Search results for: tomato yield prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4699

Search results for: tomato yield prediction

3229 Recommendation Systems for Cereal Cultivation using Advanced Casual Inference Modeling

Authors: Md Yeasin, Ranjit Kumar Paul

Abstract:

In recent years, recommendation systems have become indispensable tools for agricultural system. The accurate and timely recommendations can significantly impact crop yield and overall productivity. Causal inference modeling aims to establish cause-and-effect relationships by identifying the impact of variables or factors on outcomes, enabling more accurate and reliable recommendations. New advancements in causal inference models have been found in the literature. With the advent of the modern era, deep learning and machine learning models have emerged as efficient tools for modeling. This study proposed an innovative approach to enhance recommendation systems-based machine learning based casual inference model. By considering the causal effect and opportunity cost of covariates, the proposed system can provide more reliable and actionable recommendations for cereal farmers. To validate the effectiveness of the proposed approach, experiments are conducted using cereal cultivation data of eastern India. Comparative evaluations are performed against existing correlation-based recommendation systems, demonstrating the superiority of the advanced causal inference modeling approach in terms of recommendation accuracy and impact on crop yield. Overall, it empowers farmers with personalized recommendations tailored to their specific circumstances, leading to optimized decision-making and increased crop productivity.

Keywords: agriculture, casual inference, machine learning, recommendation system

Procedia PDF Downloads 80
3228 An Improvement of ComiR Algorithm for MicroRNA Target Prediction by Exploiting Coding Region Sequences of mRNAs

Authors: Giorgio Bertolazzi, Panayiotis Benos, Michele Tumminello, Claudia Coronnello

Abstract:

MicroRNAs are small non-coding RNAs that post-transcriptionally regulate the expression levels of messenger RNAs. MicroRNA regulation activity depends on the recognition of binding sites located on mRNA molecules. ComiR (Combinatorial miRNA targeting) is a user friendly web tool realized to predict the targets of a set of microRNAs, starting from their expression profile. ComiR incorporates miRNA expression in a thermodynamic binding model, and it associates each gene with the probability of being a target of a set of miRNAs. ComiR algorithms were trained with the information regarding binding sites in the 3’UTR region, by using a reliable dataset containing the targets of endogenously expressed microRNA in D. melanogaster S2 cells. This dataset was obtained by comparing the results from two different experimental approaches, i.e., inhibition, and immunoprecipitation of the AGO1 protein; this protein is a component of the microRNA induced silencing complex. In this work, we tested whether including coding region binding sites in the ComiR algorithm improves the performance of the tool in predicting microRNA targets. We focused the analysis on the D. melanogaster species and updated the ComiR underlying database with the currently available releases of mRNA and microRNA sequences. As a result, we find that the ComiR algorithm trained with the information related to the coding regions is more efficient in predicting the microRNA targets, with respect to the algorithm trained with 3’utr information. On the other hand, we show that 3’utr based predictions can be seen as complementary to the coding region based predictions, which suggests that both predictions, from 3'UTR and coding regions, should be considered in a comprehensive analysis. Furthermore, we observed that the lists of targets obtained by analyzing data from one experimental approach only, that is, inhibition or immunoprecipitation of AGO1, are not reliable enough to test the performance of our microRNA target prediction algorithm. Further analysis will be conducted to investigate the effectiveness of the tool with data from other species, provided that validated datasets, as obtained from the comparison of RISC proteins inhibition and immunoprecipitation experiments, will be available for the same samples. Finally, we propose to upgrade the existing ComiR web-tool by including the coding region based trained model, available together with the 3’UTR based one.

Keywords: AGO1, coding region, Drosophila melanogaster, microRNA target prediction

Procedia PDF Downloads 451
3227 Analysis of Osmotin as Transcription Factor/Cell Signaling Modulator Using Bioinformatic Tools

Authors: Usha Kiran, M. Z. Abdin

Abstract:

Osmotin is an abundant cationic multifunctional protein discovered in cells of tobacco (Nicotiana tabacum L. var Wisconsin 38) adapted to an environment of low osmotic potential. It provides plants protection from pathogens, hence placed in the PRP family of proteins. The osmotin induced proline accumulation has been reported in plants including transgenic tomato and strawberry conferring tolerance against both biotic and abiotic stresses. The exact mechanism of induction of proline by osmotin is however, not known till date. These observations have led us to hypothesize that osmotin induced proline accumulation could be due to its involvement as transcription factor and/or cell signal pathway modulator in proline biosynthesis. The present investigation was therefore, undertaken to analyze the osmotin protein as transcription factor /cell signalling modulator using bioinformatics tools. The results of available online DNA binding motif search programs revealed that osmotin does not contain DNA-binding motifs. The alignment results of osmotin protein with the protein sequence from DATF showed the homology in the range of 0-20%, suggesting that it might not contain a DNA binding motif. Further to find unique DNA-binding domain, the superimposition of osmotin 3D structure on modeled Arabidopsis transcription factors using Chimera also suggested absence of the same. We, however, found evidence implicating osmotin in cell signaling. With these results, we concluded that osmotin is not a transcription factor but regulating proline biosynthesis and accumulation through cell signaling during abiotic stresses.

