Search results for: dynamic of networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6531

Search results for: dynamic of networks

5031 Efficient Recommendation System for Frequent and High Utility Itemsets over Incremental Datasets

Authors: J. K. Kavitha, D. Manjula, U. Kanimozhi

Abstract:

Mining frequent and high utility item sets have gained much significance in the recent years. When the data arrives sporadically, incremental and interactive rule mining and utility mining approaches can be adopted to handle user’s dynamic environmental needs and avoid redundancies, using previous data structures, and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests frequent and high utility item sets over dynamic datasets for a cluster based location prediction strategy to predict user’s trajectories using the Efficient Incremental Rule Mining (EIRM) algorithm and the Fast Update Utility Pattern Tree (FUUP) algorithm. Through comprehensive evaluations by experiments, this scheme has shown to deliver excellent performance.

Keywords: data sets, recommendation system, utility item sets, frequent item sets mining

Procedia PDF Downloads 293
5030 Time-Series Load Data Analysis for User Power Profiling

Authors: Mahdi Daghmhehci Firoozjaei, Minchang Kim, Dima Alhadidi

Abstract:

In this paper, we present a power profiling model for smart grid consumers based on real time load data acquired smart meters. It profiles consumers’ power consumption behaviour using the dynamic time warping (DTW) clustering algorithm. Due to the invariability of signal warping of this algorithm, time-disordered load data can be profiled and consumption features be extracted. Two load types are defined and the related load patterns are extracted for classifying consumption behaviour by DTW. The classification methodology is discussed in detail. To evaluate the performance of the method, we analyze the time-series load data measured by a smart meter in a real case. The results verify the effectiveness of the proposed profiling method with 90.91% true positive rate for load type clustering in the best case.

Keywords: power profiling, user privacy, dynamic time warping, smart grid

Procedia PDF Downloads 151
5029 Early Requirement Engineering for Design of Learner Centric Dynamic LMS

Authors: Kausik Halder, Nabendu Chaki, Ranjan Dasgupta

Abstract:

We present a modelling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modelling tool and Means End Analysis, that adopts primitive concepts for modelling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool.

Keywords: adaptive courseware, early requirement engineering, means end analysis, organizational modelling, requirement modelling

Procedia PDF Downloads 500
5028 Normalized P-Laplacian: From Stochastic Game to Image Processing

Authors: Abderrahim Elmoataz

Abstract:

More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.

Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems

Procedia PDF Downloads 512
5027 Static Priority Approach to Under-Frequency Based Load Shedding Scheme in Islanded Industrial Networks: Using the Case Study of Fatima Fertilizer Company Ltd - FFL

Authors: S. H. Kazmi, T. Ahmed, K. Javed, A. Ghani

Abstract:

In this paper static scheme of under-frequency based load shedding is considered for chemical and petrochemical industries with islanded distribution networks relying heavily on the primary commodity to ensure minimum production loss, plant downtime or critical equipment shutdown. A simplistic methodology is proposed for in-house implementation of this scheme using underfrequency relays and a step by step guide is provided including the techniques to calculate maximum percentage overloads, frequency decay rates, time based frequency response and frequency based time response of the system. Case study of FFL electrical system is utilized, presenting the actual system parameters and employed load shedding settings following the similar series of steps. The arbitrary settings are then verified for worst overload conditions (loss of a generation source in this case) and comprehensive system response is then investigated.

Keywords: islanding, under-frequency load shedding, frequency rate of change, static UFLS

Procedia PDF Downloads 486
5026 Finding the Optimal Meeting Point Based on Travel Plans in Road Networks

Authors: Mohammad H. Ahmadi, Vahid Haghighatdoost

Abstract:

Given a set of source locations for a group of friends, and a set of trip plans for each group member as a sequence of Categories-of-Interests (COIs) (e.g., restaurant), and finally a specific COI as a common destination that all group members will gather together, in Meeting Point Based on Trip Plans (MPTPs) queries our goal is to find a Point-of-Interest (POI) from different COIs, such that the aggregate travel distance for the group is minimized. In this work, we considered two cases for aggregate function as Sum and Max. For solving this query, we propose an efficient pruning technique for shrinking the search space. Our approach contains three steps. In the first step, it prunes the search space around the source locations. In the second step, it prunes the search space around the centroid of source locations. Finally, we compute the intersection of all pruned areas as the final refined search space. We prove that the POIs beyond the refined area cannot be part of optimal answer set. The paper also covers an extensive performance study of the proposed technique.

