Search results for: plant classification
4118 Assessment of Seeding and Weeding Field Robot Performance
Authors: Victor Bloch, Eerikki Kaila, Reetta Palva
Abstract:
Field robots are an important tool for enhancing efficiency and decreasing the climatic impact of food production. There exists a number of commercial field robots; however, since this technology is still new, the robot advantages and limitations, as well as methods for optimal using of robots, are still unclear. In this study, the performance of a commercial field robot for seeding and weeding was assessed. A research 2-ha sugar beet field with 0.5m row width was used for testing, which included robotic sowing of sugar beet and weeding five times during the first two months of the growing. About three and five percent of the field were used as untreated and chemically weeded control areas, respectively. The plant detection was based on the exact plant location without image processing. The robot was equipped with six seeding and weeding tools, including passive between-rows harrow hoes and active hoes cutting inside rows between the plants, and it moved with a maximal speed of 0.9 km/h. The robot's performance was assessed by image processing. The field images were collected by an action camera with a height of 2 m and a resolution 27M pixels installed on the robot and by a drone with a 16M pixel camera flying at 4 m height. To detect plants and weeds, the YOLO model was trained with transfer learning from two available datasets. A preliminary analysis of the entire field showed that in the areas treated by the robot, the weed average density varied across the field from 6.8 to 9.1 weeds/m² (compared with 0.8 in the chemically treated area and 24.3 in the untreated area), the weed average density inside rows was 2.0-2.9 weeds / m (compared with 0 on the chemically treated area), and the emergence rate was 90-95%. The information about the robot's performance has high importance for the application of robotics for field tasks. With the help of the developed method, the performance can be assessed several times during the growth according to the robotic weeding frequency. When it’s used by farmers, they can know the field condition and efficiency of the robotic treatment all over the field. Farmers and researchers could develop optimal strategies for using the robot, such as seeding and weeding timing, robot settings, and plant and field parameters and geometry. The robot producers can have quantitative information from an actual working environment and improve the robots accordingly.Keywords: agricultural robot, field robot, plant detection, robot performance
Procedia PDF Downloads 874117 Analysis of Population and Growth Rate Methanotof Bateria as Reducers Methane Gases Emission in Rice Field
Authors: Maimuna Nontji
Abstract:
The life cycle of rice plant has three phases of growth; they are the vegetative, reproductive and maturation phase. They greatly affect the life of dynamics metanotrof bacterial as reducer methane emissions in the rice field, both of population and on the rate of growth. The aim of this study was to analyze the population and growth rate of methanotrof isolates which has been isolated in previous studies. Isolates were taken at all the life cycle of rice plant. Population of analysis was conducted by standard plate count method and growth rate was analysed by logarithmic calculation. The results showed that each isolate varied in population and growth rate. The highest population was obtained in the isolates Gowa Methanotrof Reproductive (GMR 8) about 7.06 x 10 11 cfu / ml on 3 days of incubation and the lowest population was obtained in the Gowa Methanotrof Maturation (GMP 5) about 0.27 x 10 11 cfu / ml on 7 day of incubation. Some isolate were demonstrated in long growth rate about 5 days of incubation and another are 3 days.Keywords: emission, methanotrof, methane, population
Procedia PDF Downloads 4504116 Regional Analysis of Freight Movement by Vehicle Classification
Authors: Katerina Koliou, Scott Parr, Evangelos Kaisar
Abstract:
The surface transportation of freight is particularly vulnerable to storm and hurricane disasters, while at the same time, it is the primary transportation mode for delivering medical supplies, fuel, water, and other essential goods. To better plan for commercial vehicles during an evacuation, it is necessary to understand how these vehicles travel during an evacuation and determine if this travel is different from the general public. The research investigation used Florida's statewide continuous-count station traffic volumes, where then compared between years, to identify locations where traffic was moving differently during the evacuation. The data was then used to identify days on which traffic was significantly different between years. While the literature on auto-based evacuations is extensive, the consideration of freight travel is lacking. To better plan for commercial vehicles during an evacuation, it is necessary to understand how these vehicles travel during an evacuation and determine if this travel is different from the general public. The goal of this research was to investigate the movement of vehicles by classification, with an emphasis on freight during two major evacuation events: hurricanes Irma (2017) and Michael (2018). The methodology of the research was divided into three phases: data collection and management, spatial analysis, and temporal comparisons. Data collection and management obtained continuous-co station data from the state of Florida for both 2017 and 2018 by vehicle classification. The data was then processed into a manageable format. The second phase used geographic information systems (GIS) to display where and when traffic varied across the state. The third and final phase was a quantitative investigation into which vehicle classifications were statistically different and on which dates statewide. This phase used a two-sample, two-tailed t-test to compare sensor volume by classification on similar days between years. Overall, increases in freight movement between years prevented a more precise paired analysis. This research sought to identify where and when different classes of vehicles were traveling leading up to hurricane landfall and post-storm reentry. Of the more significant findings, the research results showed that commercial-use vehicles may have underutilized rest areas during the evacuation, or perhaps these rest areas were closed. This may suggest that truckers are driving longer distances and possibly longer hours before hurricanes. Another significant finding of this research was that changes in traffic patterns for commercial-use vehicles occurred earlier and lasted longer than changes for personal-use vehicles. This finding suggests that commercial vehicles are perhaps evacuating in a fashion different from personal use vehicles. This paper may serve as the foundation for future research into commercial travel during evacuations and explore additional factors that may influence freight movements during evacuations.Keywords: evacuation, freight, travel time, evacuation
