the actual cost from 20% up to 40%, it is quite large saving for the procuring organizations and allows them to use the freed-up funds for their other needs. Assessment of the reforms in Georgia in the field of public procurement can be concluded, that proper regulation of the sector and relevant policy may proceed to rational and transparent spending of the budget from country’s state institutions. Also, the business sector has the opportunity to work in competitive market conditions and to make a preliminary analysis, which is a prerequisite for future strategy and development.Keywords: public administration, public procurement, reforms, transparency
Procedia PDF Downloads 3679352 The Contribution of SMES to Improve the Transient Stability of Multimachine Power System
Authors: N. Chérif, T. Allaoui, M. Benasla, H. Chaib
Abstract:
Industrialization and population growth are the prime factors for which the consumption of electricity is steadily increasing. Thus, to have a balance between production and consumption, it is necessary at first to increase the number of power plants, lines and transformers, which implies an increase in cost and environmental degradation. As a result, it is now important to have mesh networks and working close to the limits of stability in order to meet these new requirements. The transient stability studies involve large disturbances such as short circuits, loss of work or production group. The consequence of these defects can be very serious, and can even lead to the complete collapse of the network. This work focuses on the regulation means that networks can help to keep their stability when submitted to strong disturbances. The magnetic energy storage-based superconductor (SMES) comprises a superconducting coil short-circuited on it self. When such a system is connected to a power grid is able to inject or absorb the active and reactive power. This system can be used to improve the stability of power systems.Keywords: short-circuit, power oscillations, multiband PSS, power system, SMES, transient stability
Procedia PDF Downloads 4579351 Preservation of Endocrine Function after Central Pancreatectomy without Anastomoses for a Mid Gland Pancreatic Insulinoma: A Case Report
Authors: Karthikeyan M., Paul M. J.
Abstract:
This abstract describes a case of central pancreatectomy (CP) for a 50-year-old woman with a neuroendocrine tumor in the mid-body of the pancreas. CP, a parenchyma-sparing surgical option, preserves the distal pancreas and spleen, reducing the risk of pancreatic endocrine and exocrine insufficiency compared to traditional resections. The patient, initially misdiagnosed with transient ischemic attack, presented with hypoglycemic symptoms and was found to have a pancreatic lesion. Post-operative results were positive, with a reduction in pancreatic drain volume and normalization of blood sugar levels. This case highlights CP's efficacy in treating centrally located pancreatic lesions while maintaining pancreatic function.Keywords: central pancreatectomy without anastomosis, no endocrine deficiency on follow-op, less post-op hospital stay, less post-op complications
Procedia PDF Downloads 459350 Scientific Recommender Systems Based on Neural Topic Model
Authors: Smail Boussaadi, Hassina Aliane
Abstract:
With the rapid growth of scientific literature, it is becoming increasingly challenging for researchers to keep up with the latest findings in their fields. Academic, professional networks play an essential role in connecting researchers and disseminating knowledge. To improve the user experience within these networks, we need effective article recommendation systems that provide personalized content.Current recommendation systems often rely on collaborative filtering or content-based techniques. However, these methods have limitations, such as the cold start problem and difficulty in capturing semantic relationships between articles. To overcome these challenges, we propose a new approach that combines BERTopic (Bidirectional Encoder Representations from Transformers), a state-of-the-art topic modeling technique, with community detection algorithms in a academic, professional network. Experiences confirm our performance expectations by showing good relevance and objectivity in the results.Keywords: scientific articles, community detection, academic social network, recommender systems, neural topic model
Procedia PDF Downloads 979349 A Memetic Algorithm Approach to Clustering in Mobile Wireless Sensor Networks
Authors: Masood Ahmad, Ataul Aziz Ikram, Ishtiaq Wahid
Abstract:
Wireless sensor network (WSN) is the interconnection of mobile wireless nodes with limited energy and memory. These networks can be deployed formany critical applications like military operations, rescue management, fire detection and so on. In flat routing structure, every node plays an equal role of sensor and router. The topology may change very frequently due to the mobile nature of nodes in WSNs. The topology maintenance may produce more overhead messages. To avoid topology maintenance overhead messages, an optimized cluster based mobile wireless sensor network using memetic algorithm is proposed in this paper. The nodes in this network are first divided into clusters. The cluster leaders then transmit data to that base station. The network is validated through extensive simulation study. The results show that the proposed technique has superior results compared to existing techniques.Keywords: WSN, routing, cluster based, meme, memetic algorithm
Procedia PDF Downloads 4819348 Research on the Teaching Quality Evaluation of China’s Network Music Education APP
Authors: Guangzhuang Yu, Chun-Chu Liu
Abstract:
With the advent of the Internet era in recent years, social music education has gradually shifted from the original entity education mode to the mode of entity plus network teaching. No matter for school music education, professional music education or social music education, the teaching quality is the most important evaluation index. Regarding the research on teaching quality evaluation, scholars at home and abroad have contributed a lot of research results on the basis of multiple methods and evaluation subjects. However, to our best knowledge the complete evaluation model for the virtual teaching interaction mode of the emerging network music education Application (APP) has not been established. This research firstly found out the basic dimensions that accord with the teaching quality required by the three parties, constructing the quality evaluation index system; and then, on the basis of expounding the connotation of each index, it determined the weight of each index by using method of fuzzy analytic hierarchy process, providing ideas and methods for scientific, objective and comprehensive evaluation of the teaching quality of network education APP.Keywords: network music education APP, teaching quality evaluation, index and connotation
Procedia PDF Downloads 1289347 Design of Multi-Loop Controller for Minimization of Energy Consumption in the Distillation Column
Authors: Vinayambika S. Bhat, S. Shanmuga Priya, I. Thirunavukkarasu, Shreeranga Bhat
Abstract:
An attempt has been made to design a decoupling controller for systems with more inputs more outputs with dead time in it. The de-coupler is designed for the chemical process industry 3×3 plant transfer function with dead time. The Quantitative Feedback Theory (QFT) based controller has also been designed here for the 2×2 distillation column transfer function. The developed control techniques were simulated using the MATLAB/Simulink. Also, the stability of the process was analyzed, together with the presence of various perturbations in it. Time domain specifications like setting time along with overshoot and oscillations were analyzed to prove the efficiency of the de-coupler method. The load disturbance rejection was tested along with its performance. The QFT control technique was synthesized based on the stability and performance specifications in the presence of uncertainty in time constant of the plant transfer function through sequential loop shaping technique. Further, the energy efficiency of the distillation column was improved by proper tuning of the controller. A distillation column consumes 3% of the total energy consumption of the world. A suitable control technique is very important from an economic point of view. The real time implementation of the process is under process in our laboratory.Keywords: distillation, energy, MIMO process, time delay, robust stability
Procedia PDF Downloads 4149346 Diagnosis of Intermittent High Vibration Peaks in Industrial Gas Turbine Using Advanced Vibrations Analysis
Authors: Abubakar Rashid, Muhammad Saad, Faheem Ahmed
Abstract:
This paper provides a comprehensive study pertaining to diagnosis of intermittent high vibrations on an industrial gas turbine using detailed vibrations analysis, followed by its rectification. Engro Polymer & Chemicals Limited, a Chlor-Vinyl complex located in Pakistan has a captive combined cycle power plant having two 28 MW gas turbines (make Hitachi) & one 15 MW steam turbine. In 2018, the organization faced an issue of high vibrations on one of the gas turbines. These high vibration peaks appeared intermittently on both compressor’s drive end (DE) & turbine’s non-drive end (NDE) bearing. The amplitude of high vibration peaks was between 150-170% on the DE bearing & 200-300% on the NDE bearing from baseline values. In one of these episodes, the gas turbine got tripped on “High Vibrations Trip” logic actuated at 155µm. Limited instrumentation is available on the machine, which is monitored with GE Bently Nevada 3300 system having two proximity probes installed at Turbine NDE, Compressor DE &at Generator DE & NDE bearings. Machine’s transient ramp-up & steady state data was collected using ADRE SXP & DSPI 408. Since only 01 key phasor is installed at Turbine high speed shaft, a derived drive key phasor was configured in ADRE to obtain low speed shaft rpm required for data analysis. By analyzing the Bode plots, Shaft center line plot, Polar plot & orbit plots; rubbing was evident on Turbine’s NDE along with increased bearing clearance of Turbine’s NDE radial bearing. The subject bearing was then inspected & heavy deposition of carbonized coke was found on the labyrinth seals of bearing housing with clear rubbing marks on shaft & housing covering at 20-25 degrees on the inner radius of labyrinth seals. The collected coke sample was tested in laboratory & found to be the residue of lube oil in the bearing housing. After detailed inspection & cleaning of shaft journal area & bearing housing, new radial bearing was installed. Before assembling the bearing housing, cleaning of bearing cooling & sealing air lines was also carried out as inadequate flow of cooling & sealing air can accelerate coke formation in bearing housing. The machine was then taken back online & data was collected again using ADRE SXP & DSPI 408 for health analysis. The vibrations were found in acceptable zone as per ISO standard 7919-3 while all other parameters were also within vendor defined range. As a learning from subject case, revised operating & maintenance regime has also been proposed to enhance machine’s reliability.Keywords: ADRE, bearing, gas turbine, GE Bently Nevada, Hitachi, vibration
Procedia PDF Downloads 1469345 Cognitive and Functional Analysis of Experiencer Subject and Experiencer Object Psychological Predicate Constructions in French
Authors: Carine Kawakami
Abstract:
In French, as well as in English, there are two types of psychological predicate constructions depending on where the experiencer argument is realized; the first type is in the subject position (e.g. Je regrette d’être venu ici. ‘I regret coming here'), hereinafter called ES construction, and the second type is in the object position (e.g. Cette nouvelle m’a surpris. ‘This new surprised me.'), referred as EO construction. In the previous studies about psychological predicates, the syntactic position of the experiencer argument has been just a matter of its connection with the syntactic or semantic structure of the predicate. So that few attentions have been paid to how two types of realization of experiencer are related to the conceptualization of psychological event and to the function of the sentence describing the psychological event, in the sense of speech act theory. In this research, focusing on the French phenomena limited to the first personal pronoun and the present tense, the ES constructions and the EO constructions will be analyzed from cognitive and functional approach. It will be revealed that, due to the possibility to be used in soliloquy and the high co-occurrence with ça (‘it’), the EO constructions may have expressive function to betray what speaker feels in hic et nunc, like interjection. And in the expressive case, the experiencer is construed as a locus where a feeling appears spontaneously and is construed subjectively (e.g. Ah, ça m’énerve! ‘Oh, it irritates me!'). On the other hand, the ES constructions describe speaker’s mental state in an assertive manner rather than the expressive and spontaneously way. In other words, they describe what speaker feels to the interlocutor (e.g. Je suis énervé. ‘I am irritated.'). As a consequence, when the experiencer argument is realized in the subject position, it is construed objectively and have a participant feature in the sense of cognitive grammar. Finally, it will be concluded that the choice of construction type, at least in French, is correlated to the conceptualization of the psychological event and the discourse feature of its expression.Keywords: french psychological verb, conceptualization, expressive function, assertive function, experiencer realization
Procedia PDF Downloads 1369344 A Review on Using Executive Function to Understand the Limited Efficacy of Weight-Loss Interventions
Authors: H. Soltani, Kevin Laugero
Abstract:
Obesity is becoming an increasingly critical issue in the United States due to the steady and substantial increase in prevalence over the last 30 years. Existing interventions have been able to help participants achieve short-term weight loss, but have failed to show long-term results. The complex nature of behavioral change remains one of the most difficult barriers in promoting sustainable weight-loss in overweight individuals. Research suggests that the 'intention-behavior gap' can be explained by a person’s ability to regulate higher-order thinking, or Executive Function (EF). A review of 63 research articles was completed in fall of 2017 to identify the role of EF in regulating eating behavior and to identify whether there is a potential for improving dietary quality by enhancing EF. Results showed that poor EF is positively associated with obesogenic behavior, namely increased consumption of highly palatable foods, eating in the absence of hunger, high saturated fat intake and low fruit and vegetable consumption. Recent research has indicated that interventions targeting an improvement in EF can be successful in helping promote healthy behaviors. Furthermore, interventions of longer duration have a more lasting and versatile effect on weight loss and maintenance. This may present an opportunity for the increasingly ubiquitous use of mobile application technology.Keywords: eating behavior, executive function, nutrition, obesity, weight-loss
Procedia PDF Downloads 1659343 Fractal Behaviour of Earthquake Sequences in Himalaya
Authors: Kamal, Adil Ahmad
Abstract:
Earthquakes are among the most versatile natural and dynamic processes, and hence a fractal model is considered to be the best representative of the same. We present a novel method to process and analyse information hidden in earthquake sequences using Fractal Dimensions and Iterative Function Systems (IFS). Spatial and temporal variations in the fractal dimensions of seismicity observed around the Indian peninsula in last 30 years are studied. This was used as a possible precursor before large earthquakes in the region. IFS images for observed seismicity in the Himalayan belt were also obtained. We scan the whole data set and coarse grain of a selected window to reduce it to four bins. A critical analysis of four-cornered chaos-game clearly shows that the spatial variation in earthquake occurrences in Himalayan range is not random. Two subzones of Himalaya have a tendency to follow each other in time.Keywords: earthquakes, fractals, Himalaya, iterated function systems
Procedia PDF Downloads 3009342 Presentation of HVA Faults in SONELGAZ Underground Network and Methods of Faults Diagnostic and Faults Location
Authors: I. Touaїbia, E. Azzag, O. Narjes
Abstract:
Power supply networks are growing continuously and their reliability is getting more important than ever. The complexity of the whole network comprises numerous components that can fail and interrupt the power supply for the end user. Underground distribution systems are normally exposed to permanent faults, due to specific construction characteristics. In these systems, visual inspection cannot be performed. In order to enhance service restoration, accurate fault location techniques must be applied. This paper describes the different faults that affect the underground distribution system of SONELGAZ (National Society of Electricity and Gas of Algeria), and cable fault location procedure with impulse reflection method (TDR), based in the analyses of the cable response of the electromagnetic impulse, allows cable fault prelocation. The results are obtained from real test in the underground distribution feeder from electrical network of energy distribution company of Souk-Ahras, in order to know the influence of cable characteristics in the types and frequency of faults.Keywords: distribution networks, fault location, TDR, underground cable
Procedia PDF Downloads 5339341 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm
Authors: Tahseen Saad, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin
Abstract:
A new concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. To control the coordination problem, which depends on offset selection and to estimate uniform delay based on the offset choice in a traffic signal network. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and are compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show new model minimizes the total uniform delay to almost half compared to conventional models. The mathematical objective function is robust. The algorithm convergence time is fast.Keywords: area traffic control, traffic flow, differential evolution, sinusoidal periodic function, uniform delay, offset variable