Keywords: osmotin, cell signaling modulator, bioinformatic tools, protein

Procedia PDF Downloads 272
3226 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 125
3225 Characterization of Minerals, Elicitors in Spent Mushroom Substrate Extract and Effects on Growth, Yield and the Management of Massava Mosaic Diseases

Authors: Samuel E. Okere, Anthony E. Ataga

Abstract:

Introduction: This paper evaluated the mineral compositions, disease resistance elicitors in Pleurotus ostratus (POWESMS), and Pleurotus tuber-regium water extract spent mushroom substrate (PTWESMS) on the growth, yield, and management of cassava mosaic disease. Materials and Methods: The cassava plantlet (tms 98/0505) were generated through meristem tip culture at the Tissue Culture Laboratory, National Root Crop Research Institute, Umudike before they were transferred to the screen house, University of Port Harcourt Research Farm. The minerals and elicitors contained in the two spent mushroom substrates were evaluated using standard procedures. The treatments for this investigation comprised cassava plants treated with POWESMS, PTWESMS, and untreated cassava as control, which were inoculated with viral inoculum seven days after treatment application. The experiment was laid out in a completely randomized block design with 3 replicates. The data generated were subjected to analysis of variance (ANOVA). Means were separated using Fishers Least Significant Difference at p=0.05. Results: The results obtained revealed that POWESMS contained 19.3, 0.52, and 0.1g/200g substrate of carbohydrate polymers, glycoproteins, and lipid molecules elicitors respectively while it also contained 3.17, 212.1, 17.9,21.8, 58.8 and 111.0 mg/100g substrate for N, P, K, Na, Mg and Ca respectively. Further, PTWESMS contain 1.6, 0.04, and 0.2g/200g of the substrate as carbohydrate polymers, glycoprotein, and lipid respectively; the minerals contained in this substrate were 3.4, 204.8, 8.9, 24.2, 32.2 and 105.5 mg respectively for N, P, K, Na, and Ca. There were also significant differences in the mean values of the number of storage roots, root length, fresh root weight, fresh weight plant biomass, root girth, and whole plant dry biomass, but no significant difference was recorded for harvest index. The result also revealed significant differences in mean values of disease severity index evaluated at 4, 8, 12, 16, 20, 24, and 28 weeks after inoculation (WAI). Conclusion: The aqueous extract of these spent mushrooms substrate have shown outstanding prospect in managing cassava mosaic disease and also improvement in growth and yield of cassava due to the high level of the minerals and elicitors they contain when compared with the control. However, more work is recommended, especially in understanding the mechanism of this induced resistance.

Keywords: characterization, elicitors, mosaic, mushroom

Procedia PDF Downloads 130
3224 Evaluation of Turbulence Prediction over Washington, D.C.: Comparison of DCNet Observations and North American Mesoscale Model Outputs

Authors: Nebila Lichiheb, LaToya Myles, William Pendergrass, Bruce Hicks, Dawson Cagle

Abstract:

Atmospheric transport of hazardous materials in urban areas is increasingly under investigation due to the potential impact on human health and the environment. In response to health and safety concerns, several dispersion models have been developed to analyze and predict the dispersion of hazardous contaminants. The models of interest usually rely on meteorological information obtained from the meteorological models of NOAA’s National Weather Service (NWS). However, due to the complexity of the urban environment, NWS forecasts provide an inadequate basis for dispersion computation in urban areas. A dense meteorological network in Washington, DC, called DCNet, has been operated by NOAA since 2003 to support the development of urban monitoring methodologies and provide the driving meteorological observations for atmospheric transport and dispersion models. This study focuses on the comparison of wind observations from the DCNet station on the U.S. Department of Commerce Herbert C. Hoover Building against the North American Mesoscale (NAM) model outputs for the period 2017-2019. The goal is to develop a simple methodology for modifying NAM outputs so that the dispersion requirements of the city and its urban area can be satisfied. This methodology will allow us to quantify the prediction errors of the NAM model and propose adjustments of key variables controlling dispersion model calculation.

Keywords: meteorological data, Washington D.C., DCNet data, NAM model

Procedia PDF Downloads 234
3223 Effect of Mobile Drip and Linear Irrigation System on Sugar Beet Yield

Authors: Ismail Tas, Yusuf Ersoy Yildirim, Yavuz Fatih Fidantemiz, Aysegul Boyacioglu, Demet Uygan, Ozgur Ates, Erdinc Savasli, Oguz Onder, Murat Tugrul

Abstract:

The biggest input of agricultural production is irrigation, water and energy. Although it varies according to the conditions in drip and sprinkler irrigation systems compared to surface irrigation systems, there is a significant amount of energy expenditure. However, this expense not only increases the user's control over the irrigation water but also provides an increase in water savings and water application efficiency. Thus, while irrigation water is used more effectively, it also contributes to reducing production costs. The Mobile Drip Irrigation System (MDIS) is a system in which new technologies are used, and it is one of the systems that are thought to play an important role in increasing the irrigation water utilization rate of plants and reducing water losses, as well as using irrigation water effectively. MDIS is currently considered the most effective method for irrigation, with the development of both linear and central motion systems. MDIS is potentially more advantageous than sprinkler irrigation systems in terms of reducing wind-induced water losses and reducing evaporation losses on the soil and plant surface. Another feature of MDIS is that the sprinkler heads on the systems (such as the liner and center pivot) can remain operational even when the drip irrigation system is installed. This allows the user to use both irrigation methods. In this study, the effect of MDIS and linear sprinkler irrigation method on sugar beet yield at different irrigation water levels will be revealed.

Keywords: MDIS, linear sprinkler, sugar beet, irrigation efficiency

Procedia PDF Downloads 96
3222 Morpho-Anatomical Responses of Leaf Lettuce (Lactuca sativa L.) Grown with Different Colored Plastic Mulch

Authors: Edmar N. Franquera, Renato C. Mabesa, Rene Rafael C. Espino, Edralina P. Serrano, Eduardo P. Paningbatan Jr.

Abstract:

The potential of growing lettuce with different colored plastic mulch silver (control), red, orange, yellow and green was evaluated using two lettuce varieties, Looseleaf and Romaine. The experiment was laid out on split plot design following the Randomized Complete Block Design. The Looseleaf variety had better performance in terms of plant fresh weight, leaf fresh weight, leaf dry weight, root length, plant height and yield. However, better response was observed in Romaine in terms of leaf diameter, leaf length, root dry weight and root fresh weight. The color of the mulch reflected different qualities of light and hence the quality of absorbed light by the lettuce plants. A higher Far red and red ratio (FR:R) was obtained from green plastic mulch which was followed by the red plastic mulch. The different colored plastic mulch affected the growth and developmental responses of leaf lettuce morphological and leaf anatomical characteristics. Data in all growth morphological and yield parameters showed that those grown with red plastic mulch had better response and had longer stomates than those lettuce grown with the other colored plastic mulch. The soil temperature 10 cm below the plastic mulch was significantly influenced by the color of the mulch. The red plastic mulch had the highest soil temperature recorded while the lowest soil temperature recorded was within the yellow plastic mulch.