Procedia PDF Downloads 684115 Surface Sterilization Of Aquatic Plant, Cryptocoryne affinis by Using Clorox and Mercury Chloride
Authors: Sridevi Devadas
Abstract:
This study was aimed to examine the combination efficiency of Clorox (5.25% Sodium Hypochlorite) and mercury chloride (HgCl2) as a reagent for surface sterilization process of aquatic plant and cryptocoryne affinis (C. affinis). The treatment applied 10% of the Clorox and 0.1ppm of mercury chloride. The maximum exposure time for clorox and mercury chloride was 10min and 60sec respectively. After exposed to the treatments protocols (T1-T15) the explants were transferred to culture room under control temperature at 25°C ± 2°C and subjected to 16 hours fluorescence light (2000 lumens) for 30 days. The both sterilizing agents were not applied on control specimens. Upon analysis, The result indicates all of the treatments protocols produced sterile explants at range of minimum 1.5 ± 0.7 (30%) to maximum 5.0 ± 0.0 (100%). Meanwhile, maximum 1.0 ± 0.7 numbers of leaves and 1.4 ± 0.6 numbers of roots have been produced. The optimized exposure time was 0 to 15 min for Clorox and 30 sec for HgCl2 whereby 90% to 100% sterilization was archived at this condition.Keywords: Cryptocoryne affinis, surface sterilization, tissue culture, clorox, mercury chloride
Procedia PDF Downloads 3804114 Reducing Metabolism Residues in Maintenance Goldfish (Carrasius auratus auratus) by Phytoremediation Plant
Authors: Anna Nurkhasanah, Hamzah Muhammad Ihsan, Nurul Wulandari
Abstract:
Water quality affects the body condition of aquatic organisms. One of the methods to manage water quality, usually called phytoremediation, involves using aquatic plants. The purpose of this study is to find out the best aquatic plants to reducing metabolism residues from aquatic organism. 5 aquariums (40x30x30 cm) containing 100 grams from each 4 different plants such as water hyacinth (Eichhornia crassipes), salvinia (Salvinia molesta), cabomba (Cabomba caroliniana), and hydrilla (Hydrilla verticillata), thirteen goldfis (Carrasius auratus auratus) are maintained. The maintenance is conducted through a week and water quality measurements are performed three times. The results show that pH value tends to range between 7,22-8,72. The temperature varies between 25-26 °C. DO values varies between 5,2-10,5 mg/L. Amoniac value is between 0,005–5,2 mg/L. Nitrite value is between 0,005 mg/L-2,356 mg/L. Nitrate value is between 0,791 mg/L-1,737 mg/L. CO2 value is between 2,2 mg/L-6,1 mg/L. The result of survival rate of goldfish for all treatments is 100%. Based on this study, the best aquatic plant to reduce metabolism residues is hydrilla.Keywords: phytoremediation, goldfish, aquatic plants, water quality
Procedia PDF Downloads 5214113 Long Term Effect of FYM and Green Manure on Infiltration Characteristics Under Vertisol
Authors: Tripti Nayak, R. K. Bajpai
Abstract:
An ongoing field experiment was conducted at Long term fertilizer experiment, Raipur, to study the Effect of fertilization (both organic and inorganic) on soil Physical properties (infiltration rate) of Vertisol of ten treatments viz. The treatment combinations for were T1(Control),T2(50%NPK), T3(100%NPK), T4(150%NPK), T5(100%NPK+Zn), T6(100%NP), T7(100%N), T8(100%NPK+FYM), T9 (50%NPK+BGA) and T10(50%NPK+GM). Farmyard manure and green manure is applied at the treatment of T8 (100%NPK+FYM) and T10 (50%NPK+GM). Result showed that the highest infiltration rate recorded T8(100%NPK+FYM) and T10 (50%NPK+GM). These considerations have led to a renewed interest in the organic manures such as FYM, compost and green manures, which are formulations helps in sustainable agriculture production either by providing plants with fixed nitrogen, available P or by other plant growth promoting substances. Organic matter (OM) is the life of the soil because it contains all the essential elements required for plant growth. It also serves as food for soil bacteria. Decomposed OM, known as humus, improves the soil tilth, quality and helps the plant to grow. In general among all the other treatments and control gave poorest infiltration rate. Incorporation of organic sources considerably improved the soil physical properties such as decrease in bulk density and increase in infiltration rate and available NPK status of the soil. Study showed that wherever, nitrogen was substituted through GM, FYM or crop residue (rice straw) in rice, Corresponding decrease in bulk density favorably enhanced the infiltration rate and it was found to be highest in the green-manured plot, FYM and lowest in control. Concluded that Continuous monitoring of physical properties should be carried out for maintaining soil health and enhancing the crop production.Keywords: long term effect, FYM, green manure, infiltration rate, soil health, crop productivity, vertisol
Procedia PDF Downloads 3644112 Studying the Effects of Ruta Graveolens on Spontaneous Motor Activity, Skeletal Muscle Tone and Strychnine Induced Convulsions in Albino Mice and Rats
Authors: Shaban Saad, Syed Ahmed, Suher Aburawi, Isabel Fong
Abstract:
Ruta graveolens is a plant commonly found in north Africa and south Europe. It is reported that Ruta graveolens is used traditionally for epilepsy and some other illnesses. The acute and sub-acute effects of alcoholic extract residue were tested for possible anti-epileptic and skeletal muscle relaxation activity. The effect of extract on rat spontaneous motor activity (SMA) was also investigated using open filed. We previously proved the anti convulsant activity of the plant against pentylenetetrazol and electrically induced convulsions. Therefore in this study strychnine was used to induce convulsions in order to explore the mechanism of anti-convulsant activity of the plant. The skeletal muscle relaxation activity of Ruta graveolens was studied using pull-up and rod hanging tests in rats. At concentration of 5%w/v the extract protected mice against strychnine induced myoclonic jerks and death. The pull-up and rod hanging tests pointed to a skeletal muscle relaxant activity at higher concentrations. Ruta graveolens extract also significantly decreased the number of squares visited by rats in open field apparatus at all tested concentrations (3.5-20%w/v). However, the significant decrease in number of rearings was only noticed at concentrations of (15 and 20%w/v). The results indicate that Ruta graveolens contains compound(s) capable to inhibit convulsions, decrease SMA and/or diminish skeletal muscle tone in animal models. This data and the previously generated data together point to a general depression trend of CNS produced by Ruta graveolens.Keywords: Ruta graveolens, open field, skeletal muscle relaxation