Procedia PDF Downloads 2769340 2D Convolutional Networks for Automatic Segmentation of Knee Cartilage in 3D MRI
Authors: Ananya Ananya, Karthik Rao
Abstract:
Accurate segmentation of knee cartilage in 3-D magnetic resonance (MR) images for quantitative assessment of volume is crucial for studying and diagnosing osteoarthritis (OA) of the knee, one of the major causes of disability in elderly people. Radiologists generally perform this task in slice-by-slice manner taking 15-20 minutes per 3D image, and lead to high inter and intra observer variability. Hence automatic methods for knee cartilage segmentation are desirable and are an active field of research. This paper presents design and experimental evaluation of 2D convolutional neural networks based fully automated methods for knee cartilage segmentation in 3D MRI. The architectures are validated based on 40 test images and 60 training images from SKI10 dataset. The proposed methods segment 2D slices one by one, which are then combined to give segmentation for whole 3D images. Proposed methods are modified versions of U-net and dilated convolutions, consisting of a single step that segments the given image to 5 labels: background, femoral cartilage, tibia cartilage, femoral bone and tibia bone; cartilages being the primary components of interest. U-net consists of a contracting path and an expanding path, to capture context and localization respectively. Dilated convolutions lead to an exponential expansion of receptive field with only a linear increase in a number of parameters. A combination of modified U-net and dilated convolutions has also been explored. These architectures segment one 3D image in 8 – 10 seconds giving average volumetric Dice Score Coefficients (DSC) of 0.950 - 0.962 for femoral cartilage and 0.951 - 0.966 for tibia cartilage, reference being the manual segmentation.Keywords: convolutional neural networks, dilated convolutions, 3 dimensional, fully automated, knee cartilage, MRI, segmentation, U-net
Procedia PDF Downloads 2619339 An Indoor Positioning System in Wireless Sensor Networks with Measurement Delay
Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang
Abstract:
In the current paper, an indoor positioning system is proposed with consideration of measurement delay. Firstly, an estimation filter with a measurement delay is designed for the indoor positioning mechanism under a weighted least square criterion, which utilizes only finite measurements on the most recent window. The proposed estimation filtering based scheme gives the filtered estimates for position, velocity and acceleration of moving target in real-time, while removing undesired noisy effects and preserving desired moving positions. Secondly, the proposed scheme is shown to have good inherent properties such as unbiasedness, efficiency, time-invariance, deadbeat, and robustness due to the finite memory structure. Finally, computer simulations shows that the performance of the proposed estimation filtering based scheme can outperform to the existing infinite memory filtering based mechanism.Keywords: indoor positioning system, wireless sensor networks, measurement delay
Procedia PDF Downloads 4829338 Protein Crystallization Induced by Surface Plasmon Resonance
Authors: Tetsuo Okutsu
Abstract:
We have developed a crystallization plate with the function of promoting protein crystallization. A gold thin film is deposited on the crystallization plate. A protein solution is dropped thereon, and crystallization is promoted when the protein is irradiated with light of a wavelength that protein does not absorb. Protein is densely adsorbed on the gold thin film surface. The light excites the surface plasmon resonance of the gold thin film, the protein is excited by the generated enhanced electric field induced by surface plasmon resonance, and the amino acid residues are radicalized to produce protein dimers. The dimers function as templates for protein crystals, crystallization is promoted.Keywords: lysozyme, plasmon, protein, crystallization, RNaseA
Procedia PDF Downloads 2199337 O-LEACH: The Problem of Orphan Nodes in the LEACH of Routing Protocol for Wireless Sensor Networks
Authors: Wassim Jerbi, Abderrahmen Guermazi, Hafedh Trabelsi
Abstract:
The optimum use of coverage in wireless sensor networks (WSNs) is very important. LEACH protocol called Low Energy Adaptive Clustering Hierarchy, presents a hierarchical clustering algorithm for wireless sensor networks. LEACH is a protocol that allows the formation of distributed cluster. In each cluster, LEACH randomly selects some sensor nodes called cluster heads (CHs). The selection of CHs is made with a probabilistic calculation. It is supposed that each non-CH node joins a cluster and becomes a cluster member. Nevertheless, some CHs can be concentrated in a specific part of the network. Thus, several sensor nodes cannot reach any CH. to solve this problem. We created an O-LEACH Orphan nodes protocol, its role is to reduce the sensor nodes which do not belong the cluster. The cluster member called Gateway receives messages from neighboring orphan nodes. The gateway informs CH having the neighboring nodes that not belong to any group. However, Gateway called (CH') attaches the orphaned nodes to the cluster and then collected the data. O-Leach enables the formation of a new method of cluster, leads to a long life and minimal energy consumption. Orphan nodes possess enough energy and seeks to be covered by the network. The principal novel contribution of the proposed work is O-LEACH protocol which provides coverage of the whole network with a minimum number of orphaned nodes and has a very high connectivity rates.As a result, the WSN application receives data from the entire network including orphan nodes. The proper functioning of the Application requires, therefore, management of intelligent resources present within each the network sensor. The simulation results show that O-LEACH performs better than LEACH in terms of coverage, connectivity rate, energy and scalability.Keywords: WSNs; routing; LEACH; O-LEACH; Orphan nodes; sub-cluster; gateway; CH’
Procedia PDF Downloads 3719336 Excess Body Fat as a Store Toxin Affecting the Glomerular Filtration and Excretory Function of the Liver in Patients after Renal Transplantation
Authors: Magdalena B. Kaziuk, Waldemar Kosiba, Marek J. Kuzniewski
Abstract:
Introduction: Adipose tissue is a typical place for storage water-insoluble toxins in the body. It's connective tissue, where the intercellular substance consist of fat, which level in people with low physical activity should be 18-25% for women and 13-18% for men. Due to the fat distribution in the body we distinquish two types of obesity: android (visceral, abdominal) and gynoidal (gluteal-femoral, peripheral). Abdominal obesity increases the risk of complications of the cardiovascular system diseases, and impaired renal and liver function. Through the influence on disorders of metabolism, lipid metabolism, diabetes and hypertension, leading to emergence of the metabolic syndrome. So thus, obesity will especially overload kidney function in patients after transplantation. Aim: An attempt was made to estimate the impact of amount fat tissue on transplanted kidney function and excretory function of the liver in patients after Ktx. Material and Methods: The study included 108 patients (50 females, 58 male, age 46.5 +/- 12.9 years) with active kidney transplant after more than 3 months from the transplantation. An analysis of body composition was done by using electrical bioimpedance (BIA) and anthropometric measurements. Estimated basal metabolic rate (BMR), muscle mass, total body water content and the amount of body fat. Information about physical activity were obtained during clinical examination. Nutritional status, and type of obesity were determined by using indicators: Waist to Height Ratio (WHR) and Waist to Hip Ratio (WHR). Excretory functions of the transplanted kidney was rated by calculating the estimated renal glomerular filtration rate (eGFR) using the MDRD formula. Liver function was rated by total bilirubin and alanine aminotransferase levels ALT concentration in serum. In our patients haemolitic uremic syndrome (HUS) was excluded. Results: In 19.44% of patients had underweight, 22.37% of the respondents were with normal weight, 11.11% had overweight, and the rest were with obese (49.08%). People with android stature have a lower eGFR compared with those with the gynoidal stature (p = 0.004). All patients with obesity had higher amount of body fat from a few to several percent. The higher amount of body fat percentage, the lower eGFR had patients (p <0.001). Elevated ALT levels significantly correlated with a high fat content (p <0.02). Conclusion: Increased amount of body fat, particularly in the case of android obesity can be a predictor of kidney and liver damage. Due to that obese patients should have more frequent control of diagnostic functions of these organs and the intensive dietary proceedings, pharmacological and regular physical activity adapted to the current physical condition of patients after transplantation.Keywords: obesity, body fat, kidney transplantation, glomerular filtration rate, liver function
Procedia PDF Downloads 461