Keywords: meeting point, trip plans, road networks, spatial databases

Procedia PDF Downloads 185
5025 Toehold Mediated Shape Transition of Nucleic Acid Nanoparticles

Authors: Emil F. Khisamutdinov

Abstract:

Development of functional materials undergoing structural transformations in response to an external stimulus such as environmental changes (pH, temperature, etc.), the presence of particular proteins, or short oligonucleotides are of great interest for a variety of applications ranging from medicine to electronics. The dynamic operations of most nucleic acid (NA) devices, including circuits, nano-machines, and biosensors, rely on networks of NA strand displacement processes in which an external or stimulus strand displaces a target strand from a DNA or RNA duplex. The rate of strand displacement can be greatly increased by the use of “toeholds,” single-stranded regions of the target complex to which the invading strand can bind to initiate the reaction, forming additional base pairs that provide a thermodynamic driving force for transformation. Herein, we developed a highly robust nanoparticle shape transition, sequentially transforming DNA polygons from one shape to another using the toehold-mediated DNA strand displacement technique. The shape transformation was confirmed by agarose gel electrophoresis and atomic force microscopy. Furthermore, we demonstrate that our approach is applicable for RNA shape transformation from triangle to square, which can be detected by fluorescence emission from malachite green binding RNA aptamer. Using gel-shift and fluorescence assays, we demonstrated efficient transformation occurs at isothermal conditions (37°C) that can be implemented within living cells as reporter molecules. This work is intended to provide a simple, cost-effective, and straightforward model for the development of biosensors and regulatory devices in nucleic acid nanotechnology.

Keywords: RNA nanotechnology, bionanotechnology, toehold mediated DNA switch, RNA split fluorogenic aptamers

Procedia PDF Downloads 80
5024 Redefining Infrastructure as Code Orchestration Using AI

Authors: Georges Bou Ghantous

Abstract:

This research delves into the transformative impact of Artificial Intelligence (AI) on Infrastructure as Code (IaaC) practices, specifically focusing on the redefinition of infrastructure orchestration. By harnessing AI technologies such as machine learning algorithms and predictive analytics, organizations can achieve unprecedented levels of efficiency and optimization in managing their infrastructure resources. AI-driven IaaC introduces proactive decision-making through predictive insights, enabling organizations to anticipate and address potential issues before they arise. Dynamic resource scaling, facilitated by AI, ensures that infrastructure resources can seamlessly adapt to fluctuating workloads and changing business requirements. Through case studies and best practices, this paper sheds light on the tangible benefits and challenges associated with AI-driven IaaC transformation, providing valuable insights for organizations navigating the evolving landscape of digital infrastructure management.

Keywords: artificial intelligence, infrastructure as code, efficiency optimization, predictive insights, dynamic resource scaling, proactive decision-making

Procedia PDF Downloads 34
5023 Investigating the Effects of Thermal and Surface Energy on the Two-Dimensional Flow Characteristics of Oil in Water Mixture between Two Parallel Plates: A Lattice Boltzmann Method Study

Authors: W. Hasan, H. Farhat

Abstract:

A hybrid quasi-steady thermal lattice Boltzmann model was used to study the combined effects of temperature and contact angle on the movement of slugs and droplets of oil in water (O/W) system flowing between two parallel plates. The model static contact angle due to the deposition of the O/W droplet on a flat surface with simulated hydrophilic characteristic at different fluid temperatures, matched very well the proposed theoretical calculation. Furthermore, the model was used to simulate the dynamic behavior of droplets and slugs deposited on the domain’s upper and lower surfaces, while subjected to parabolic flow conditions. The model accurately simulated the contact angle hysteresis for the dynamic droplets cases. It was also shown that at elevated temperatures the required power to transport the mixture diminished remarkably.

Keywords: lattice Boltzmann method, Gunstensen model, thermal, contact angle, high viscosity ratio

Procedia PDF Downloads 370
5022 Modeling of Virtual Power Plant

Authors: Muhammad Fanseem E. M., Rama Satya Satish Kumar, Indrajeet Bhausaheb Bhavar, Deepak M.