Procedia PDF Downloads 4184111 A Normalized Non-Stationary Wavelet Based Analysis Approach for a Computer Assisted Classification of Laryngoscopic High-Speed Video Recordings
Authors: Mona K. Fehling, Jakob Unger, Dietmar J. Hecker, Bernhard Schick, Joerg Lohscheller
Abstract:
Voice disorders origin from disturbances of the vibration patterns of the two vocal folds located within the human larynx. Consequently, the visual examination of vocal fold vibrations is an integral part within the clinical diagnostic process. For an objective analysis of the vocal fold vibration patterns, the two-dimensional vocal fold dynamics are captured during sustained phonation using an endoscopic high-speed camera. In this work, we present an approach allowing a fully automatic analysis of the high-speed video data including a computerized classification of healthy and pathological voices. The approach bases on a wavelet-based analysis of so-called phonovibrograms (PVG), which are extracted from the high-speed videos and comprise the entire two-dimensional vibration pattern of each vocal fold individually. Using a principal component analysis (PCA) strategy a low-dimensional feature set is computed from each phonovibrogram. From the PCA-space clinically relevant measures can be derived that quantify objectively vibration abnormalities. In the first part of the work it will be shown that, using a machine learning approach, the derived measures are suitable to distinguish automatically between healthy and pathological voices. Within the approach the formation of the PCA-space and consequently the extracted quantitative measures depend on the clinical data, which were used to compute the principle components. Therefore, in the second part of the work we proposed a strategy to achieve a normalization of the PCA-space by registering the PCA-space to a coordinate system using a set of synthetically generated vibration patterns. The results show that owing to the normalization step potential ambiguousness of the parameter space can be eliminated. The normalization further allows a direct comparison of research results, which bases on PCA-spaces obtained from different clinical subjects.Keywords: Wavelet-based analysis, Multiscale product, normalization, computer assisted classification, high-speed laryngoscopy, vocal fold analysis, phonovibrogram
Procedia PDF Downloads 2654110 Recovery of Waste: Feasibility and Sustainable Application of Residues from Drinking Water Treatment in Building Materials
Authors: Flavio Araujo, Julio Lima, Paulo Scalize, Antonio Albuquerque, Isabela Santos
Abstract:
The aim of this study was to perform the physicochemical characterizations of the residue generated in the Meia-Ponte Water Treatment Plant, seeking to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal as the launching of the residue in the rivers, disposal in landfills or burning it, because such ways pollute watercourses, ground and air. The analyzes performed: Granulometry, identification of clay minerals, Scanning Electron Microscopy, and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feedstock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.Keywords: recovery of waste, residue, sustainable, water treatment plant, WTR
Procedia PDF Downloads 5444109 A Systemic Review and Comparison of Non-Isolated Bi-Directional Converters
Authors: Rahil Bahrami, Kaveh Ashenayi
Abstract:
This paper presents a systematic classification and comparative analysis of non-isolated bi-directional DC-DC converters. The increasing demand for efficient energy conversion in diverse applications has spurred the development of various converter topologies. In this study, we categorize bi-directional converters into three distinct classes: Inverting, Non-Inverting, and Interleaved. Each category is characterized by its unique operational characteristics and benefits. Furthermore, a practical comparison is conducted by evaluating the results of simulation of each bi-directional converter. BDCs can be classified into isolated and non-isolated topologies. Non-isolated converters share a common ground between input and output, making them suitable for applications with minimal voltage change. They are easy to integrate, lightweight, and cost-effective but have limitations like limited voltage gain, switching losses, and no protection against high voltages. Isolated converters use transformers to separate input and output, offering safety benefits, high voltage gain, and noise reduction. They are larger and more costly but are essential for automotive designs where safety is crucial. The paper focuses on non-isolated systems.The paper discusses the classification of non-isolated bidirectional converters based on several criteria. Common factors used for classification include topology, voltage conversion, control strategy, power capacity, voltage range, and application. These factors serve as a foundation for categorizing converters, although the specific scheme might vary depending on contextual, application, or system-specific requirements. The paper presents a three-category classification for non-isolated bi-directional DC-DC converters: inverting, non-inverting, and interleaved. In the inverting category, converters produce an output voltage with reversed polarity compared to the input voltage, achieved through specific circuit configurations and control strategies. This is valuable in applications such as motor control and grid-tied solar systems. The non-inverting category consists of converters maintaining the same voltage polarity, useful in scenarios like battery equalization. Lastly, the interleaved category employs parallel converter stages to enhance power delivery and reduce current ripple. This classification framework enhances comprehension and analysis of non-isolated bi-directional DC-DC converters. The findings contribute to a deeper understanding of the trade-offs and merits associated with different converter types. As a result, this work aids researchers, practitioners, and engineers in selecting appropriate bi-directional converter solutions for specific energy conversion requirements. The proposed classification framework and experimental assessment collectively enhance the comprehension of non-isolated bi-directional DC-DC converters, fostering advancements in efficient power management and utilization.The simulation process involves the utilization of PSIM to model and simulate non-isolated bi-directional converter from both inverted and non-inverted category. The aim is to conduct a comprehensive comparative analysis of these converters, considering key performance indicators such as rise time, efficiency, ripple factor, and maximum error. This systematic evaluation provides valuable insights into the dynamic response, energy efficiency, output stability, and overall precision of the converters. The results of this comparison facilitate informed decision-making and potential optimizations, ensuring that the chosen converter configuration aligns effectively with the designated operational criteria and performance goals.Keywords: bi-directional, DC-DC converter, non-isolated, energy conversion
