Search results for: land cover classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5102

Search results for: land cover classification

3602 Study of Three-Dimensional Computed Tomography of Frontoethmoidal Cells Using International Frontal Sinus Anatomy Classification

Authors: Prabesh Karki, Shyam Thapa Chettri, Bajarang Prasad Sah, Manoj Bhattarai, Sudeep Mishra

Abstract:

Introduction: Frontal sinus is frequently described as the most difficult sinus to access surgically due to its proximity to the cribriform plate, orbit, and anterior ethmoid artery. Frontal sinus surgery requires a detailed understanding of the cellular structure and FSDP unique to each patient, making high-resolution CT scans an indispensable tool to assess the difficulty of planned sinus surgery. International Frontal Sinus Anatomy Classification (IFAC) was developed to provide a more precise nomenclature for cells in the frontal recess, classifying cells based on their anatomic origin. Objectives: To assess the proportion of frontal cell variants defined by IFAC, variation with respect to age and gender. Methods: 54 cases were enrolled after a detailed clinical history, thorough general and physical examinations, and CT a report ordered in a film. Assessment and tabulation of the presence of frontal cells according to the IFAC analyzed. The prevalence of each cell type was calculated, and data were entered in MS Excel and analyzed using Statistical Package for the Social Sciences (SPSS). Descriptive statistics and frequencies were defined for categorical and numerical variables. Frequency, percentage, the mean and standard deviation were calculated. Result: Among 54 patients, 30 (55.6%) were male and 24 (44.4%) were female. The patient enrolled ranged from 18 to 78 years. Majority33.3% (n=18) were in age group of >50 years.According to IFAC, Agger nasi cells (92.6%) were most common, whereas supraorbital ethmoidal cells were least common 16 (29.6%). Prevalence of other frontoethmoidal cells was SAC- 57.4%, SAFC- 38.9%, SBC- 74.1%, SBFC- 33.3%, FSC- 38.9% of 54 cases. Conclusion: IFAC is an international consensus document that describes an anatomically precise nomenclature for classifying frontoethmoidal cells' anatomy. This study has defined the prevalence, symmetry and reliability of frontoethmoidal cells as established by the IFAC system as in other parts of the world.

Keywords: frontal sinus, frontoethmoidal cells, international frontal sinus anatomy classification

Procedia PDF Downloads 100
3601 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement

Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes

Abstract:

Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.

Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology

Procedia PDF Downloads 80
3600 A Situational Awareness Map for Allocating Relief Resources after Earthquake Occurrence

Authors: Hamid Reza Ranjbar, Ali Reza Azmoude Ardalan, Hamid Dehghani, Mohammad Reza Sarajian

Abstract:

Natural disasters are unexpected events which predicting them is difficult. Earthquake is one of the most devastating disasters among natural hazards with high rate of mortality and wide extent of damages. After the earthquake occurrence, managing the critical condition and allocating limited relief sources requiring a complete awareness of damaged area. The information for allocating relief teams should be precise and reliable as much as possible, and be presented in the appropriate time after the earthquake occurrence. This type of information was previously presented in the form of a damage map; conducting relief teams by using damage map mostly lead to waste of time for finding alive occupants under the rubble. In this research, a proposed standard for prioritizing damaged buildings in terms of requiring rescue and relief was presented. This standard prioritizes damaged buildings into four levels of priority including very high, high, moderate and low by considering key parameters such as type of land use, activity time, and inactivity time of each land use, time of earthquake occurrence and distinct index. The priority map by using the proposed standard could be a basis for guiding relief teams towards the areas with high relief priority.

Keywords: Damage map, GIS, priority map, USAR

Procedia PDF Downloads 404
3599 Soil Bearing Capacity of Shallow Foundation and Consolidation Settlement at Around the Prospective Area of Sei Gong Dam Batam

Authors: Andri Hidayat, Zufialdi Zakaria, Raden Irvan Sophian

Abstract:

Batam city within next five years are expected to experience water crisis. Sei Gong dam which is located in the Sijantung village, Galang District, Batam City, Riau Islands Province is one of 13 dams that will be built to solve the problems of raw water crisis in the Batam city. The purpose of this study are to determine the condition of engineering geology around Sei Gong Dam area, knowing the value of the soil bearing capacity and recommended pile foundation, and knowing the characteristics of the soil consolidation as one of the factors that affect the incidence of soil subsidence. Based on calculations for shallow foundation in general - soil shear condition and local - soil condition indicates that the highest value in ultimate soil bearing capacity (qu) for each depth was in the square foundations at two meters depth. The zonations of shallow foundation of the research area are divided into five zones, they are bearing capacity zone <10 ton/m2, bearing capacity zone 10-15 ton/m2, bearing capacity zone 15-20 ton/m2, bearing capacity zone 20-25 ton/m2, and bearing capacity zone >25 ton/m2. Based on the parameters of soil engineering analysis, Sei Gong Dam areas at the middle part has a higher value for land subsidence.