Abstract:

Keeping the right balance of electricity between the supply and demand sides of the grid is one of the most important objectives of electrical grid operation. Power generation and demand forecasting are the core of power management and generation scheduling. Large, centralized producing units were used in the construction of conventional power systems in the past. A certain level of balance was possible since the generation kept up with the power demand. However, integrating renewable energy sources into power networks has proven to be a difficult challenge due to its intermittent nature. The power imbalance caused by rising demands and peak loads is negatively affecting power quality and dependability. Demand side management and demand response were one of the solutions, keeping generation the same but altering or rescheduling or shedding completely the load or demand. However, shedding the load or rescheduling is not an efficient way. There comes the significance of virtual power plants. The virtual power plant integrates distributed generation, dispatchable load, and distributed energy storage organically by using complementing control approaches and communication technologies. This would eventually increase the utilization rate and financial advantages of distributed energy resources. Most of the writing on virtual power plant models ignored technical limitations, and modeling was done in favor of a financial or commercial viewpoint. Therefore, this paper aims to address the modeling intricacies of VPPs and their technical limitations, shedding light on a holistic understanding of this innovative power management approach.

Keywords: cost optimization, distributed energy resources, dynamic modeling, model quality tests, power system modeling

Procedia PDF Downloads 63
5021 Using the Weakest Precondition to Achieve Self-Stabilization in Critical Networks

Authors: Antonio Pizzarello, Oris Friesen

Abstract:

Networks, such as the electric power grid, must demonstrate exemplary performance and integrity. Integrity depends on the quality of both the system design model and the deployed software. Integrity of the deployed software is key, for both the original versions and the many that occur throughout numerous maintenance activity. Current software engineering technology and practice do not produce adequate integrity. Distributed systems utilize networks where each node is an independent computer system. The connections between them is realized via a network that is normally redundantly connected to guarantee the presence of a path between two nodes in the case of failure of some branch. Furthermore, at each node, there is software which may fail. Self-stabilizing protocols are usually present that recognize failure in the network and perform a repair action that will bring the node back to a correct state. These protocols first introduced by E. W. Dijkstra are currently present in almost all Ethernets. Super stabilization protocols capable of reacting to a change in the network topology due to the removal or addition of a branch in the network are less common but are theoretically defined and available. This paper describes how to use the Software Integrity Assessment (SIA) methodology to analyze self-stabilizing software. SIA is based on the UNITY formalism for parallel and distributed programming, which allows the analysis of code for verifying the progress property p leads-to q that describes the progress of all computations starting in a state satisfying p to a state satisfying q via the execution of one or more system modules. As opposed to demonstrably inadequate test and evaluation methods SIA allows the analysis and verification of any network self-stabilizing software as well as any other software that is designed to recover from failure without external intervention of maintenance personnel. The model to be analyzed is obtained by automatic translation of the system code to a transition system that is based on the use of the weakest precondition.

Keywords: network, power grid, self-stabilization, software integrity assessment, UNITY, weakest precondition

Procedia PDF Downloads 223
5020 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 40
5019 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach

Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann

Abstract:

Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.

Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech

Procedia PDF Downloads 102
5018 Characterization of Biodegradable Polycaprolactone Containing Titanium Dioxide Micro and Nanoparticles

Authors: Emi Govorčin Bajsića, Vesna Ocelić Bulatović, Miroslav Slouf, Ana Šitum

Abstract:

Composites based on a biodegradable polycaprolactone (PCL) containing 0.5, 1.0 and 2.0 wt % of titanium dioxide (TiO2) micro and nanoparticles were prepared by melt mixing and the effect of filler type and contents on the thermal properties, dynamic-mechanical behaviour and morphology were investigated. Measurements of storage modulus and loss modulus by dynamic mechanical analysis (DMA) showed better results for microfilled PCL/TiO2 composites than nanofilled composites, with the same filler content. DSC analysis showed that the Tg and Tc of micro and nanocomposites were slightly lower than those of neat PCL. The crystallinity of the PCL increased with the addition of TiO2 micro and nanoparticles; however, the c for the PCL was unchanged with micro TiO2 content. The thermal stability of PCL/TiO2 composites were characterized using thermogravimetric analysis (TGA). The initial weight loss (5 wt %) occurs at slightly higher temperature with micro and nano TiO2 addition and with increasing TiO2 content.