Procedia PDF Downloads 1004108 Exergy Analysis of a Green Dimethyl Ether Production Plant
Authors: Marcello De Falco, Gianluca Natrella, Mauro Capocelli
Abstract:
CO₂ capture and utilization (CCU) is a promising approach to reduce GHG(greenhouse gas) emissions. Many technologies in this field are recently attracting attention. However, since CO₂ is a very stable compound, its utilization as a reagent is energetic intensive. As a consequence, it is unclear whether CCU processes allow for a net reduction of environmental impacts from a life cycle perspective and whether these solutions are sustainable. Among the tools to apply for the quantification of the real environmental benefits of CCU technologies, exergy analysis is the most rigorous from a scientific point of view. The exergy of a system is the maximum obtainable work during a process that brings the system into equilibrium with its reference environment through a series of reversible processes in which the system can only interact with such an environment. In other words, exergy is an “opportunity for doing work” and, in real processes, it is destroyed by entropy generation. The exergy-based analysis is useful to evaluate the thermodynamic inefficiencies of processes, to understand and locate the main consumption of fuels or primary energy, to provide an instrument for comparison among different process configurations and to detect solutions to reduce the energy penalties of a process. In this work, the exergy analysis of a process for the production of Dimethyl Ether (DME) from green hydrogen generated through an electrolysis unit and pure CO₂ captured from flue gas is performed. The model simulates the behavior of all units composing the plant (electrolyzer, carbon capture section, DME synthesis reactor, purification step), with the scope to quantify the performance indices based on the II Law of Thermodynamics and to identify the entropy generation points. Then, a plant optimization strategy is proposed to maximize the exergy efficiency.Keywords: green DME production, exergy analysis, energy penalties, exergy efficiency
Procedia PDF Downloads 2574107 Reducing Support Structures in Design for Additive Manufacturing: A Neural Networks Approach
Authors: Olivia Borgue, Massimo Panarotto, Ola Isaksson
Abstract:
This article presents a neural networks-based strategy for reducing the need for support structures when designing for additive manufacturing (AM). Additive manufacturing is a relatively new and immature industrial technology, and the information to make confident decisions when designing for AM is limited. This lack of information impacts especially the early stages of engineering design, for instance, it is difficult to actively consider the support structures needed for manufacturing a part. This difficulty is related to the challenge of designing a product geometry accounting for customer requirements, manufacturing constraints and minimization of support structure. The approach presented in this article proposes an automatized geometry modification technique for reducing the use of the support structures while designing for AM. This strategy starts with a neural network-based strategy for shape recognition to achieve product classification, using an STL file of the product as input. Based on the classification, an automatic part geometry modification based on MATLAB© is implemented. At the end of the process, the strategy presents different geometry modification alternatives depending on the type of product to be designed. The geometry alternatives are then evaluated adopting a QFD-like decision support tool.Keywords: additive manufacturing, engineering design, geometry modification optimization, neural networks
Procedia PDF Downloads 2534106 Biomass Waste-To-Energy Technical Feasibility Analysis: A Case Study for Processing of Wood Waste in Malta
Authors: G. A. Asciak, C. Camilleri, A. Rizzo
Abstract:
The waste management in Malta is a national challenge. Coupled with Malta’s recent economic boom, which has seen massive growth in several sectors, especially the construction industry, drastic actions need to be taken. Wood waste, currently being dumped in landfills, is one type of waste which has increased astronomically. This research study aims to carry out a thorough examination on the possibility of using this waste as a biomass resource and adopting a waste-to-energy technology in order to generate electrical energy. This study is composed of three distinct yet interdependent phases, namely, data collection from the local SMEs, thermal analysis using the bomb calorimeter, and generation of energy from wood waste using a micro biomass plant. Data collection from SMEs specializing in wood works was carried out to obtain information regarding the available types of wood waste, the annual weight of imported wood, and to analyse the manner in which wood shavings are used after wood is manufactured. From this analysis, it resulted that five most common types of wood available in Malta which would suitable for generating energy are Oak (hardwood), Beech (hardwood), Red Beech (softwood), African Walnut (softwood) and Iroko (hardwood). Subsequently, based on the information collected, a thermal analysis using a 6200 Isoperibol calorimeter on the five most common types of wood was performed. This analysis was done so as to give a clear indication with regards to the burning potential, which will be valuable when testing the wood in the biomass plant. The experiments carried out in this phase provided a clear indication that the African Walnut generated the highest gross calorific value. This means that this type of wood released the highest amount of heat during the combustion in the calorimeter. This is due to the high presence of extractives and lignin, which accounts for a slightly higher gross calorific value. This is followed by Red Beech and