Keywords: anatomical, lettuce, morpholological, plastic mulch

Procedia PDF Downloads 544
3221 Prediction of Slaughter Body Weight in Rabbits: Multivariate Approach through Path Coefficient and Principal Component Analysis

Authors: K. A. Bindu, T. V. Raja, P. M. Rojan, A. Siby

Abstract:

The multivariate path coefficient approach was employed to study the effects of various production and reproduction traits on the slaughter body weight of rabbits. Information on 562 rabbits maintained at the university rabbit farm attached to the Centre for Advanced Studies in Animal Genetics, and Breeding, Kerala Veterinary and Animal Sciences University, Kerala State, India was utilized. The manifest variables used in the study were age and weight of dam, birth weight, litter size at birth and weaning, weight at first, second and third months. The linear multiple regression analysis was performed by keeping the slaughter weight as the dependent variable and the remaining as independent variables. The model explained 48.60 percentage of the total variation present in the market weight of the rabbits. Even though the model used was significant, the standardized beta coefficients for the independent variables viz., age and weight of the dam, birth weight and litter sizes at birth and weaning were less than one indicating their negligible influence on the slaughter weight. However, the standardized beta coefficient of the second-month body weight was maximum followed by the first-month weight indicating their major role on the market weight. All the other factors influence indirectly only through these two variables. Hence it was concluded that the slaughter body weight can be predicted using the first and second-month body weights. The principal components were also developed so as to achieve more accuracy in the prediction of market weight of rabbits.

Keywords: component analysis, multivariate, slaughter, regression

Procedia PDF Downloads 165
3220 Comparison of Polyphonic Profile of a Berry from Two Different Sources, Using an Optimized Extraction Method

Authors: G. Torabian, A. Fathi, P. Valtchev, F. Dehghani

Abstract:

The superior polyphenol content of Sambucus nigra berries has high health potentials for the production of nutraceutical products. Numerous factors influence the polyphenol content of the final products including the berries’ source and the subsequent processing production steps. The aim of this study is to compare the polyphenol content of berries from two different sources and also to optimise the polyphenol extraction process from elderberries. Berries from source B obtained more acceptable physical properties than source A; a single berry from source B was double in size and weight (both wet and dry weight) compared with a source A berry. Despite the appropriate physical characteristics of source B berries, their polyphenolic profile was inferior; as source A berries had 2.3 fold higher total anthocyanin content, and nearly two times greater total phenolic content and total flavonoid content compared to source B. Moreover, the result of this study showed that almost 50 percent of the phenolic content of berries are entrapped within their skin and pulp that potentially cannot be extracted by press juicing. To address this challenge and to increase the total polyphenol yield of the extract, we used cold-shock blade grinding method to break the cell walls. The result of this study showed that using cultivars with higher phenolic content as well as using the whole fruit including juice, skin and pulp can increase polyphenol yield significantly; and thus, may boost the potential of using elderberries as therapeutic products.

Keywords: different sources, elderberry, grinding, juicing, polyphenols

Procedia PDF Downloads 294
3219 Prediction Factor of Recurrence Supraventricular Tachycardia After Adenosine Treatment in the Emergency Department

Authors: Welawat Tienpratarn, Chaiyaporn Yuksen, Rungrawin Promkul, Chetsadakon Jenpanitpong, Pajit Bunta, Suthap Jaiboon

Abstract:

Supraventricular tachycardia (SVT) is an abnormally fast atrial tachycardia characterized by narrow (≤ 120 ms) and constant QRS. Adenosine was the drug of choice; the first dose was 6 mg. It can be repeated with the second and third doses of 12 mg, with greater than 90% success. The study found that patients observed at 4 hours after normal sinus rhythm was no recurrence within 24 hours. The objective of this study was to investigate the factors that influence the recurrence of SVT after adenosine in the emergency department (ED). The study was conducted retrospectively exploratory model, prognostic study at the Emergency Department (ED) in Faculty of Medicine, Ramathibodi Hospital, a university-affiliated super tertiary care hospital in Bangkok, Thailand. The study was conducted for ten years period between 2010 and 2020. The inclusion criteria were age > 15 years, visiting the ED with SVT, and treating with adenosine. Those patients were recorded with the recurrence SVT in ED. The multivariable logistic regression model developed the predictive model and prediction score for recurrence PSVT. 264 patients met the study criteria. Of those, 24 patients (10%) had recurrence PSVT. Five independent factors were predictive of recurrence PSVT. There was age>65 years, heart rate (after adenosine) > 100 per min, structural heart disease, and dose of adenosine. The clinical risk score to predict recurrence PSVT is developed accuracy 74.41%. The score of >6 had the likelihood ratio of recurrence PSVT by 5.71 times. The clinical predictive score of > 6 was associated with recurrence PSVT in ED.

Keywords: supraventricular tachycardia, recurrance, emergency department, adenosine

Procedia PDF Downloads 117
3218 Estimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater

Authors: Abimbola M. Enitan, J. Adeyemo

Abstract:

Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were determined at various retention times to generate data for kinetic coefficients. The bio-kinetic coefficients in the modified Stover–Kincannon kinetic and methane generation models were determined to study the performance of anaerobic digestion process. At steady-state, the determination of the kinetic coefficient (K), the endogenous decay coefficient (Kd), the maximum growth rate of microorganisms (µmax), the growth yield coefficient (Y), ultimate methane yield (Bo), maximum utilization rate constant Umax and the saturation constant (KB) in the model were calculated to be 0.046 g/g COD, 0.083 (dˉ¹), 0.117 (d-¹), 0.357 g/g, 0.516 (L CH4/gCODadded), 18.51 (g/L/day) and 13.64 (g/L/day) respectively. The outcome of this study will help in simulation of anaerobic model to predict usable methane and good effluent quality during the treatment of industrial wastewater. Thus, this will protect the environment, conserve natural resources, saves time and reduce cost incur by the industries for the discharge of untreated or partially treated wastewater. It will also contribute to a sustainable long-term clean development mechanism for the optimization of the methane produced from anaerobic degradation of waste in a close system.