Keywords: ultimate bearing capacity, type of foundation, consolidation, land subsidence, Batam

Procedia PDF Downloads 377
3598 System for Electromyography Signal Emulation Through the Use of Embedded Systems

Authors: Valentina Narvaez Gaitan, Laura Valentina Rodriguez Leguizamon, Ruben Dario Hernandez B.

Abstract:

This work describes a physiological signal emulation system that uses electromyography (EMG) signals obtained from muscle sensors in the first instance. These signals are used to extract their characteristics to model and emulate specific arm movements. The main objective of this effort is to develop a new biomedical software system capable of generating physiological signals through the use of embedded systems by establishing the characteristics of the acquired signals. The acquisition system used was Biosignals, which contains two EMG electrodes used to acquire signals from the forearm muscles placed on the extensor and flexor muscles. Processing algorithms were implemented to classify the signals generated by the arm muscles when performing specific movements such as wrist flexion extension, palmar grip, and wrist pronation-supination. Matlab software was used to condition and preprocess the signals for subsequent classification. Subsequently, the mathematical modeling of each signal is performed to be generated by the embedded system, with a validation of the accuracy of the obtained signal using the percentage of cross-correlation, obtaining a precision of 96%. The equations are then discretized to be emulated in the embedded system, obtaining a system capable of generating physiological signals according to the characteristics of medical analysis.

Keywords: classification, electromyography, embedded system, emulation, physiological signals

Procedia PDF Downloads 111
3597 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models

Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan

Abstract:

Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.

Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network

Procedia PDF Downloads 28
3596 Sustainable Urban Growth of Neighborhoods: A Case Study of Alryad-Khartoum

Authors: Zuhal Eltayeb Awad

Abstract:

Alryad neighborhood is located in Khartoum town– the administrative center of the Capital of Sudan. The neighborhood is one of the high-income residential areas with villa type development of low-density. It was planned and developed in 1972 with large plots (600-875m²), wide crossing roads and balanced environment. Recently the area transformed into more compact urban form of high density, mixed-use integrated development with more intensive use of land; multi-storied apartments. The most important socio-economic process in the neighborhood has been the commercialization and deinitialization of the area in connect with the displacement of the residential function. This transformation affected the quality of the neighborhood and the inter-related features of the built environment. A case study approach was chosen to gather the necessary qualitative and quantitative data. A detailed survey on existing development pattern was carried out over the whole area of Alryad. Data on the built and social environment of the neighborhoods were collected through observations, interviews and secondary data sources. The paper reflected a theoretical and empirical interest in the particular characteristics of compact neighborhood with high density, and mixed land uses and their effect on social wellbeing of the residents all in the context of the sustainable development. The research problem is focused on the challenges of transformation that associated with compact neighborhood that created multiple urban problems, e.g., stress of essential services (water supply, electricity, and drainage), congestion of streets and demand for parking. The main objective of the study is to analyze the transformation of this area from residential use to commercial and administrative use. The study analyzed the current situation of the neighborhood compared to the five principles of sustainable neighborhood prepared by UN Habitat. The study found that the neighborhood is experienced changes that occur to inner-city residential areas and the process of change of the neighborhood was originated by external forces due to the declining economic situation of the whole country. It is evident that non-residential uses have taken place uncontrolled, unregulated and haphazardly that led to damage the residential environment and deficiency in infrastructure. The quality of urban life and in particular on levels of privacy was reduced, the neighborhood changed gradually to be a central business district that provides services to the whole Khartoum town. The change of house type may be attributed to a demand-led housing market and absence of policy. The results showed that Alryad is not fully sustainable and self-contained, street network characteristics and mixed land-uses development are compatible with the principles of sustainability. The area of streets represents 27.4% of the total area of the neighborhood. Residential density is 4,620 people/ km², that is lower than the recommendations, and the limited block land-use specialization is higher than 10% of the blocks. Most inhabitants have a high income so that there is no social mix in the neighborhood. The study recommended revision of the current zoning regulations in order to control and regulate undesirable development in the neighborhood and provide new solutions which allow promoting the neighborhood sustainable development.

Keywords: compact neighborhood, land uses, mixed use, residential area, transformation

Procedia PDF Downloads 129
3595 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes

Authors: Madushani Rodrigo, Banuka Athuraliya

Abstract:

In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.

Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16

Procedia PDF Downloads 121
3594 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.

Keywords: human motion recognition, motion representation, Laban Movement Analysis, Discrete Hidden Markov Model

Procedia PDF Downloads 207
3593 Assessment of Waste Management Practices in Bahrain

Authors: T. Radu, R. Sreenivas, H. Albuflasa, A. Mustafa Khan, W. Aloqab

Abstract:

The Kingdom of Bahrain, a small island country in the Gulf region, is experiencing fast economic growth resulting in a sharp increase in population and greater than ever amounts of waste being produced. However, waste management in the country is still very basic, with landfilling being the most popular option. Recycling is still a scarce practice, with small recycling businesses and initiatives emerging in recent years. This scenario is typical for other countries in the region, with similar amounts of per capita waste being produced. In this paper, we are reviewing current waste management practices in Bahrain by collecting data published by the Government and various authors, and by visiting the country’s only landfill site, Askar. In addition, we have performed a survey of the residents to learn more about the awareness and attitudes towards sustainable waste management strategies. A review of the available data on waste management indicates that the Askar landfill site is nearing its capacity. The site uses open tipping as the method of disposal. The highest percentage of disposed waste comes from the building sector (38.4%), followed by domestic (27.5%) and commercial waste (17.9%). Disposal monitoring and recording are often based on estimates of weight and without proper characterization/classification of received waste. Besides, there is a need for assessment of the environmental impact of the site with systematic monitoring of pollutants in the area and their potential spreading to the surrounding land, groundwater, and air. The results of the survey indicate low awareness of what happens with the collected waste in the country. However, the respondents have shown support for future waste reduction and recycling initiatives. This implies that the education of local communities would be very beneficial for such governmental initiatives, securing greater participation. Raising awareness of issues surrounding recycling and waste management and systematic effort to divert waste from landfills are the first steps towards securing sustainable waste management in the Kingdom of Bahrain.

Keywords: landfill, municipal solid waste, survey, waste management

Procedia PDF Downloads 158
3592 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine

Authors: Hira Lal Gope, Hidekazu Fukai

Abstract:

The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.

Keywords: convolutional neural networks, coffee bean, peaberry, sorting, support vector machine

Procedia PDF Downloads 144
3591 Triangular Geometric Feature for Offline Signature Verification

Authors: Zuraidasahana Zulkarnain, Mohd Shafry Mohd Rahim, Nor Anita Fairos Ismail, Mohd Azhar M. Arsad

Abstract:

Handwritten signature is accepted widely as a biometric characteristic for personal authentication. The use of appropriate features plays an important role in determining accuracy of signature verification; therefore, this paper presents a feature based on the geometrical concept. To achieve the aim, triangle attributes are exploited to design a new feature since the triangle possesses orientation, angle and transformation that would improve accuracy. The proposed feature uses triangulation geometric set comprising of sides, angles and perimeter of a triangle which is derived from the center of gravity of a signature image. For classification purpose, Euclidean classifier along with Voting-based classifier is used to verify the tendency of forgery signature. This classification process is experimented using triangular geometric feature and selected global features. Based on an experiment that was validated using Grupo de Senales 960 (GPDS-960) signature database, the proposed triangular geometric feature achieves a lower Average Error Rates (AER) value with a percentage of 34% as compared to 43% of the selected global feature. As a conclusion, the proposed triangular geometric feature proves to be a more reliable feature for accurate signature verification.

Keywords: biometrics, euclidean classifier, features extraction, offline signature verification, voting-based classifier

Procedia PDF Downloads 379
3590 Identifying the Conservation Gaps in Poorly Studied Protected Area in the Philippines: A Study Case of Sibuyan Island

Authors: Roven Tumaneng, Angelica Kristina Monzon, Ralph Sedricke Lapuz, Jose Don De Alban, Jennica Paula Masigan, Joanne Rae Pales, Laila Monera Pornel, Dennis Tablazon, Rizza Karen Veridiano, Jackie Lou Wenceslao, Edmund Leo Rico, Neil Aldrin Mallari

Abstract:

Most protected area management plans in the Philippines, particularly the smaller and more remote islands suffer from insufficient baseline data, which should provide the bases for formulating measureable conservation targets and appropriate management interventions for these protected areas. Attempts to synthesize available data particularly on cultural and socio-economic characteristic of local peoples within and outside protected areas also suffer from the lack of comprehensive and detailed inventories, which should be considered in designing adaptive management interventions to be used for those protected areas. Mt Guiting-guiting Natural Park (MGGNP) located in Sibuyan Island is one of the poorly studied protected areas in the Philippines. In this study, we determined the highly biologically important areas of the protected area using Maximum Entropy approach (MaxEnt) from environmental predictors (i.e., topographic, bioclimatic,land cover, and soil image layers) derived from global remotely sensed data and point occurrence data of species of birds and trees recorded during field surveys on the island. A total of 23 trigger species of birds and trees was modeled and stacked to generate species richness maps for biological high conservation value areas (HCVAs). Forest habitat change was delineated using dual-polarised L-band ALOS-PALSAR mosaic data at 25 meter spatial resolution, taken at two acquisition years 2007 and 2009 to provide information on forest cover ad habitat change in the island between year 2007 and 2009. Determining the livelihood guilds were also conducted using the data gathered from171 household interviews, from which demographic and livelihood variables were extracted (i.e., age, gender, number of household members, educational attainment, years of residency, distance from forest edge, main occupation, alternative sources of food and resources during scarcity months, and sources of these alternative resources).Using Principal Component Analysis (PCA) and Kruskal-Wallis test, the diversity and patterns of forest resource use by people in the island were determined with particular focus on the economic activities that directly and indirectly affect the population of key species as well as to identify levels of forest resource use by people in different areas of the park.Results showed that there are gaps in the area occupied by the natural park, as evidenced by the mismatch of the proposed HCVAs and the existing perimeters of the park. We found out that subsistence forest gathering was the possible main driver for forest degradation out of the eight livelihood guilds that were identified in the park. Determining the high conservation areas and identifyingthe anthropogenic factors that influence the species richness and abundance of key species in the different management zone of MGGNP would provide guidance for the design of a protected area management plan and future monitoring programs. However, through intensive communication and consultation with government stakeholders and local communities our results led to setting conservation targets in local development plans and serve as a basis for the reposition of the boundaries and reconfiguration of the management zones of MGGNP.

Keywords: conservation gaps, livelihood guilds, MaxEnt, protected area

Procedia PDF Downloads 407
3589 The Impacts of Negative Moral Characters on Health: An Article Review

Authors: Mansoor Aslamzai, Delaqa Del, Sayed Azam Sajid

Abstract:

Introduction: Though moral disorders have a high burden, there is no separate topic regarding this problem in the International Classification of Diseases (ICD). Along with the modification of WHO ICD-11, spirituality can prevent the rapid progress of such derangement as well. Objective: This study evaluated the effects of bad moral characters on health, as well as carried out the role of spirituality in the improvement of immorality. Method: This narrative article review was accomplished in 2020-2021 and the articles were searched through the Web of Science, PubMed, BMC, and Google scholar. Results: Based on the current review, most experimental and observational studies revealed significant negative effects of unwell moral characters on the overall aspects of health and well-being. Nowadays, a lot of studies established the positive role of spirituality in the improvement of health and moral disorder. The studies concluded, facilities must be available within schools, universities, and communities for everyone to learn the knowledge of spirituality and improve their unwell moral character world. Conclusion: Considering the negative relationship between unwell moral characters and well-being, the current study proposes the addition of moral disorder as a separate topic in the WHO International Classification of Diseases. Based on this literature review, spirituality will improve moral disorder and establish excellent moral traits.

Keywords: bad moral characters, effect, health, spirituality and well-being

Procedia PDF Downloads 184
3588 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates

Authors: Jennifer Buz, Alvin Spivey

Abstract:

The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.

Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation

Procedia PDF Downloads 130
3587 A Study of Erosion and Sedimentation Rates Based on Two Different Seasons Using CS-137 As A Tracer in the Sembrong Catchment, Malaysia

Authors: Jalal Sharib@Sarip, Dainee nor Fardzila Ahmad Tugi, Mohd Tarmizi Ishak, Mohd Izwan Abdul Adziz

Abstract:

This research paper aims to determine the rate of soil erosion and sedimentation by using Cesium-137,137Cs as a medium-term tracer in the Sembrong catchment, Malaysia, over two different study seasons. The results of the analysis show that rates of soil erosion and sedimentation for both seasons were variable. This can be clearly seen where the dry season only gives the value of the rate of soil erosion. Meanwhile, the wet season has given both soil erosion and sedimentation rate values. The dry season had rates of soil erosion between 5.09 t/ha/y to 51.03 t/ha/y. The wet season had soil erosion and sedimentation rates between 8.02 t/ha/y to 39.78 t/ha/y and -4.81 t/ha/y to - 50.81 t/ha/y, each, respectively. rubber and oil palm plantations referring to Station 17 and station 4/6, located near Semberong Lake and Sembrong River, had the highest rates of soil erosion and sedimentation at 51.03 t/ha/y and -50.81 t/ha/y, respectively. Various factors must also be taken into account, such as soil types, the total volume of rainfall received for both seasons, as well as differences in land use at the study stations. In conclusion, 137Cs as a medium-term tracer was successfully used to determine rates of soil erosion and sedimentation in two different seasons for the Sembrong catchment area. The data on soil erosion and sedimentation rates for this study will be very useful for present, and future land and water management in the Sembrong catchment area and may be compared with other similar catchments in Malaysia.

