Search results for: singleton-geminate contrast
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1472

Search results for: singleton-geminate contrast

2 Temporal Profile of T2 MRI and 1H-MRS in the MDX Mouse Model of Duchenne Muscular Dystrophy

Authors: P. J. Sweeney, T. Ahtoniemi, J. Puoliväli, T. Laitinen, K.Lehtimäki, A. Nurmi, D. Wells

Abstract:

Duchenne muscular dystrophy (DMD) is an X-linked, lethal muscle wasting disease for which there are currently no treatment that effectively prevents the muscle necrosis and progressive muscle loss. DMD is among the most common of inherited diseases affecting around 1/3500 live male births. MDX (X-linked muscular dystrophy) mice only partially encapsulate the disease in humans and display weakness in muscles, muscle damage and edema during a period deemed the “critical period” when these mice go through cycles of muscular degeneration and regeneration. Although the MDX mutant mouse model has been extensively studied as a model for DMD, to-date an extensive temporal, non-invasive imaging profile that utilizes magnetic resonance imaging (MRI) and 1H-magnetic resonance spectroscopy (1H-MRS) has not been performed.. In addition, longitudinal imaging characterization has not coincided with attempts to exacerbate the progressive muscle damage by exercise. In this study we employed an 11.7 T small animal MRI in order to characterize the MRI and MRS profile of MDX mice longitudinally during a 12 month period during which MDX mice were subjected to exercise. Male mutant MDX mice (n=15) and male wild-type mice (n=15) were subjected to a chronic exercise regime of treadmill walking (30 min/ session) bi-weekly over the whole 12 month follow-up period. Mouse gastrocnemius and tibialis anterior muscles were profiled with baseline T2-MRI and 1H-MRS at 6 weeks of age. Imaging and spectroscopy was repeated again at 3 months, 6 months, 9 months and 12 months of age. Plasma creatine kinase (CK) level measurements were coincided with time-points for T2-MRI and 1H-MRS, but also after the “critical period” at 10 weeks of age. The results obtained from this study indicate that chronic exercise extends dystrophic phenotype of MDX mice as evidenced by T2-MRI and1H-MRS. T2-MRI revealed extent and location of the muscle damage in gastrocnemius and tibialis anterior muscles as hyperintensities (lesions and edema) in exercised MDX mice over follow-up period.. The magnitude of the muscle damage remained stable over time in exercised mice. No evident fat infiltration or cumulation to the muscle tissues was seen at any time-point in exercised MDX mice. Creatine, choline and taurine levels evaluated by 1H-MRS from the same muscles were found significantly decreased in each time-point, Extramyocellular (EMCL) and intramyocellular lipids (IMCL) did not change in exercised mice supporting the findings from anatomical T2-MRI scans for fat content. Creatine kinase levels were found to be significantly higher in exercised MDX mice during the follow-up period and importantly CK levels remained stable over the whole follow-up period. Taken together, we have described here longitudinal prophile for muscle damage and muscle metabolic changes in MDX mice subjected to chronic exercised. The extent of the muscle damage by T2-MRI was found to be stable through the follow-up period in muscles examined. In addition, metabolic profile, especially creatine, choline and taurine levels in muscles, was found to be sustained between time-points. The anatomical muscle damage evaluated by T2-MRI was supported by plasma CK levels which remained stable over the follow-up period. These findings show that non-invasive imaging and spectroscopy can be used effectively to evaluate chronic muscle pathology. These techniques can be also used to evaluate the effect of various manipulations, like here exercise, on the phenotype of the mice. Many of the findings we present here are translatable to clinical disease, such as decreased creatine, choline and taurine levels in muscles. Imaging by T2-MRI and 1H-MRS also revealed that fat content or extramyocellar and intramyocellular lipids, respectively, are not changed in MDX mice, which is in contrast to clinical manifestation of the Duchenne’s muscle dystrophy. Findings show that non-invasive imaging can be used to characterize the phenotype of a MDX model and its translatability to clinical disease, and to study events that have traditionally been not examined, like here rigorous exercise related sustained muscle damage after the “critical period”. The ability for this model to display sustained damage beyond the spontaneous “critical period“ and in turn to study drug effects on this extended phenotype will increase the value of the MDX mouse model as a tool to study therapies and treatments aimed at DMD and associated diseases.