Oak. Moreover, based on the findings of the first phase, both the African Walnut and Red Beech are highly imported in the Maltese Islands for use in various purposes. Oak, which has the third highest gross calorific value is the most imported and common wood used. From the five types of wood, three were chosen for use in the power plant on the basis of their popularity and their heating values. The PP20 biomass plant was used to burn the three types of shavings in order to compare results related to the estimated feedstock consumed by the plant, the high temperatures generated, the time taken by the plant to produce gasification temperatures, and the projected electrical power attributed to each wood type. From the experiments, it emerged that whilst all three types reached the required gasification temperature and thus, are feasible for electrical energy generation. African Walnut was deemed to be the most suitable fast-burning fuel. This is followed by Red-beech and Oak, which required a longer period of time to reach the required gasification temperatures. The results obtained provide a clear indication that wood waste can not only be treated instead of being dumped in dumped in landfill but coupled.Keywords: biomass, isoperibol calorimeter, waste-to-energy technology, wood
Procedia PDF Downloads 2434105 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches
Authors: Aya Salama
Abstract:
Digital Twin is an emerging research topic that attracted researchers in the last decade. It is used in many fields, such as smart manufacturing and smart healthcare because it saves time and money. It is usually related to other technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, Human digital twin (HDT), in specific, is still a novel idea that still needs to prove its feasibility. HDT expands the idea of Digital Twin to human beings, which are living beings and different from the inanimate physical entities. The goal of this research was to create a Human digital twin that is responsible for real-time human replies automation by simulating human behavior. For this reason, clustering, supervised classification, topic extraction, and sentiment analysis were studied in this paper. The feasibility of the HDT for personal replies generation on social messaging applications was proved in this work. The overall accuracy of the proposed approach in this paper was 63% which is a very promising result that can open the way for researchers to expand the idea of HDT. This was achieved by using Random Forest for clustering the question data base and matching new questions. K-nearest neighbor was also applied for sentiment analysis.Keywords: human digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification, clustering
Procedia PDF Downloads 874104 Silicon Nanoparticles and Irradiated Chitosan: Sustainable Elicitors for PS II Activity and Antioxidant Mediated Plant Immunity
Authors: Mohammad Mukarram, M. Masroor A. Khan, Daniel Kurjak, Marek Fabrika
Abstract:
Lemongrass (Cymbopogon flexuosus (Steud.) Wats) is an aromatic grass with great industrial potential. It is cultivated for its essential oil (EO), which has great economic value due to its numerous medicinal, cosmetic, and culinary applications. The present study had the goal to evaluate whether the combined application of silicon nanoparticles (SiNPs) 150 mg L⁻¹ and irradiated chitosan (ICH) 120 mg L⁻¹ can upgrade lemongrass crop and render enhanced growth and productivity. The analyses of growth and photosynthetic parameters, leaf-nitrogen, and reactive oxygen species metabolism, as well as the content of total essential oil, indicated that combined foliar sprays of SiNPs and ICH can significantly (p≤0.05) trigger a general activation of lemongrass metabolism. Overall, the data indicate that concomitant SiNPs and ICH application elicit lemongrass physiology and defence system, and opens new possibilities for their biotechnological application on other related plant species with agronomic potential.Keywords: photosynthesis, Cymbopogon, antioxidant metabolism, essential oil, ROS, nanoparticles, polysaccharides
Procedia PDF Downloads 814103 An Efficient Approach for Shear Behavior Definition of Plant Stalk
Authors: M. R. Kamandar, J. Massah
Abstract:
The information of the impact cutting behavior of plants stalk plays an important role in the design and fabrication of plants cutting equipment. It is difficult to investigate a theoretical method for defining cutting properties of plants stalks because the cutting process is complex. Thus, it is necessary to set up an experimental approach to determine cutting parameters for a single stalk. To measure the shear force, shear energy and shear strength of plant stalk, a special impact cutting tester was fabricated. It was similar to an Izod impact cutting tester for metals but a cutting blade and data acquisition system were attached to the end of pendulum's arm. The apparatus was included four strain gages and a digital indicator to show the real-time cutting force of plant stalk. To measure the shear force and also testing the apparatus, two plants’ stalks, like buxus and privet, were selected. The samples (buxus and privet stalks) were cut under impact cutting process at four loading rates 1, 2, 3 and 4 m.s-1 and three internodes fifth, tenth and fifteenth by the apparatus. At buxus cutting analysis: the minimum value of cutting energy was obtained at fifth internode and loading rate 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate 1 m.s-1. At privet cutting analysis: the minimum value of shear consumption energy was obtained at fifth internode and loading rate: 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate: 1 m.s-1. The statistical analysis at both plants showed that the increase of impact cutting speed would decrease the shear consumption energy and shear strength. In two scenarios, the results showed that with increase the cutting speed, shear force would decrease.Keywords: Buxus, Privet, impact cutting, shear energy
Procedia PDF Downloads 1254102 Linguistic Features for Sentence Difficulty Prediction in Aspect-Based Sentiment Analysis
Authors: Adrian-Gabriel Chifu, Sebastien Fournier
Abstract:
One of the challenges of natural language understanding is to deal with the subjectivity of sentences, which may express opinions and emotions that add layers of complexity and nuance. Sentiment analysis is a field that aims to extract and analyze these subjective elements from text, and it can be applied at different levels of granularity, such as document, paragraph, sentence, or aspect. Aspect-based sentiment analysis is a well-studied topic with many available data sets and models. However, there is no clear definition of what makes a sentence difficult for aspect-based sentiment analysis. In this paper, we explore this question by conducting an experiment with three data sets: ”Laptops”, ”Restaurants”, and ”MTSC” (Multi-Target-dependent Sentiment Classification), and a merged version of these three datasets. We study the impact of domain diversity and syntactic diversity on difficulty. We use a combination of classifiers to identify the most difficult sentences and analyze their characteristics. We employ two ways of defining sentence difficulty. The first one is binary and labels a sentence as difficult if the classifiers fail to correctly predict the sentiment polarity. The second one is a six-level scale based on how many of the top five best-performing classifiers can correctly predict the sentiment polarity. We also define 9 linguistic features that, combined, aim at estimating the difficulty at sentence level.Keywords: sentiment analysis, difficulty, classification, machine learning
Procedia PDF Downloads 894101 Autogenous Diabetic Retinopathy Censor for Ophthalmologists - AKSHI
Authors: Asiri Wijesinghe, N. D. Kodikara, Damitha Sandaruwan
Abstract:
The Diabetic Retinopathy (DR) is a rapidly growing interrogation around the world which can be annotated by abortive metabolism of glucose that causes long-term infection in human retina. This is one of the preliminary reason of visual impairment and blindness of adults. Information on retinal pathological mutation can be recognized using ocular fundus images. In this research, we are mainly focused on resurrecting an automated diagnosis system to detect DR anomalies such as severity level classification of DR patient (Non-proliferative Diabetic Retinopathy approach) and vessel tortuosity measurement of untwisted vessels to assessment of vessel anomalies (Proliferative Diabetic Retinopathy approach). Severity classification method is obtained better results according to the precision, recall, F-measure and accuracy (exceeds 94%) in all formats of cross validation. In ROC (Receiver Operating Characteristic) curves also visualized the higher AUC (Area Under Curve) percentage (exceeds 95%). User level evaluation of severity capturing is obtained higher accuracy (85%) result and fairly better values for each evaluation measurements. Untwisted vessel detection for tortuosity measurement also carried out the good results with respect to the sensitivity (85%), specificity (89%) and accuracy (87%).Keywords: fundus image, exudates, microaneurisms, hemorrhages, tortuosity, diabetic retinopathy, optic disc, fovea
Procedia PDF Downloads 3424100 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack
Authors: Varun Agarwal
Abstract:
Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images
Procedia PDF Downloads 1304099 Masquerade and “What Comes Behind Six Is More Than Seven”: Thoughts on Art History and Visual Culture Research Methods
Authors: Osa D Egonwa
Abstract:
In the 21st century, the disciplinary boundaries of past centuries that we often create through mainstream art historical classification, techniques and sources may have been eroded by visual culture, which seems to provide a more inclusive umbrella for the new ways artists go about the creative process and its resultant commodities. Over the past four decades, artists in Africa have resorted to new materials, techniques and themes which have affected our ways of research on these artists and their art. Frontline artists such as El Anatsui, Yinka Shonibare, Erasmus Onyishi are demonstrating that any material is just suitable for artistic expression. Most of times, these materials come with their own techniques/effects and visual syntax: a combination of materials compounds techniques, formal aesthetic indexes, halo effects, and iconography. This tends to challenge the categories and we lean on to view, think and talk about them. This renders our main stream art historical research methods inadequate, thus suggesting new discursive concepts, terms and theories. This paper proposed the Africanist eclectic methods derived from the dual framework of Masquerade Theory and What Comes Behind Six is More Than Seven. This paper shares thoughts/research on art historical methods, terminological re-alignments on classification/source data, presentational format and interpretation arising from the emergent trends in our subject. The outcome provides useful tools to mediate new thoughts and experiences in recent African art and visual culture.Keywords: art historical methods, classifications, concepts, re-alignment
Procedia PDF Downloads 1104098 Carbon Based Classification of Aquaporin Proteins: A New Proposal
Authors: Parul Johri, Mala Trivedi
Abstract:
Major Intrinsic proteins (MIPs), actively involved in the passive transport of small polar molecules across the membranes of almost all living organisms. MIPs that specifically transport water molecules are named aquaporins (AQPs). The permeability of membranes is actively controlled by the regulation of the amount of different MIPs present but also in some cases by phosphorylation and dephosphorylation of the channel. Based on sequence similarity, MIPs have been classified into many categories. All of the proteins are made up of the 20 amino acids, the only difference is there in their orientations. Again all the 20 amino acids are made up of the basic five elements namely: carbon, hydrogen, oxygen, sulphur and nitrogen. These elements are responsible for giving the amino acids the properties of hydrophilicity/hydrophobicity which play an important role in protein interactions. The hydrophobic amino acids characteristically have greater number of carbon atoms as carbon is the main element which contributes to hydrophobic interactions in proteins. It is observed that the carbon level of proteins in different species is different. In the present work, we have taken a sample set of 150 aquaporins proteins from Uniprot database and a dynamic programming code was written to calculate the carbon percentage for each sequence. This carbon percentage was further used to barcode the aqauporins of animals and plants. The protein taken from Oryza sativa, Zea mays and Arabidopsis thaliana preferred to have carbon percentage of 31.8 to 35, whereas on the other hand sequences taken from Mus musculus, Saccharomyces cerevisiae, Homo sapiens, Bos Taurus, and Rattus norvegicus preferred to have carbon percentage of 31 to 33.7. This clearly demarks the carbon range in the aquaporin proteins from plant and animal origin. Hence the atom level analysis of protein sequences can provide us with better results as compared to the residue level comparison.Keywords: aquaporins, carbon, dynamic prgramming, MIPs