Keywords: soil erosion, sedimentation, cesium-137, catchment management

Procedia PDF Downloads 139
3586 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50

Procedia PDF Downloads 128
3585 Evaluating Habitat Manipulation as a Strategy for Rodent Control in Agricultural Ecosystems of Pothwar Region, Pakistan

Authors: Nadeem Munawar, Tariq Mahmood

Abstract:

Habitat manipulation is an important technique that can be used for controlling rodent damage in agricultural ecosystems. It involves intentionally manipulation of vegetation cover in adjacent habitats around the active burrows of rodents to reduce shelter, food availability and to increase predation pressure. The current study was conducted in the Pothwar Plateau during the respective non-crop period of wheat-groundnut (post-harvested and un-ploughed/non-crop fallow lands) with the aim to assess the impact of the reduction in vegetation height of adjacent habitats (field borders) on rodent’s richness and abundance. The study area was divided into two sites viz. treated and non-treated. At the treated sites, habitat manipulation was carried out by removing crop cache, and non-crop vegetation’s over 10 cm in height to a distance of approximately 20 m from the fields. The trapping sessions carried out at both treated and non-treated sites adjacent to wheat-groundnut fields were significantly different (F 2, 6 = 13.2, P = 0.001) from each other, which revealed that a maximum number of rodents were captured from non-treated sites. There was a significant difference in the overall abundance of rodents (P < 0.05) between crop stages and between treatments in both crops. The manipulation effect was significantly observed on damage to crops, and yield production resulted in the reduction of damage within the associated croplands (P < 0.05). The outcomes of this study indicated a significant reduction of rodent population at treated sites due to changes in vegetation height and cover which affect important components, i.e., food, shelter, movements and increased risk sensitivity in their feeding behavior; therefore, they were unable to reach levels where they cause significant crop damage. This method is recommended for being a cost-effective and easy application.

Keywords: agricultural ecosystems, crop damage, habitat manipulation, rodents, trapping

Procedia PDF Downloads 165
3584 Assessment of the Impacts of Climate Change on Watershed Runoff Using Soil and Water Assessment Tool Model in Southeast Nigeria

Authors: Samuel Emeka Anarah, Kingsley Nnaemeka Ogbu, Obasi Arinze

Abstract:

Quantifying the hydrological response due to changes in climate change is imperative for proper management of water resources within a watershed. The impact of climate change on the hydrology of the Upper Ebony River (UER) watershed, South East Nigeria, was studied using the Soil and Water Assessment Tool (SWAT) hydrological model. A climatological time series analysis from 1985 - 2014 using non-parametric test showed significant negative trends in precipitation and relative humidity trend while minimum and maximum temperature, solar radiation and wind speed showed significant positive trends. Future hypothetical land-use change scenarios (Scenarios 1, 2, 3 and 4) representing urbanization and conversion of forest to agricultural land were combined with future downscaled climate model (CSIRO-Mk3-6-0) and simulated in SWAT model. Relative to the Baseline scenario (2005 - 2014), the results showed a decrease in streamflow by 10.29%, 26.20%, 11.80% and 26.72% for Scenarios 1, 2, 3, and 4 respectively. Model results suggest development of adaptation strategies to cope with the predicted hydrological conditions under future climate change in the watershed.

Keywords: climate change, hydrology, runoff, SWAT model

Procedia PDF Downloads 143
3583 Application of Italian Guidelines for Existing Bridge Management

Authors: Giovanni Menichini, Salvatore Giacomo Morano, Gloria Terenzi, Luca Salvatori, Maurizio Orlando

Abstract:

The “Guidelines for Risk Classification, Safety Assessment, and Structural Health Monitoring of Existing Bridges” were recently approved by the Italian Government to define technical standards for managing the national network of existing bridges. These guidelines provide a framework for risk mitigation and safety assessment of bridges, which are essential elements of the built environment and form the basis for the operation of transport systems. Within the guideline framework, a workflow based on three main points was proposed: (1) risk-based, i.e., based on typical parameters of hazard, vulnerability, and exposure; (2) multi-level, i.e., including six assessment levels of increasing complexity; and (3) multirisk, i.e., assessing structural/foundational, seismic, hydrological, and landslide risks. The paper focuses on applying the Italian Guidelines to specific case studies, aiming to identify the parameters that predominantly influence the determination of the “class of attention”. The significance of each parameter is determined via sensitivity analysis. Additionally, recommendations for enhancing the process of assigning the class of attention are proposed.