Keywords: 1H-MRS, MRI, muscular dystrophy, mouse model

Procedia PDF Downloads 353
1 Research on a Digital Basketball Sports Game (DBSG) Framework Based on the Female Perspective

Authors: Ran Yue, Zhejing Li

Abstract:

Context: The context of this study is the field of Digital Basketball Sports Games (DBSG). The existing DBSGs often prioritize competitiveness and confrontation, neglecting the narrative and progressive expression, especially from a female standpoint. This study aims to address this gap by analyzing existing DBSGs and proposing a comprehensive framework tailored to meet the needs and desires of women in basketball. Research Aim: The aim of this research is to examine the narrative perspectives of women in basketball and understand their desires and expectations within the sport. It also seeks to investigate methods to seamlessly integrate women's basketball stories into gameplay, addressing their specific needs and expectations. Additionally, the study aims to develop a digital basketball sports game framework that combines narrative richness and entertainment, with a focus on the female audience. Methodology: The study utilizes affective-arousal theories as a psychological framework to explore how emotional arousal influences player engagement and responses in the digital basketball sports game. It employs in-depth case studies to examine specific instances and gain insights into the implementation and impact of narrative elements and educational features in existing DBSGs. Comparative studies are conducted to analyze different DBSGs, identifying effective strategies and shortcomings. Findings: The research findings contribute to the development of a digital basketball game framework from a female perspective. This framework enhances the completeness, diversity, and inclusivity of digital basketball sports games. By addressing the specific needs of women in basketball, including fundamental knowledge, sports skills, safety awareness, and rehabilitation training methods, the framework provides a foundational reservoir for a broader range of basketball participation. It enriches the gaming experience by enhancing enjoyment, narrative, and diversity. It also acts as a catalyst to encourage more women to engage with basketball stories, participate in the sport, persevere, and derive greater enjoyment while benefiting their physical fitness and health. Theoretical Importance: The study contributes to the existing literature by incorporating game motivation psychology theories and proposing a comprehensive framework that caters to the specific needs of women in basketball. It emphasizes the importance of considering the narrative and progressive expression in DBSGs, especially from a female perspective. The research explores affective-arousal theories and provides insights into how emotional arousal can influence player engagement and responses in digital basketball sports games. Data Collection and Analysis Procedures: The study collects data through in-depth case studies of existing DBSGs, examining specific instances to uncover insights into the implementation and impact of narrative elements and educational features. Comparative studies are conducted to contrast and analyze various DBSGs, identifying effective strategies and shortcomings. The analysis procedures involve identifying commonalities, differences, strengths, and weaknesses among the DBSGs, guiding the development of a female-centric perspective in the proposed framework. Questions Addressed: The study addresses the following questions: What are the narrative perspectives of women in basketball? How can women's basketball stories be seamlessly integrated into gameplay? What are the specific needs and expectations of women in basketball? What effective strategies and shortcomings exist in current DBSGs? How can a digital basketball game framework be developed to cater to the female audience? Conclusion: In conclusion, this study contributes to the field of DBSGs by proposing a comprehensive digital basketball game framework from a female perspective. The framework enhances the inclusivity, diversity, and enjoyment of DBSGs by addressing the specific needs and desires of women in basketball. It provides a foundation for a broader range of basketball participation, enriching the gaming experience and benefiting women's physical fitness and health. The research, using affective-arousal theories and in-depth case studies, provides valuable insights into the implementation and impact of narrative elements and educational features in existing DBSGs, guiding the development of the proposed female-centric framework.

Keywords: digital basketball game, game framework, female perspective, game narratives

Procedia PDF Downloads 56