Procedia PDF Downloads 3694097 Researches on Attractive Flowered Natural Woody Plants of Bursa Flora in Terms of Landscape Design
Authors: Elvan Ender, Murat Zencirkıran
Abstract:
One of the most important criteria that increase the success of design in landscape architecture is the visual effect. The characteristics that affect visual appearance in plant design vary depending on the phenological periods of the plants. In plants, although different effects are observed in different periods of the year, this effect is felt most prominently in flowering periods. For this reason, knowing the flowering time, duration and flower characteristics should be considered as a factor increasing the success of plant design. In this study, flower characteristics of natural woody plants with attractive flowers have been examined. Because of the variability of these characteristics of plants in the region, consideration of these criteria in the planting design processes in the region may increase the success of the design. At the same time, when species selection is made considering the obtained data, visuality and sustainability of natural species can be possible in Bursa city with planting design.Keywords: Bursa, flower characteristics, natural plants, planting design
Procedia PDF Downloads 2664096 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study
Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman
Abstract:
Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.Keywords: artificial neural network, data mining, classification, students’ evaluation
Procedia PDF Downloads 6134095 Phylogenetic Differential Separation of Environmental Samples
Authors: Amber C. W. Vandepoele, Michael A. Marciano
Abstract:
Biological analyses frequently focus on single organisms, however many times, the biological sample consists of more than the target organism; for example, human microbiome research targets bacterial DNA, yet most samples consist largely of human DNA. Therefore, there would be an advantage to removing these contaminating organisms. Conversely, some analyses focus on a single organism but would greatly benefit from the additional information regarding the other organismal components of the sample. Forensic analysis is one such example, wherein most forensic casework, human DNA is targeted; however, it typically exists in complex non-pristine sample substrates such as soil or unclean surfaces. These complex samples are commonly comprised of not just human tissue but also microbial and plant life, where these organisms may help gain more forensically relevant information about a specific location or interaction. This project aims to optimize a ‘phylogenetic’ differential extraction method that will separate mammalian, bacterial and plant cells in a mixed sample. This is accomplished through the use of size exclusion separation, whereby the different cell types are separated through multiple filtrations using 5 μm filters. The components are then lysed via differential enzymatic sensitivities among the cells and extracted with minimal contribution from the preceding component. This extraction method will then allow complex DNA samples to be more easily interpreted through non-targeting sequencing since the data will not be skewed toward the smaller and usually more numerous bacterial DNAs. This research project has demonstrated that this ‘phylogenetic’ differential extraction method successfully separated the epithelial and bacterial cells from each other with minimal cell loss. We will take this one step further, showing that when adding the plant cells into the mixture, they will be separated and extracted from the sample. Research is ongoing, and results are pending.Keywords: DNA isolation, geolocation, non-human, phylogenetic separation
Procedia PDF Downloads 1124094 Molecular Farming: Plants Producing Vaccine and Diagnostic Reagent
Authors: Katerina H. Takova, Ivan N. Minkov, Gergana G. Zahmanova
Abstract:
Molecular farming is the production of recombinant proteins in plants with the aim to use the protein as a purified product, crude extract or directly in the planta. Plants gain more attention as expression systems compared to other ones due to the cost effective production of pharmaceutically important proteins, appropriate post-translational modifications, assembly of complex proteins, absence of human pathogens to name a few. In addition, transient expression in plant leaves enables production of recombinant proteins within few weeks. Hepatitis E virus (HEV) is a causative agent of acute hepatitis. HEV causes epidemics in developing countries and is primarily transmitted through the fecal-oral route. Presently, all efforts for development of Hepatitis E vaccine are focused on the Open Read Frame 2 (ORF2) capsid protein as it contains epitopes that can induce neutralizing antibodies. For our purpose, we used the CMPV-based vector-pEAQ-HT for transient expression of HEV ORF2 in Nicotiana benthamina. Different molecular analysis (Western blot and ELISA) showed that HEV ORF2 capsid protein was expressed in plant tissue in high-yield up to 1g/kg of fresh leaf tissue. Electron microscopy showed that the capsid protein spontaneously assembled in low abundance virus-like particles (VLPs), which are highly immunogenic structures and suitable for vaccine development. The expressed protein was recognized by both human and swine HEV positive sera and can be used as a diagnostic reagent for the detection of HEV infection. Production of HEV capsid protein in plants is a promising technology for further HEV vaccine investigations. Here, we reported for a rapid high-yield transient expression of a recombinant protein in plants suitable for vaccine production as well as a diagnostic reagent. Acknowledgments -The authors’ research on HEV is supported with grants from the Project PlantaSYST under the Widening Program, H2020 as well as under the UK Biotechnological and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Grant ‘Understanding and Exploiting Plant and Microbial Secondary Metabolism’ (BB/J004596/1). The authors want to thank Prof. George Lomonossoff (JIC, Norwich, UK) for his contribution.Keywords: hepatitis E virus, plant molecular farming, transient expression, vaccines
Procedia PDF Downloads 1514093 On the Theory of Persecution
Authors: Aleksander V. Zakharov, Marat R. Bogdanov, Ramil F. Malikov, Irina N. Dumchikova
Abstract:
Classification of persecution movement laws is proposed. Modes of persecution in number of specific cases were researched. Modes of movement control using GLONASS/GPS are discussed.Keywords: UAV Management, mathematical algorithms of targeting and persecution, GLONASS, GPS
Procedia PDF Downloads 3454092 Intensive Biological Control in Spanish Greenhouses: Problems of the Success