Keywords: bridge safety assessment, Italian guidelines implementation, risk classification, structural health monitoring

Procedia PDF Downloads 58
3582 A Comparative Analysis: Cultural Reflections of Mexicans in the United States and Turks in Germany

Authors: Gülşen Kocaevli

Abstract:

This paper aims to conduct a comparative analysis on the reflections of cultural elements such as language, festival, and food both in the case of Turkish immigrants in Germany and Mexican immigrants in the United States within a historical perspective. These reflections will be studied first by giving a certain background information on the migratory history of the two nations, Mexican immigration to the US, and Turkish immigration to Germany, respectively. These two cases were picked as the analytical subjects of this paper because both nations first migrated to the related country to constitute a labor force since there was a huge need for that due to several reasons such as the loss of manpower after certain wars or revolutions. At the end of this comparative study, it is speculated to be found that there are certain parallels between these two immigrant societies in the way that they reflect their cultures in the receiving country since both nations have a conventionalist nature which makes them tend more to protect their cultures and pay less effort to integrate into the society in which they are living. Even though this integration might be realized in certain fields like economic status and exogamy, it does not cover all segments nor is there any desire of the receiving government to integrate the immigrants but rather they make policies to assimilate them. This research paper will use a qualitative method which is fundamentally based on the interpretative data drawn from several sociological or ethnographic studies conducted in the related field. The primary and secondary resources of this paper will cover academic books, journal articles, particularly those reporting interviews with the immigrants, and certain governmental documents as well as publicized statistics regarding the subject of analysis. By the use of the aforementioned methodology and resources, the conventionalist nature of the two immigrant nations is aimed to be presented as the unifying factor in the way that Mexicans in the US and Turks in Germany reflect and protect their cultures in the form of language, festivals, and food.

Keywords: assimilation, culture, German-Turks, immigration, Mexican Americans

Procedia PDF Downloads 170
3581 EEG-Based Classification of Psychiatric Disorders: Bipolar Mood Disorder vs. Schizophrenia

Authors: Han-Jeong Hwang, Jae-Hyun Jo, Fatemeh Alimardani

Abstract:

An accurate diagnosis of psychiatric diseases is a challenging issue, in particular when distinct symptoms for different diseases are overlapped, such as delusions appeared in bipolar mood disorder (BMD) and schizophrenia (SCH). In the present study, we propose a useful way to discriminate BMD and SCH using electroencephalography (EEG). A total of thirty BMD and SCH patients (15 vs. 15) took part in our experiment. EEG signals were measured with nineteen electrodes attached on the scalp using the international 10-20 system, while they were exposed to a visual stimulus flickering at 16 Hz for 95 s. The flickering visual stimulus induces a certain brain signal, known as steady-state visual evoked potential (SSVEP), which is differently observed in patients with BMD and SCH, respectively, in terms of SSVEP amplitude because they process the same visual information in own unique way. For classifying BDM and SCH patients, machine learning technique was employed in which leave-one-out-cross validation was performed. The SSVEPs induced at the fundamental (16 Hz) and second harmonic (32 Hz) stimulation frequencies were extracted using fast Fourier transformation (FFT), and they were used as features. The most discriminative feature was selected using the Fisher score, and support vector machine (SVM) was used as a classifier. From the analysis, we could obtain a classification accuracy of 83.33 %, showing the feasibility of discriminating patients with BMD and SCH using EEG. We expect that our approach can be utilized for psychiatrists to more accurately diagnose the psychiatric disorders, BMD and SCH.

Keywords: bipolar mood disorder, electroencephalography, schizophrenia, machine learning

Procedia PDF Downloads 422
3580 Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics

Authors: M. Bodner, M. Scampicchio

Abstract:

Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.

Keywords: adulterated butter, margarine, PCA, PLS-DA, PLS-R, SIMCA

Procedia PDF Downloads 143
3579 An Advanced Automated Brain Tumor Diagnostics Approach

Authors: Berkan Ural, Arif Eser, Sinan Apaydin

Abstract:

Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs.