Keywords: polycaprolactone, titanium dioxide, thermal properties, morphology

Procedia PDF Downloads 362
5017 Global Mittag-Leffler Stability of Fractional-Order Bidirectional Associative Memory Neural Network with Discrete and Distributed Transmission Delays

Authors: Swati Tyagi, Syed Abbas

Abstract:

Fractional-order Hopfield neural networks are generally used to model the information processing among the interacting neurons. To show the constancy of the processed information, it is required to analyze the stability of these systems. In this work, we perform Mittag-Leffler stability for the corresponding Caputo fractional-order bidirectional associative memory (BAM) neural networks with various time-delays. We derive sufficient conditions to ensure the existence and uniqueness of the equilibrium point by using the theory of topological degree theory. By applying the fractional Lyapunov method and Mittag-Leffler functions, we derive sufficient conditions for the global Mittag-Leffler stability, which further imply the global asymptotic stability of the network equilibrium. Finally, we present two suitable examples to show the effectiveness of the obtained results.

Keywords: bidirectional associative memory neural network, existence and uniqueness, fractional-order, Lyapunov function, Mittag-Leffler stability

Procedia PDF Downloads 365
5016 Effect of Thickness and Solidity on the Performance of Straight Type Vertical Axis Wind Turbine

Authors: Jianyang Zhu, Lin Jiang, Tixian Tian

Abstract:

Inspired by the increasing interesting on the wind power associated with production of clear electric power, a numerical experiment is applied to investigate the aerodynamic performance of straight type vertical axis wind turbine with different thickness and solidity, where the incompressible Navier-Stokes (N-S) equations coupled with dynamic mesh technique is solved. By analyzing the flow field, as well as energy coefficient of different thickness and solidity turbine, it is found that the thickness and solidity can significantly influence the performance of vertical axis wind turbine. For the turbine under low tip speed, the mean energy coefficient increase with the increasing of thickness and solidity, which may improve the self starting performance of the turbine. However for the turbine under high tip speed, the appropriate thickness and smaller solidity turbine possesses better performance. In addition, delay stall and no interaction of the blade and previous separated vortex are observed around appropriate thickness and solidity turbine, therefore lead better performance characteristics.

Keywords: vertical axis wind turbine, N-S equations, dynamic mesh technique, thickness, solidity

Procedia PDF Downloads 265
5015 Synchronization of Two Mobile Robots

Authors: R. M. López-Gutiérrez, J. A. Michel-Macarty, H. Cervantes-De Avila, J. I. Nieto-Hipólito, C. Cruz-Hernández, L. Cardoza-Avendaño, S. Cortiant-Velez

Abstract:

It is well know that mankind benefits from the application of robot control by virtual handlers in industrial environments. In recent years, great interest has emerged in the control of multiple robots in order to carry out collective tasks. One main trend is to copy the natural organization that some organisms have, such as, ants, bees, school of fish, birds’ migration, etc. Surely, this collaborative work, results in better outcomes than those obtain in an isolated or individual effort. This topic has a great drive because collaboration between several robots has the potential capability of carrying out more complicated tasks, doing so, with better efficiency, resiliency and fault tolerance, in cases such as: coordinate navigation towards a target, terrain exploration, and search-rescue operations. In this work, synchronization of multiple autonomous robots is shown over a variety of coupling topologies: star, ring, chain, and global. In all cases, collective synchronous behavior is achieved, in the complex networks formed with mobile robots. Nodes of these networks are modeled by a mass using Matlab to simulate them.

Keywords: robots, synchronization, bidirectional, coordinate navigation

Procedia PDF Downloads 358
5014 Pigging Operation in Two-Phase Flow Pipeline- Empirical and Simulation

Authors: Behnaz Jamshidi, Seyed Hassan Hashemabadi

Abstract:

The main objective of this study is to investigate on pigging operation of two phase flow pipeline and compare the empirical and simulation results for 108 km long , 0.7934 mm (32 inches) diameter sea line of "Phase 1 South Pars Gas Complex", located in south of Iran. The pigging time, pig velocity, the amount of slug and slug catcher pressure were calculated and monitored closely as the key parameters. Simulation was done by "OLGA" dynamic simulation software and obtained results were compared and validated with empirical data in real operation. The relative errors between empirical data and simulation of the process were 3 % and 9 % for pigging time and accumulated slug volume respectively. Simulated pig velocity and changes of slug catcher pressure were consistent with real values, too. It was also found the slug catcher and condensate stabilization units have been adequately sized for gas-liquid separation and handle the slug batch during transient conditions such as pigging and start up.