Keywords: brewery wastewater, methane generation model, environment, anaerobic modeling

Procedia PDF Downloads 270
3217 Multifluid Computational Fluid Dynamics Simulation for Sawdust Gasification inside an Industrial Scale Fluidized Bed Gasifier

Authors: Vasujeet Singh, Pruthiviraj Nemalipuri, Vivek Vitankar, Harish Chandra Das

Abstract:

For the correct prediction of thermal and hydraulic performance (bed voidage, suspension density, pressure drop, heat transfer, and combustion kinetics), one should incorporate the correct parameters in the computational fluid dynamics simulation of a fluidized bed gasifier. Scarcity of fossil fuels, and to fulfill the energy demand of the increasing population, researchers need to shift their attention to the alternative to fossil fuels. The current research work focuses on hydrodynamics behavior and gasification of sawdust inside a 2D industrial scale FBG using the Eulerian-Eulerian multifluid model. The present numerical model is validated with experimental data. Further, this model extended for the prediction of gasification characteristics of sawdust by incorporating eight heterogeneous moisture release, volatile cracking, tar cracking, tar oxidation, char combustion, CO₂ gasification, steam gasification, methanation reaction, and five homogeneous oxidation of CO, CH₄, H₂, forward and backward water gas shift (WGS) reactions. In the result section, composition of gasification products is analyzed, along with the hydrodynamics of sawdust and sand phase, heat transfer between the gas, sand and sawdust, reaction rates of different homogeneous and heterogeneous reactions is being analyzed along the height of the domain.

Keywords: devolatilization, Eulerian-Eulerian, fluidized bed gasifier, mathematical modelling, sawdust gasification

Procedia PDF Downloads 107
3216 Practical Method for Failure Prediction of Mg Alloy Sheets during Warm Forming Processes

Authors: Sang-Woo Kim, Young-Seon Lee

Abstract:

An important concern in metal forming, even at elevated temperatures, is whether a desired deformation can be accomplished without any failure of the material. A detailed understanding of the critical condition for crack initiation provides not only the workability limit of a material but also a guide-line for process design. This paper describes the utilization of ductile fracture criteria in conjunction with the finite element method (FEM) for predicting the onset of fracture in warm metal working processes of magnesium alloy sheets. Critical damage values for various ductile fracture criteria were determined from uniaxial tensile tests and were expressed as the function of strain rate and temperature. In order to find the best criterion for failure prediction, Erichsen cupping tests under isothermal conditions and FE simulations combined with ductile fracture criteria were carried out. Based on the plastic deformation histories obtained from the FE analyses of the Erichsen cupping tests and the critical damage value curves, the initiation time and location of fracture were predicted under a bi-axial tensile condition. The results were compared with experimental results and the best criterion was recommended. In addition, the proposed methodology was used to predict the onset of fracture in non-isothermal deep drawing processes using an irregular shaped blank, and the results were verified experimentally.

Keywords: magnesium, AZ31 alloy, ductile fracture, FEM, sheet forming, Erichsen cupping test

Procedia PDF Downloads 373
3215 Direct and Residual Effects of Boron and Zinc on Growth and Nutrient Status of Rice and Wheat Crop

Authors: M. Saleem, M. Shahnawaz, A. W. Gandahi, S. M. Bhatti

Abstract:

The micronutrients boron and zinc deficiencies are extensive in the areas of rice-wheat cropping system. Optimum levels of these nutrients in soil are necessary for healthy crop growth. Since rice and wheat are major staple food of worlds’ populace, the higher yields and nutrition status of these crops has direct effect on the health of human being and economy of the country. A field study was conducted to observe the direct and residual effect of two selected micronutrients boron (B) and zinc (Zn)) on rice and wheat crop growth and its grain nutrient status. Each plot received either B or Zn at the rates of 0, 1, 2, 3 and 4 kg B ha⁻¹, and 5, 10, 15 and 20 kg Zn ha⁻¹, combined B and Zn application at 1 kg B and 5 kg Zn ha⁻¹, 2 kg B and 10 kg Zn ha⁻¹. Colemanite ore were used as source of B and zinc sulfate for Zn. The second season wheat crop was planted in the same plots after the interval period of 30 days and during this time gap soil was fallow. Boron and Zn application significantly enhanced the plant height, number of tillers, Grains panicle⁻¹ seed index fewer empty grains panicle⁻¹ and yield of rice crop at all defined levels as compared to control. The highest yield (10.00 tons/ha) was recorded at 2 Kg B, 10 Kg Zn ha⁻¹ rates. Boron and Zn concentration in grain and straw significantly increased. The application of B also improved the nutrition status of rice as B, protein and total carbohydrates content of grain augmented. The analysis of soil samples collected after harvest of rice crop showed that the B and Zn content in post-harvest soil samples was high in colemanite and zinc sulfate applied plots. The residual B and Zn were also effectual for the second season wheat crop, as the growth parameters plant height, number of tillers, earhead length, weight 1000 grains, B and Zn content of grain significantly improved. The highest wheat grain yield (4.23 tons/ha) was recorded at the residual rates of 2 kg B and 10 kg Zn ha⁻¹ than the other treatments. This study showed that one application of B and Zn can increase crop yields for at least two consecutive seasons and the mineral colemanite can confidently be used as source of B for rice crop because very small quantities of these nutrients are consumed by first season crop and remaining amount was present in soil which were used by second season wheat crop for healthy growth. Consequently, there is no need to apply these micronutrients to the following crop when it is applied on the previous one.