Keywords: image processing algorithms, magnetic resonance imaging, neural network, pattern recognition

Procedia PDF Downloads 418
3578 Real-Time Classification of Hemodynamic Response by Functional Near-Infrared Spectroscopy Using an Adaptive Estimation of General Linear Model Coefficients

Authors: Sahar Jahani, Meryem Ayse Yucel, David Boas, Seyed Kamaledin Setarehdan

Abstract:

Near-infrared spectroscopy allows monitoring of oxy- and deoxy-hemoglobin concentration changes associated with hemodynamic response function (HRF). HRF is usually affected by natural physiological hemodynamic (systemic interferences) which occur in all body tissues including brain tissue. This makes HRF extraction a very challenging task. In this study, we used Kalman filter based on a general linear model (GLM) of brain activity to define the proportion of systemic interference in the brain hemodynamic. The performance of the proposed algorithm is evaluated in terms of the peak to peak error (Ep), mean square error (MSE), and Pearson’s correlation coefficient (R2) criteria between the estimated and the simulated hemodynamic responses. This technique also has the ability of real time estimation of single trial functional activations as it was applied to classify finger tapping versus resting state. The average real-time classification accuracy of 74% over 11 subjects demonstrates the feasibility of developing an effective functional near infrared spectroscopy for brain computer interface purposes (fNIRS-BCI).

Keywords: hemodynamic response function, functional near-infrared spectroscopy, adaptive filter, Kalman filter

Procedia PDF Downloads 167
3577 Travel Behavior Simulation of Bike-Sharing System Users in Kaoshiung City

Authors: Hong-Yi Lin, Feng-Tyan Lin

Abstract:

In a Bike-sharing system (BSS), users can easily rent bikes from any station in the city for mid-range or short-range trips. BSS can also be integrated with other types of transport system, especially Green Transportation system, such as rail transport, bus etc. Since BSS records time and place of each pickup and return, the operational data can reflect more authentic and dynamic state of user behaviors. Furthermore, land uses around docking stations are highly associated with origins and destinations for the BSS users. As urban researchers, what concerns us more is to take BSS into consideration during the urban planning process and enhance the quality of urban life. This research focuses on the simulation of travel behavior of BSS users in Kaohsiung. First, rules of users’ behavior were derived by analyzing operational data and land use patterns nearby docking stations. Then, integrating with Monte Carlo method, these rules were embedded into a travel behavior simulation model, which was implemented by NetLogo, an agent-based modeling tool. The simulation model allows us to foresee the rent-return behaviour of BSS in order to choose potential locations of the docking stations. Also, it can provide insights and recommendations about planning and policies for the future BSS.

Keywords: agent-based model, bike-sharing system, BSS operational data, simulation

Procedia PDF Downloads 333
3576 Solid Waste Disposal Site Selection in Thiruvananthapuram Corporation Area by Data Analysis Using GIS and Remote Sensing Tools

Authors: C. Asha Poorna, P. G. Vinod, A. R. R. Menon

Abstract:

Currently increasing population and their activities like urbanization and industrialization generating the greatest environmental, issue called Waste. And the major problem in waste management is selection of an appropriate site for waste disposal. The selection of suitable site have constrains like environmental, economical and political considerations. In this paper we discuss the strategies to be followed while selecting a site for decentralized system for solid waste disposal, using Geographic Information System (GIS), the Analytical Hierarchy Process (AHP) and the remote sensing method for Thiruvananthapuram corporation area. It is located on the west coast of India near the extreme south of the mainland. It lies on the shores of Killiyar and Karamana River. Being on the basin the waste managements must be regulated with the water body. The different criteria considered for waste disposal site selection are lithology, surface water, aquifer, groundwater, land use, contours, aspect, elevation, slope, and distance to road, distance from settlement are examined in relation to land fill site selection. Each criterion was identified and weighted by AHP score and mapped using GIS technique and suitable map is prepared by overlay analysis.

Keywords: waste disposal, solid waste management, Geographic Information System (GIS), Analytical Hierarchy Process (AHP)

Procedia PDF Downloads 397
3575 Hydrochemical Assessment and Quality Classification of Water in Torogh and Kardeh Dam Reservoirs, North-East Iran

Authors: Mojtaba Heydarizad

Abstract:

Khorasan Razavi is the second most important province in north-east of Iran, which faces a water shortage crisis due to recent droughts and huge water consummation. Kardeh and Torogh dam reservoirs in this province provide a notable part of Mashhad metropolitan (with more than 4.5 million inhabitants) potable water needs. Hydrochemical analyses on these dam reservoirs samples demonstrate that MgHCO3 in Kardeh and CaHCO3 and to lower extent MgHCO3 water types in Torogh dam reservoir are dominant. On the other hand, Gibbs binary diagram demonstrates that rock weathering is the main factor controlling water quality in dam reservoirs. Plotting dam reservoir samples on Mg2+/Na+ and HCO3-/Na+ vs. Ca2+/ Na+ diagrams demonstrate evaporative and carbonate mineral dissolution is the dominant rock weathering ion sources in these dam reservoirs. Cluster Analyses (CA) also demonstrate intense role of rock weathering mainly (carbonate and evaporative minerals dissolution) in water quality of these dam reservoirs. Studying water quality by the U.S. National Sanitation Foundation (NSF) WQI index NSF-WQI, Oregon Water Quality Index (OWQI) and Canadian Water Quality Index DWQI index show moderate and good quality.

Keywords: hydrochemistry, water quality classification, water quality indexes, Torogh and Kardeh dam reservoir

Procedia PDF Downloads 255
3574 Sex Estimation Using Cervical Measurements of Molar Teeth in an Iranian Archaeological Population

Authors: Seyedeh Mandan Kazzazi, Elena Kranioti

Abstract:

In the field of human osteology, sex estimation is an important step in developing biological profile. There are a number of methods that can be used to estimate the sex of human remains varying from visual assessments to metric analysis of sexually dimorphic traits. Teeth are one of the most durable physical elements in human body that can be used for this purpose. The present study investigated the utility of cervical measurements for sex estimation through discriminant analysis. The permanent molar teeth of 75 skeletons (28 females and 52 males) from Hasanlu site in North-western Iran were studied. Cervical mesiodistal and buccolingual measurements were taken from both maxillary and mandibular first and second molars. Discriminant analysis was used to evaluate the accuracy of each diameter in assessing sex. The results showed that males had statistically larger teeth than females for maxillary and mandibular molars and both measurements (P < 0.05). The range of classification rate was from (75.7% to 85.5%) for the original and cross-validated data. The most dimorphic teeth were maxillary and mandibular second molars providing 85.5% and 83.3% correct classification rate respectively. The data generated from the present study suggested that cervical mesiodistal and buccolingual measurements of the molar teeth can be useful and reliable for sex estimation in Iranian archaeological populations.

Keywords: cervical measurements, Hasanlu, premolars, sex estimation

Procedia PDF Downloads 330
3573 In Silico Study of Cell Surface Structures of Parabacteroides distasonis Involved in Its Maintain Within the Gut Microbiota and Its Potential Pathogenicity

Authors: Jordan Chamarande, Lisiane Cunat, Corentine Alauzet, Catherine Cailliez-Grimal

Abstract:

Gut microbiota (GM) is now considered a new organ mainly due to the microorganism’s specific biochemical interaction with its host. Although mechanisms underlying host-microbiota interactions are not fully described, it is now well-defined that cell surface molecules and structures of the GM play a key role in such relation. The study of surface structures of GM members is also fundamental for their role in the establishment of species in the versatile and competitive environment of the digestive tract and as a potential virulence factor. Among these structures are capsular polysaccharides (CPS), fimbriae, pili and lipopolysaccharides (LPS), all well-described for their central role in microorganism colonization and communication with host epithelium. The health-promoting Parabacteroides distasonis, which is part of the core microbiome, has recently received a lot of attention, showing beneficial properties for its host and as a new potential biotherapeutic product. However, to the best of the authors’ knowledge, the cell surface molecules and structures of P. distasonis that allow its maintain within the GM are not identified. Moreover, although P. distasonis is strongly recognized as intestinal commensal species with benefits for its host, it has also been recognized as an opportunistic pathogen. In this study, we reported gene clusters potentially involved in the synthesis of the capsule, fimbriae-like and pili-like cell surface structures in 26 P. distasonis genomes and applied the new RfbA-Typing classification in order to better understand and characterize the beneficial/pathogenic behaviour related to P. distasonis strains. In context, 2 different types of fimbriae, 3 of pilus and up to 14 capsular polysaccharide loci, have been identified over the 26 genomes studied. Moreover, the addition of data to the rfbA-Type classification modified the outcome by rearranging rfbA genes and adding a fifth group to the classification. In conclusion, the strain variability in terms of external proteinaceous structure could explain the inter-strain differences previously observed in P. distasonis adhesion capacities and its potential pathogenicity.

Keywords: gut microbiota, Parabacteroides distasonis, capsular polysaccharide, fimbriae, pilus, O-antigen, pathogenicity, probiotic, comparative genomics

Procedia PDF Downloads 103