Keywords: sea line, pigging, slug catcher, two-phase flow, dynamic simulation

Procedia PDF Downloads 507
5013 Smartphone Based Wound Assessment System for Diabetes Patients

Authors: Vaibhav V. Dixit, Shubham Ajay Karwa

Abstract:

Diabetic foot ulcers speak to a critical medical problem. Right now, clinicians and medical caretakers primarily construct their injury evaluation in light of visual examination of wound size and mending status, while the patients themselves rarely have a chance to play a dynamic part. Henceforth, love quantitative and practical examination technique that empowers the patients and their parental figures to take a more dynamic part in every day wound care possibly can quicken wound recuperating, spare travel cost and diminish human services costs. Considering the commonness of cell phones with a high-determination computerized camera, evaluating wounds by breaking down pictures of ceaseless foot ulcers is an alluring choice. In this paper, we propose a novel injury picture examination framework actualized using feature extraction and color segmentation. Here we are using the Normalized minimum distance classifier for classifying the output.

Keywords: diabetic, Gabor wavelet, normalized minimum distance classifier, quantiable parameters

Procedia PDF Downloads 270
5012 Analysis of Gait Characteristics Using Dynamic Foot Scanner in Type 2 Diabetes Mellitus

Authors: C. G. Shashi Kumar, G. Arun Maiya, H. Manjunath Hande, K. V. Rajagopal

Abstract:

Background: Diabetes mellitus (DM) is a metabolic disorder with involvement of neurovascular and muscular system. Studies have documented that the gait parameter is altered in type 2 diabetes mellitus with peripheral neuropathy. However, there is a dearth of literature regarding the gait characteristics in type 2 diabetes mellitus (T2DM) without peripheral neuropathy. Therefore, the present study is focused on identifying gait changes in early type 2 diabetes mellitus without peripheral neuropathy. Objective: To analyze the gait characteristics in Type 2 diabetes mellitus without peripheral neuropathy. Methods: After obtaining ethical clearance from Institutional Ethical Committee (IEC), 36 T2DM without peripheral neuropathy and 32 matched healthy subjects were recruited. Gait characteristics (step duration, gait cycle length, gait cycle duration, stride duration, step length, double stance duration) of all the subjects were analyzed using Windtrack dynamic foot scanner. Data were analyzed using Independent‘t’ test to find the difference between the groups (step duration, gait cycle length, gait cycle duration) and Mann-Whitney test was used to analyze the step length and double stance duration to find difference between the groups. Level of significance was kept at P<0.05. Results: Result analysis showed significant decrease in step duration, gait cycle length, gait cycle duration, step length, double stance duration in T2DM subjects as compared to healthy subjects. We also observed a mean increase in stride duration in T2DM subjects compared to healthy subjects.

Keywords: type 2 diabetes mellitus, dynamic foot scan, gait characteristics, medical and health sciences

Procedia PDF Downloads 440
5011 Mechanical Properties of Aspen Wood of Structural Dimensions

Authors: Barbora Herdová, Rastislav Lagaňa

Abstract:

The paper investigates the mechanical properties of European aspen (Populus tremula L.) as a potential replacement for load-bearing elements in historical structures. One of the main aims of the research has been the quantification of mechanical properties via destructive testing and the subsequent calculation of characteristic values of these properties. The research encompasses experimental testing of wood specimens for the determination of dynamic modulus of elasticity (MOEdyn), modulus of elasticity (MOE), modulus of rupture (MOR), and density. The results were analyzed and compared to established standards for structural timber. The results confirmed statistically significant dependence between MOR and MOEdyn. The correlation between the MOR and the dynamic MOEdyn enabled non-destructive strength grading using the Sylvatest Duo® system. The findings of this research contribute to the potential use of European aspen as a structural timber, which could have implications for the sustainable use of this abundant and renewable resource in the construction industry. They also show the usability of European aspen in the reconstruction of historical buildings.

Keywords: populus tremula, MOE, MOR, sylvatest Duo®.