Keywords: residual boron, zinc, rice, wheat

Procedia PDF Downloads 155
3214 Evaluation of Broad Leaf Weed Herbicides on Weed Control and Productivity of Wheat (Triticum Aestivum L.)

Authors: Kassahun Zewdie

Abstract:

-- A field experiment was conducted at Holetta research center and farmers fields during 2017 and 2018 to determine the effects of haulauxifen-methyl + florasulam (QULEX 200 WG) on broadleaf weeds in wheat. The design was a Randomized Complete Block with three replications. The treatments were included haulauxifen-Methyl + florasulam @ 25gm, 50gm and 75gm ha-1, (King-D) 2, 4-D dimethyl amine @1.0 L ha-1, 2, 4-Dichlorophenoxy acetic acid @1.0 L ha-1 rate (standard check), farmers practice twice hand weeding (25-30 and 55-60) days after sowing and weedy check. Herbicides were applied with knapsack sprayer with a spray volume of 200 L ha-1. The wheat variety “Denda” was sown at 20 cm spacing. The recommended rate of fertilizer was applied. Weed density and biomass were recorded at (25-30 and 55-60) days after sowing. The results revealed that post emergence application of haulauxifen-methyl + florasulam @50gm ha-1 had a significant (P<0.05) effect on Guizotia scabra, Polygonum nepalense, Plantago lanceolata, Galinsoga parviflora, Sonchus spp., Galium spurium, Amaranthus hybridus, Raphanus raphanistrum and Medicago polymorpha population. The magnitude ranged from two to four folds when comparing with weed densities recorded in the unweeded plot. The grain yield harvested from the untreated check plot was significantly lower than the rest treatments. The grain yield was improved by 17.3% over the standard check with better performance.

Keywords: broadleaf, grass, weeds, control

Procedia PDF Downloads 183
3213 Estimation of Genetic Diversity in Sorghum Accessions Using Agro-Mophological and Nutritional Traits

Authors: Maletsema Alina Mofokeng, Nemera Shargie

Abstract:

Sorghum is one of the most important cereal crops grown as a source of calories for many people in tropics and sub-tropics of the world. Proper characterisation and evaluation of crop germplasm is an important component for effective management of genetic resources and their utilisation in the improvement of the crop through plant breeding. The objective of the study was to estimate the genetic diversity present in sorghum accessions grown in South Africa using agro-morphological traits and some nutritional contents. The experiment was carried out in Potchefstroom. Data were subjected to correlations, principal components analysis, and hierarchical clustering using GenStat statistical software. There were highly significance differences among the accessions based on agro-morphological and nutritional quality traits. Grain yield was highly positively correlated with panicle weight. Plant height was highly significantly correlated with internode length, leaf length, leaf number, stem diameter, the number of nodes and starch content. The Principal component analysis revealed three most important PCs with a total variation of 78.6%. The protein content ranged from 7.7 to 14.7%, and starch ranged from 58.52 to 80.44%. The accessions that had high protein and starch content were AS16cyc and MP4277. There was vast genetic diversity observed among the accessions assessed that can be used by plant breeders to improve yield and nutritional traits.

Keywords: accessions, genetic diversity, nutritional quality, sorghum

Procedia PDF Downloads 263
3212 Solid-State Synthesis Approach and Optical study of Red Emitting Phosphors Li₃BaSrxCa₁₋ₓEu₂.₇Gd₀.₃(MoO₄)₈ for White LEDs

Authors: Priyansha Sharma, Sibani Mund, Sivakumar Vaidyanathan

Abstract:

Solid-state synthesis methods were used for the synthesis of pure red emissive Li¬3BaSrxCa(1-x)Eu2.7Gd0.3(MoO4)8 (x = 0.0 to 1.0) phosphors, XRD, SEM, and FTIR spectra were used to characterize the materials, and their optical properties were thoroughly investigated. PL studies were examined at different excitations 230 nm, 275nm, 465nm, and 395 nm. All the spectra show similar emissions with the highest transition at 616 nm due to ED transition. The given phosphor Li¬3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 shows the highest intensity and is thus chosen for the temperature-dependent and Quantum yield study. According to the PL investigation, the phosphor-containing Eu3+ emits red light due to the (5D0 7F2) transition. The excitation analysis shows that all of the Eu3+ activated phosphors exhibited broad absorption due to the charge transfer band, O2-Mo6+, O2-Eu3+ transition, as well as narrow absorption bands related to the Eu3+ ion's 4f-4f electronic transition. Excitation spectra show Charge transfer band at 275 nm shows the highest intensity. The primary band in the spectra refers to Eu3+ ions occupying the lattice's non-centrosymmetric location. All of the compositions are monoclinic crystal structures with space group C2/c and match with reference powder patterns. The thermal stability of the 3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 phosphor was investigated at (300 k- 500 K) as well as at low temperature from (20 K to 275 K) to be utilized for red and white LED fabrication. The Decay Lifetime of all the phosphor was measured. The best phosphor was used for White and Red LED fabrication.

Keywords: PL, phosphor, quantum yield, white LED

Procedia PDF Downloads 74
3211 Steam Reforming of Acetic Acid over Microwave-Synthesized Ce0.75Zr0.25O2 Supported Ni Catalysts

Authors: Panumard Kaewmora, Thirasak Rirksomboon, Vissanu Meeyoo

Abstract:

Due to the globally growing demands of petroleum fuel and fossil fuels, the scarcity or even depletion of fossil fuel sources could be inevitable. Alternatively, the utilization of renewable sources, such as biomass, has become attractive to the community. Biomass can be converted into bio-oil by fast pyrolysis. In water phase of bio-oil, acetic acid which is one of its main components can be converted to hydrogen with high selectivity over effective catalysts in steam reforming process. Steam reforming of acetic acid as model compound has been intensively investigated for hydrogen production using various metal oxide supported nickel catalysts and yet they seem to be rapidly deactivated depending on the support utilized. A catalyst support such as Ce1-xZrxO2 mixed oxide was proposed for alleviating this problem with the anticipation of enhancing hydrogen yield. However, catalyst preparation methods play a significant role in catalytic activity and performance of the catalysts. In this work, Ce0.75Zr0.25O2 mixed oxide solid solution support was prepared by urea hydrolysis using microwave as heat source. After that nickel metal was incorporated at 15 wt% by incipient wetness impregnation method. The catalysts were characterized by several techniques including BET, XRD, H2-TPR, XRF, SEM, and TEM as well as tested for the steam reforming of acetic acid at various operating conditions. Preliminary results showed that a hydrogen yield of ca. 32% with a relatively high acetic conversion was attained at 650°C.