Authors: Carolina Sanchez, Juan R. Gallego, Manuel Gamez, Tomas Cabello
Abstract:
Currently, biological control programs in greenhouse crops involve the use, at the same time, several natural enemies during the crop cycle. Also, large number of plant species grown in greenhouses, among them, the used cultivars are also wide. However, the cultivar effects on entomophagous species efficacy (predators and parasitoids) have been scarcely studied. A new method had been developed, using the factitious prey or host Ephestia kuehniella. It allows us to evaluate, under greenhouse or controlled conditions (semi-field), the cultivar effects on the entomophagous species effectiveness. The work was carried out in greenhouse tomato crop. It has been found the biological and ecological activities of predatory species (Nesidiocoris tenuis) and egg-parasitoid (Trichogramma achaeae) can be well represented with the use of the factitious prey or host; being better in the former than the latter. The data found in the trial are shown and discussed. The developed method could be applied to evaluate new plant materials before making available to farmers as commercial varieties, at low costs and easy use.Keywords: cultivar effects, efficiency, predators, parasitoids
Procedia PDF Downloads 2744091 Transportation Mode Classification Using GPS Coordinates and Recurrent Neural Networks
Authors: Taylor Kolody, Farkhund Iqbal, Rabia Batool, Benjamin Fung, Mohammed Hussaeni, Saiqa Aleem
Abstract:
The rising threat of climate change has led to an increase in public awareness and care about our collective and individual environmental impact. A key component of this impact is our use of cars and other polluting forms of transportation, but it is often difficult for an individual to know how severe this impact is. While there are applications that offer this feedback, they require manual entry of what transportation mode was used for a given trip, which can be burdensome. In order to alleviate this shortcoming, a data from the 2016 TRIPlab datasets has been used to train a variety of machine learning models to automatically recognize the mode of transportation. The accuracy of 89.6% is achieved using single deep neural network model with Gated Recurrent Unit (GRU) architecture applied directly to trip data points over 4 primary classes, namely walking, public transit, car, and bike. These results are comparable in accuracy to results achieved by others using ensemble methods and require far less computation when classifying new trips. The lack of trip context data, e.g., bus routes, bike paths, etc., and the need for only a single set of weights make this an appropriate methodology for applications hoping to reach a broad demographic and have responsive feedback.Keywords: classification, gated recurrent unit, recurrent neural network, transportation
Procedia PDF Downloads 1374090 Comparative Analysis of Petroleum Ether and Aqueous Extraction Solvents on Different Stages of Anopheles Gambiae Using Neem Leaf and Neem Stem
Authors: Tochukwu Ezechi Ebe, Fechi Njoku-Tony, Ifeyinwa Mgbenena
Abstract:
Comparative analysis of petroleum ether and aqueous extraction solvents on different stages of Anopheles gambiae was carried out using neem leaf and neem stem. Soxhlet apparatus was used to extract each pulverized plant part. Each plant part extract from both solvents were separately used to test their effects on the developmental stages of Anopheles gambiae. The result showed that the mean mortality of extracts from petroleum ether extraction solvent was higher than that of aqueous extract. It was also observed that mean mortality decreases with increase in developmental stage. Furthermore, extracts from neem leaf was found to be more susceptible than extracts from neem stem using same extraction solvent.Keywords: petroleum ether, aqueous, developmental, stages, extraction, Anopheles gambiae
Procedia PDF Downloads 5114089 Geoinformation Technology of Agricultural Monitoring Using Multi-Temporal Satellite Imagery
Authors: Olena Kavats, Dmitry Khramov, Kateryna Sergieieva, Vladimir Vasyliev, Iurii Kavats
Abstract:
Geoinformation technologies of space agromonitoring are a means of operative decision making support in the tasks of managing the agricultural sector of the economy. Existing technologies use satellite images in the optical range of electromagnetic spectrum. Time series of optical images often contain gaps due to the presence of clouds and haze. A geoinformation technology is created. It allows to fill gaps in time series of optical images (Sentinel-2, Landsat-8, PROBA-V, MODIS) with radar survey data (Sentinel-1) and use information about agrometeorological conditions of the growing season for individual monitoring years. The technology allows to perform crop classification and mapping for spring-summer (winter and spring crops) and autumn-winter (winter crops) periods of vegetation, monitoring the dynamics of crop state seasonal changes, crop yield forecasting. Crop classification is based on supervised classification algorithms, takes into account the peculiarities of crop growth at different vegetation stages (dates of sowing, emergence, active vegetation, and harvesting) and agriculture land state characteristics (row spacing, seedling density, etc.). A catalog of samples of the main agricultural crops (Ukraine) is created and crop spectral signatures are calculated with the preliminary removal of row spacing, cloud cover, and cloud shadows in order to construct time series of crop growth characteristics. The obtained data is used in grain crop growth tracking and in timely detection of growth trends deviations from reference samples of a given crop for a selected date. Statistical models of crop yield forecast are created in the forms of linear and nonlinear interconnections between crop yield indicators and crop state characteristics (temperature, precipitation, vegetation indices, etc.). Predicted values of grain crop yield are evaluated with an accuracy up to 95%. The developed technology was used for agricultural areas monitoring in a number of Great Britain and Ukraine regions using EOS Crop Monitoring Platform (https://crop-monitoring.eos.com). The obtained results allow to conclude that joint use of Sentinel-1 and Sentinel-2 images improve separation of winter crops (rapeseed, wheat, barley) in the early stages of vegetation (October-December). It allows to separate successfully the soybean, corn, and sunflower sowing areas that are quite similar in their spectral characteristics.Keywords: geoinformation technology, crop classification, crop yield prediction, agricultural monitoring, EOS Crop Monitoring Platform
Procedia PDF Downloads 457