Procedia PDF Downloads 65
5010 Ultra Reliable Communication: Availability Analysis in 5G Cellular Networks

Authors: Yosra Benchaabene, Noureddine Boujnah, Faouzi Zarai

Abstract:

To meet the growing demand of users, the fifth generation (5G) will continue to provide services to higher data rates with higher carrier frequencies and wider bandwidths. As part of the 5G communication paradigm, Ultra Reliable Communication (URC) is envisaged as an important technology pillar for providing anywhere and anytime services to end users. Ultra Reliable Communication (URC) is considered an important technology that why it has become an active research topic. In this work, we analyze the availability of a service in the space domain. We characterize spatially available areas consisting of all locations that meet a performance requirement with confidence, and we define cell availability and system availability, individual user availability, and user-oriented system availability. Poisson point process (PPP) and Voronoi tessellation are adopted to model the spatial characteristics of a cell deployment in heterogeneous networks. Numerical results are presented, also highlighting the effect of different system parameters on the achievable link availability.

Keywords: URC, dependability and availability, space domain analysis, Poisson point process, Voronoi Tessellation

Procedia PDF Downloads 122
5009 Linear Dynamic Stability Analysis of a Continuous Rotor-Disk-Blades System

Authors: F. Rahimi Dehgolan, S. E. Khadem, S. Bab, M. Najafee

Abstract:

Nowadays, using rotating systems like shafts and disks in industrial machines have been increased constantly. Dynamic stability is one of the most important factors in designing rotating systems. In this study, linear frequencies and stability of a coupled continuous flexible rotor-disk-blades system are studied. The Euler-Bernoulli beam theory is utilized to model the blade and shaft. The equations of motion are extracted using the extended Hamilton principle. The equations of motion have been simplified using the Coleman and complex transformations method. The natural frequencies of the linear part of the system are extracted, and the effects of various system parameters on the natural frequencies and decay rates (stability condition) are clarified. It can be seen that the centrifugal stiffening effect applied to the blades is the most important parameter for stability of the considered rotating system. This result highlights the importance of considering this stiffing effect in blades equation.

Keywords: rotating shaft, flexible blades, centrifugal stiffness, stability

Procedia PDF Downloads 265
5008 Research of Amplitude-Frequency Characteristics of Nonlinear Oscillations of the Interface of Two-Layered Liquid

Authors: Win Ko Ko, A. N. Temnov

Abstract:

The problem of nonlinear oscillations of a two-layer liquid completely filling a limited volume is considered. Using two basic asymmetric harmonics excited in two mutually perpendicular planes, ordinary differential equations of nonlinear oscillations of the interface of a two-layer liquid are investigated. In this paper, hydrodynamic coefficients of linear and nonlinear problems in integral relations were determined. As a result, the instability regions of forced oscillations of a two-layered liquid in a cylindrical tank occurring in the plane of action of the disturbing force are constructed, as well as the dynamic instability regions of the parametric resonance for different ratios of densities of the upper and lower liquids depending on the amplitudes of liquids from the excitations frequencies. Steady-state regimes of fluid motion were found in the regions of dynamic instability of the initial oscillation form. The Bubnov-Galerkin method is used to construct instability regions for approximate solution of nonlinear differential equations.

Keywords: nonlinear oscillations, two-layered liquid, instability region, hydrodynamic coefficients, resonance frequency

Procedia PDF Downloads 219
5007 An Attentional Bi-Stream Sequence Learner (AttBiSeL) for Credit Card Fraud Detection

Authors: Amir Shahab Shahabi, Mohsen Hasirian

Abstract:

Modern societies, marked by expansive Internet connectivity and the rise of e-commerce, are now integrated with digital platforms at an unprecedented level. The efficiency, speed, and accessibility of e-commerce have garnered a substantial consumer base. Against this backdrop, electronic banking has undergone rapid proliferation within the realm of online activities. However, this growth has inadvertently given rise to an environment conducive to illicit activities, notably electronic payment fraud, posing a formidable challenge to the domain of electronic banking. A pivotal role in upholding the integrity of electronic commerce and business transactions is played by electronic fraud detection, particularly in the context of credit cards which underscores the imperative of comprehensive research in this field. To this end, our study introduces an Attentional Bi-Stream Sequence Learner (AttBiSeL) framework that leverages attention mechanisms and recurrent networks. By incorporating bidirectional recurrent layers, specifically bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers, the proposed model adeptly extracts past and future transaction sequences while accounting for the temporal flow of information in both directions. Moreover, the integration of an attention mechanism accentuates specific transactions to varying degrees, as manifested in the output of the recurrent networks. The effectiveness of the proposed approach in automatic credit card fraud classification is evaluated on the European Cardholders' Fraud Dataset. Empirical results validate that the hybrid architectural paradigm presented in this study yields enhanced accuracy compared to previous studies.