Keywords: acetic acid, steam reforming, microwave, nickel, ceria, zirconia

Procedia PDF Downloads 174
3210 Stature Prediction from Anthropometry of Extremities among Jordanians

Authors: Amal A. Mashali, Omar Eltaweel, Elerian Ekladious

Abstract:

Stature of an individual has an important role in identification, which is often required in medico-legal practice. The estimation of stature is an important step in the identification of dismembered remains or when only a part of a skeleton is only available as in major disasters or with mutilation. There is no published data on anthropological data among Jordanian population. The present study was designed in order to find out relationship of stature to some anthropometric measures among a sample of Jordanian population and to determine the most accurate and reliable one in predicting the stature of an individual. A cross sectional study was conducted on 336 adult healthy volunteers , free of bone diseases, nutritional diseases and abnormalities in the extremities after taking their consent. Students of Faculty of Medicine, Mutah University helped in collecting the data. The anthropometric measurements (anatomically defined) were stature, humerus length, hand length and breadth, foot length and breadth, foot index and knee height on both right and left sides of the body. The measurements were typical on both sides of the bodies of the studied samples. All the anthropologic data showed significant relation with age except the knee height. There was a significant difference between male and female measurements except for the foot index where F= 0.269. There was a significant positive correlation between the different measures and the stature of the individuals. Three equations were developed for estimation of stature. The most sensitive measure for prediction of a stature was found to be the humerus length.

Keywords: foot index, foot length, hand length, humerus length, stature

Procedia PDF Downloads 306
3209 Linear Prediction System in Measuring Glucose Level in Blood

Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali

Abstract:

Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.

Keywords: diabetes, glucose level, linear, near-infrared, non-invasive, prediction system

Procedia PDF Downloads 160
3208 The Effect of Wool Mulch on Plant Development in the Light of Soil Physical and Soil Biological Conditions

Authors: Katalin Juhos, Enikő Papdi, Flórián Kovács, Vasileios P. Vasileiadis, Andrea Veres

Abstract:

Mulching techniques can be a solution for better utilization of precipitation and irrigation water and for mitigating soil degradation and drought damages. Waste fibres as alternative biodegradable mulch materials are increasingly coming to the fore. The effect of wool mulch (WM) on water use efficiency of pepper seedlings were investigated in different soil types (sand, clay loam, peat) in a pot experiment. Two semi-field experiments were also set up to investigate the effect of WM-plant interaction on sweet pepper yield in comparison with agro-textile and straw mulches. Soil parameters (moisture, temperature, DHA, β-glucosidase enzymes, permanganate-oxidizable carbon) were measured during the growing season. The effect of WM on yield and biomass was more significant with less frequent irrigation and the greater the water capacity of soils. The microbiological activity was significantly higher in the presence of plants, because of the water retention of WM, the metabolic products of roots and the more balanced soil temperature caused by plants. On the sandy soil, the straw mulch had a significantly better effect on microbiological parameters and yields than the agro-textile and WM. WM is a sustainable practice for improving soil biological parameters and water use efficiency on soils with a higher water capacity.

Keywords: β-glucosidase, DHA enzyme activity; labile carbon, straw mulch; plastic mulch, evapotranspira-tion coefficient, soil temperature

Procedia PDF Downloads 76
3207 Catalytic Pyrolysis of Barley Straw for the Production of Fuels and Chemicals

Authors: Funda Ates

Abstract:

Primary energy sources, such as petroleum, coal and natural gas are principle responsible of world’s energy consumption. However, the rapid worldwide increase in the depletion of these energy sources is remarkable. In addition to this, they have damaging environmentally effect. Renewable energy sources are capable of providing a considerable fraction of World energy demand in this century. Biomass is one of the most abundant and utilized sources of renewable energy in the world. It can be converted into commercial fuels, suitable to substitute for fossil fuels. A high number of biomass types can be converted through thermochemical processes into solid, liquid or gaseous fuels. Pyrolysis is the thermal decomposition of biomass in the absence of air or oxygen. In this study, barley straw has been investigated as an alternative feedstock to obtain fuels and chemicals via pyrolysis in fixed-bed reactor. The influence of pyrolysis temperature in the range 450–750 °C as well as the catalyst effects on the products was investigated and the obtained results were compared. The results indicated that a maximum oil yield of 20.4% was obtained at a moderate temperature of 550 °C. Oil yield decreased by using catalyst. Pyrolysis oils were examined by using instrumental analysis and GC/MS. Analyses revealed that the pyrolysis oils were chemically very heterogeneous at all temperatures. It was determined that the most abundant compounds composing the bio-oil were phenolics. Catalyst decreased the reaction temperature. Most of the components obtained using a catalyst at moderate temperatures was close to those obtained at high temperatures without using a catalyst. Moreover, the use of a catalyst also decreased the amount of oxygenated compounds produced.

Keywords: Barley straw, pyrolysis, catalyst, phenolics

Procedia PDF Downloads 226
3206 Tensile and Fracture Properties of Cast and Forged Composite Synthesized by Addition of in-situ Generated Al3Ti-Al2O3 Particles to Magnesium

Authors: H. M. Nanjundaswamy, S. K. Nath, S. Ray

Abstract:

TiO2 particles have been added in molten aluminium to result in aluminium based cast Al/Al3Ti-Al2O3 composite, which has been added then to molten magnesium to synthesize magnesium based cast Mg-Al/Al3Ti-Al2O3 composite. The nominal compositions in terms of Mg, Al, and TiO2 contents in the magnesium based composites are Mg-9Al-0.6TiO2, Mg-9Al-0.8TiO2, Mg-9Al-1.0TiO2 and Mg-9Al-1.2TiO2 designated respectively as MA6T, MA8T, MA10T and MA12T. The microstructure of the cast magnesium based composite shows grayish rods of intermetallics Al3Ti, inherited from aluminium based composite but these rods, on hot forging, breaks into smaller lengths decreasing the average aspect ratio (length to diameter) from 7.5 to 3.0. There are also cavities in between the broken segments of rods. β-phase in cast microstructure, Mg17Al12, dissolves during heating prior to forging and re-precipitates as relatively finer particles on cooling. The amount of β-phase also decreases on forging as segregation is removed. In both the cast and forged composite, the Brinell hardness increases rapidly with increasing addition of TiO2 but the hardness is higher in forged composites by about 80 BHN. With addition of higher level of TiO2 in magnesium based cast composite, yield strength decreases progressively but there is marginal increase in yield strength over that of the cast Mg-9 wt. pct. Al, designated as MA alloy. But the ultimate tensile strength (UTS) in the cast composites decreases with the increasing particle content indicating possibly an early initiation of crack in the brittle inter-dendritic region and their easy propagation through the interfaces of the particles. In forged composites, there is a significant improvement in both yield strength and UTS with increasing TiO2 addition and also, over those observed in their cast counterpart, but at higher addition it decreases. It may also be noted that as in forged MA alloy, incomplete recovery of forging strain increases the strength of the matrix in the composites and the ductility decreases both in the forged alloy and the composites. Initiation fracture toughness, JIC, decreases drastically in cast composites compared to that in MA alloy due to the presence of intermetallic Al3Ti and Al2O3 particles in the composite. There is drastic reduction of JIC on forging both in the alloy and the composites, possibly due to incomplete recovery of forging strain in both as well as breaking of Al3Ti rods and the voids between the broken segments of Al3Ti rods in composites. The ratio of tearing modulus to elastic modulus in cast composites show higher ratio, which increases with the increasing TiO2 addition. The ratio decreases comparatively more on forging of cast MA alloy than those in forged composites.

Keywords: composite, fracture toughness, forging, tensile properties

Procedia PDF Downloads 248
3205 Inner Quality Parameters of Rapeseed (Brassica napus) Populations in Different Sowing Technology Models

Authors: É. Vincze

Abstract:

Demand on plant oils has increased to an enormous extent that is due to the change of human nutrition habits on the one hand, while on the other hand to the increase of raw material demand of some industrial sectors, just as to the increase of biofuel production. Besides the determining importance of sunflower in Hungary the production area, just as in part the average yield amount of rapeseed has increased among the produced oil crops. The variety/hybrid palette has changed significantly during the past decade. The available varieties’/hybrids’ palette has been extended to a significant extent. It is agreed that rapeseed production demands professionalism and local experience. Technological elements are successive; high yield amounts cannot be produced without system-based approach. The aim of the present work was to execute the complex study of one of the most critical production technology element of rapeseed production, that was sowing technology. Several sowing technology elements are studied in this research project that are the following: biological basis (the hybrid Arkaso is studied in this regard), sowing time (sowing time treatments were set so that they represent the wide period used in industrial practice: early, optimal and late sowing time) plant density (in this regard reaction of rare, optimal and too dense populations) were modelled. The multifactorial experimental system enables the single and complex evaluation of rapeseed sowing technology elements, just as their modelling using experimental result data. Yield quality and quantity have been determined as well in the present experiment, just as the interactions between these factors. The experiment was set up in four replications at the Látókép Plant Production Research Site of the University of Debrecen. Two different sowing times were sown in the first experimental year (2014), while three in the second (2015). Three different plant densities were set in both years: 200, 350 and 500 thousand plants ha-1. Uniform nutrient supply and a row spacing of 45 cm were applied. Winter wheat was used as pre-crop. Plant physiological measurements were executed in the populations of the Arkaso rapeseed hybrid that were: relative chlorophyll content analysis (SPAD) and leaf area index (LAI) measurement. Relative chlorophyll content (SPAD) and leaf area index (LAI) were monitored in 7 different measurement times.

Keywords: inner quality, plant density, rapeseed, sowing time

Procedia PDF Downloads 201
3204 Function of GIGANTEA Genes in the Commercial Potato Cultivar ‘Désirée’

Authors: Flóra Karsai-Rektenwald, Khongorzul Odgerel, Vanda Villányi, Zoltán Gábor Tóth, Zsófia Bánfalvi

Abstract:

GIGANTEA (GI) is a plant-specific, circadian clock-regulated, nuclear protein involved in diverse processes from flowering to stress responses. In the obligate short-day tuberising Andigenum Group potatoes, GI is indirectly involved in determination of the time of tuber initiation. The goal of our study was to get information on the function of GI in the day-length independent tuberising commercial potato cultivar ‘Désirée’, a tetraploid plant carrying two GI genes, one on chromosome 4 (GI.04) and another one on chromosome 12 (GI.12). Functional analysis of the two GI genes was attempted by targeted mutagenesis using the CRISPR-Cas9 system. Two sets of mutants were generated. The mutations were mapped at nucleotide level and the plants grown in a greenhouse. GI is located in the nucleus and interacts with at least five proteins. Three out of them, two photoreceptors and FKF1, bind on GI close to the nuclear localisation (NLS) signal to the so called LOV domain. In Andigenum Group potatoes, FKF1 interacts not only with GI but form a triplex with CDF1, a positive regulator of tuberisation, and transport it to proteasomes, where CDF1 is degraded. Three GI.04 and three GI.12 null mutants were selected from the first set of mutagenesis. Although, the deletions did not reach the NLS and LOV domain in any of the six mutants all GI. 04 and two GI.12 mutants were shorter than the control suggesting that both GIs are involved in vegetative growth regulation and the deleted region might be important in terms of conformation or stability of the proteins. From the second set of mutagenesis, three null mutants carrying mutations in one of the two GI genes and three mutants carrying mutations in both GI genes were selected for detailed analysis. Deletions in the GI mutants of this set disrupted the NLS and extended to the LOV domain. Nevertheless, none of the single GI gene mutations influenced the time of tuberisation or the tuber number and yield, whereas one of the GI.04 and all GI.12 mutants were shorter than the ‘Désirée’ control. Furthermore, all GI.12 mutants showed early senescence. The early senescence of mutants carrying mutations in both GI genes was even more pronounced, resulting in substantial yield loss in one of the double mutants. These results raise the possibility that the two GI genes can substitute each other in term of tuberisation or they are not involved in it, the yield loss is due to the early death of the plants. To distinguish between the two possibilities yeast two-hybrid experiments were initiated to detect the interaction between the GI proteins and FKF1 and between FKF1 and CDF1 originated from ‘Désirée’.