Keywords: credit card fraud, deep learning, attention mechanism, recurrent neural networks

Procedia PDF Downloads 18
5006 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 88
5005 Ab Initio Calculation of Fundamental Properties of CaxMg1-xA (a = Se and Te) Alloys in the Rock-Salt Structure

Authors: M. A. Ghebouli, H. Choutri, B. Ghebouli , M. Fatmi, L. Louail

Abstract:

We employed the density-functional perturbation theory (DFPT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA) to study the effect of composition on the structure, stability, energy gaps, electron effective mass, the dynamic effective charge, optical and acoustical phonon frequencies and static and high dielectric constants of the rock-salt CaxMg1-xSe and CaxMg1-xTe alloys. The computed equilibrium lattice constant and bulk modulus show an important deviation from the linear concentration. From the Voigt-Reuss-Hill approximation, CaxMg1-xSe and CaxMg1-xTe present lower stiffness and lateral expansion. For Ca content ranging between 0.25-0.75, the elastic constants, energy gaps, electron effective mass and dynamic effective charge are predictions. The elastic constants and computed phonon dispersion curves indicate that these alloys are mechanically stable.

Keywords: CaxMg1-xSe, CaxMg1-xTe, band structure, phonon

Procedia PDF Downloads 540
5004 Hardware-in-the-Loop Test for Automatic Voltage Regulator of Synchronous Condenser

Authors: Ha Thi Nguyen, Guangya Yang, Arne Hejde Nielsen, Peter Højgaard Jensen

Abstract:

Automatic voltage regulator (AVR) plays an important role in volt/var control of synchronous condenser (SC) in power systems. Test AVR performance in steady-state and dynamic conditions in real grid is expensive, low efficiency, and hard to achieve. To address this issue, we implement hardware-in-the-loop (HiL) test for the AVR of SC to test the steady-state and dynamic performances of AVR in different operating conditions. Startup procedure of the system and voltage set point changes are studied to evaluate the AVR hardware response. Overexcitation, underexcitation, and AVR set point loss are tested to compare the performance of SC with the AVR hardware and that of simulation. The comparative results demonstrate how AVR will work in a real system. The results show HiL test is an effective approach for testing devices before deployment and is able to parameterize the controller with lower cost, higher efficiency, and more flexibility.

Keywords: automatic voltage regulator, hardware-in-the-loop, synchronous condenser, real time digital simulator

Procedia PDF Downloads 251
5003 Chaotic Electronic System with Lambda Diode

Authors: George Mahalu

Abstract:

The Chua diode has been configured over time in various ways, using electronic structures like operational amplifiers (AOs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paperwork proposed here uses in the modeling a lambda diode type configuration consisting of two junction field effect transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.

Keywords: chua, diode, memristor, chaos

Procedia PDF Downloads 88
5002 Morpho-Dynamic Modelling of the Western 14 Km of the Togolese Coast

Authors: Sawsan Eissa, Omnia Kabbany

Abstract:

The coastline of Togo has been historically suffering from erosion for decades, which requires a solution to help control and reduce the erosion to allow for the development of the coastal area. A morpho-dynamic model using X-beach software was developed for the Western 14 Km of the Togolese coast. The model was coupled with the hydrodynamic module of DELFT 3D, flow, and the Wave module, SWAN. The data used as input included a recent bathymetric survey, a recent shoreline topographic survey, aerial photographs, ERA 5 water level and wave data, and recent test results of seabed samples. A number of scenarios were modeled: do nothing scenario, groynes, detached breakwaters system with different crest levels and alignments. The findings showed that groynes is not expected to be effective for protection against erosion, and that the best option is a system of detached breakwater, partially emerged-partially submerged couples with periodical maintenance.

Keywords: hydrodynamics, morphology, Togo, Delft3D, SWAN, XBeach, coastal erosion, detached breakwaters

Procedia PDF Downloads 68