Keywords: gene editing, tuberisation, senescence, Solanum tuberosum

Procedia PDF Downloads 3
3203 Time and Cost Prediction Models for Language Classification Over a Large Corpus on Spark

Authors: Jairson Barbosa Rodrigues, Paulo Romero Martins Maciel, Germano Crispim Vasconcelos

Abstract:

This paper presents an investigation of the performance impacts regarding the variation of five factors (input data size, node number, cores, memory, and disks) when applying a distributed implementation of Naïve Bayes for text classification of a large Corpus on the Spark big data processing framework. Problem: The algorithm's performance depends on multiple factors, and knowing before-hand the effects of each factor becomes especially critical as hardware is priced by time slice in cloud environments. Objectives: To explain the functional relationship between factors and performance and to develop linear predictor models for time and cost. Methods: the solid statistical principles of Design of Experiments (DoE), particularly the randomized two-level fractional factorial design with replications. This research involved 48 real clusters with different hardware arrangements. The metrics were analyzed using linear models for screening, ranking, and measurement of each factor's impact. Results: Our findings include prediction models and show some non-intuitive results about the small influence of cores and the neutrality of memory and disks on total execution time, and the non-significant impact of data input scale on costs, although notably impacts the execution time.

Keywords: big data, design of experiments, distributed machine learning, natural language processing, spark

Procedia PDF Downloads 120
3202 Easymodel: Web-based Bioinformatics Software for Protein Modeling Based on Modeller

Authors: Alireza Dantism

Abstract:

Presently, describing the function of a protein sequence is one of the most common problems in biology. Usually, this problem can be facilitated by studying the three-dimensional structure of proteins. In the absence of a protein structure, comparative modeling often provides a useful three-dimensional model of the protein that is dependent on at least one known protein structure. Comparative modeling predicts the three-dimensional structure of a given protein sequence (target) mainly based on its alignment with one or more proteins of known structure (templates). Comparative modeling consists of four main steps 1. Similarity between the target sequence and at least one known template structure 2. Alignment of target sequence and template(s) 3. Build a model based on alignment with the selected template(s). 4. Prediction of model errors 5. Optimization of the built model There are many computer programs and web servers that automate the comparative modeling process. One of the most important advantages of these servers is that it makes comparative modeling available to both experts and non-experts, and they can easily do their own modeling without the need for programming knowledge, but some other experts prefer using programming knowledge and do their modeling manually because by doing this they can maximize the accuracy of their modeling. In this study, a web-based tool has been designed to predict the tertiary structure of proteins using PHP and Python programming languages. This tool is called EasyModel. EasyModel can receive, according to the user's inputs, the desired unknown sequence (which we know as the target) in this study, the protein sequence file (template), etc., which also has a percentage of similarity with the primary sequence, and its third structure Predict the unknown sequence and present the results in the form of graphs and constructed protein files.

Keywords: structural bioinformatics, protein tertiary structure prediction, modeling, comparative modeling, modeller

Procedia PDF Downloads 97
3201 Use of Front-Face Fluorescence Spectroscopy and Multiway Analysis for the Prediction of Olive Oil Quality Features

Authors: Omar Dib, Rita Yaacoub, Luc Eveleigh, Nathalie Locquet, Hussein Dib, Ali Bassal, Christophe B. Y. Cordella

Abstract:

The potential of front-face fluorescence coupled with chemometric techniques, namely parallel factor analysis (PARAFAC) and multiple linear regression (MLR) as a rapid analysis tool to characterize Lebanese virgin olive oils was investigated. Fluorescence fingerprints were acquired directly on 102 Lebanese virgin olive oil samples in the range of 280-540 nm in excitation and 280-700 nm in emission. A PARAFAC model with seven components was considered optimal with a residual of 99.64% and core consistency value of 78.65. The model revealed seven main fluorescence profiles in olive oil and was mainly associated with tocopherols, polyphenols, chlorophyllic compounds and oxidation/hydrolysis products. 23 MLR regression models based on PARAFAC scores were generated, the majority of which showed a good correlation coefficient (R > 0.7 for 12 predicted variables), thus satisfactory prediction performances. Acid values, peroxide values, and Delta K had the models with the highest predictions, with R values of 0.89, 0.84 and 0.81 respectively. Among fatty acids, linoleic and oleic acids were also highly predicted with R values of 0.8 and 0.76, respectively. Factors contributing to the model's construction were related to common fluorophores found in olive oil, mainly chlorophyll, polyphenols, and oxidation products. This study demonstrates the interest of front-face fluorescence as a promising tool for quality control of Lebanese virgin olive oils.

Keywords: front-face fluorescence, Lebanese virgin olive oils, multiple Linear regressions, PARAFAC analysis

Procedia PDF Downloads 453
3200 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach

Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi

Abstract:

Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.

Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.

Procedia PDF Downloads 72