Search results for: land cover classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5102

Search results for: land cover classification

3632 Research on the Strategy of Old City Reconstruction under Market Orientation: Taking Mutoulong Community in Shenzhen as an Example

Authors: Ziwei Huang

Abstract:

In order to promote Inventory development in Shenzhen, the market-oriented real estate development mode has occupied a dominant position in the urban renewal activities of Shenzhen. This research is based on the theory of role relationship and urban regime, taking the Mutoulong community as the research object. Carries on the case depth analysis found that: Under the situation of absence and dislocation of the government's role, land property rights disputes and lack of communication platforms is the main reason for the problems of nail households and market failures, and the long-term delay in the progress of old city reconstruction. Through the analysis of the cause of the transformation problem and the upper planning and interest coordination mechanism, the optimization strategy of the old city transformation is finally proposed as follows: the establishment of interest coordination platform, the risk assessment of the government's intervention in the preliminary construction of the land, the adaptive construction of laws and regulations, and the re-examination of the interest relationship between the government and the market.

Keywords: Shenzhen city, Mutoulong community, urban regeneration, urban regime theory, role relationship theory

Procedia PDF Downloads 96
3631 Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations

Authors: Kuei-Ling Sun, Emily Chia-Yu Su

Abstract:

Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence.

Keywords: allergy, classification, decision tree, logistic regression, machine learning

Procedia PDF Downloads 303
3630 Emotion Classification Using Recurrent Neural Network and Scalable Pattern Mining

Authors: Jaishree Ranganathan, MuthuPriya Shanmugakani Velsamy, Shamika Kulkarni, Angelina Tzacheva

Abstract:

Emotions play an important role in everyday life. An-alyzing these emotions or feelings from social media platforms like Twitter, Facebook, blogs, and forums based on user comments and reviews plays an important role in various factors. Some of them include brand monitoring, marketing strategies, reputation, and competitor analysis. The opinions or sentiments mined from such data helps understand the current state of the user. It does not directly provide intuitive insights on what actions to be taken to benefit the end user or business. Actionable Pattern Mining method provides suggestions or actionable recommendations on what changes or actions need to be taken in order to benefit the end user. In this paper, we propose automatic classification of emotions in Twitter data using Recurrent Neural Network - Gated Recurrent Unit. We achieve training accuracy of 87.58% and validation accuracy of 86.16%. Also, we extract action rules with respect to the user emotion that helps to provide actionable suggestion.

Keywords: emotion mining, twitter, recurrent neural network, gated recurrent unit, actionable pattern mining

Procedia PDF Downloads 168
3629 Collaborative Approaches in Achieving Sustainable Private-Public Transportation Services in Inner-City Areas: A Case of Durban Minibus Taxis

Authors: Lonna Mabandla, Godfrey Musvoto

Abstract:

Transportation is a catalytic feature in cities. Transport and land use activity are interdependent and have a feedback loop between how land is developed and how transportation systems are designed and used. This recursive relationship between land use and transportation is reflected in how public transportation routes internal to the inner-city enhance accessibility, therefore creating spaces that are conducive to business activity, while the business activity also informs public transportation routes. It is for this reason that the focus of this research is on public transportation within inner-city areas where the dynamic is evident. Durban is the chosen case study where the dominating form of public transportation within the central business district (CBD) is minibus taxis. The paradox here is that minibus taxis still form part of the informal economy even though they are the leading form of public transportation in South Africa. There have been many attempts to formalise this industry to follow more regulatory practices, but minibus taxis are privately owned, therefore complicating any proposed intervention. The argument of this study is that the application of collaborative planning through a sustainable partnership between the public and private sectors will improve the social and environmental sustainability of public transportation. One of the major challenges that exist within such collaborative endeavors is power dynamics. As a result, a key focus of the study is on power relations. Practically, power relations should be observed over an extended period, specifically when the different stakeholders engage with each other, to reflect valid data. However, a lengthy data collection process was not possible to observe during the data collection phase of this research. Instead, interviews were conducted focusing on existing procedural planning practices between the inner-city minibus taxi association (South and North Beach Taxi Association), the eThekwini Transport Authority (ETA), and the eThekwini Town Planning Department. Conclusions and recommendations were then generated based on these data.

Keywords: collaborative planning, sustainability, public transport, minibus taxis

Procedia PDF Downloads 59
3628 Study of Morphological Changes of the River Ganga in Patna District, Bihar Using Remote Sensing and GIS Techniques

Authors: Bhawesh Kumar, A. P. Krishna

Abstract:

There are continuous changes upon earth’s surface by a variety of natural and anthropogenic agents cut, carry away and depositing of minerals from land. Running water has higher capacity of erosion than other geomorphologic agents. This research work has been carried out on Ganga River, whose channel is continuously changing under the influence of geomorphic agents and human activities in the surrounding regions. The main focus is to study morphological characteristics and sand dynamics of Ganga River with particular emphasis on bank lines and width changes using remote sensing and GIS techniques. The advance remote sensing data and topographical data were interpreted for obtaining 52 years of changes. For this, remote sensing data of different years (LANDSAT TM 1975, 1988, 1993, ETM 2005 and ETM 2012) and toposheet of SOI for the year 1960 were used as base maps for this study. Sinuosity ratio, braiding index and migratory activity index were also established. It was found to be 1.16 in 1975 and in 1988, 1993, 2005 and 2005 it was 1.09, 1.11, 1.1, 1.09 respectively. The analysis also shows that the minimum value found in 1960 was in reach 1 and maximum value is 4.8806 in 2012 found in reach 4 which suggests creation of number of islands in reach 4 for the year 2012. Migratory activity index (MAI), which is a standardized function of both length and time, was computed for the 8 representative reaches. MAI shows that maximum migration was in 1975-1988 in reach 6 and 7 and minimum migration was in 1993-2005. From the channel change analysis, it was found that the shifting of bank line was cyclic and the river Ganges showed a trend of southward maximum values. The advanced remote sensing data and topographical data helped in obtaining 52 years changes in the river due to various natural and manmade activities like flood, water velocity and excavation, removal of vegetation cover and fertile soil excavation for the various purposes of surrounding regions.

Keywords: braided index, migratory activity index (MAI), Ganga river, river morphology

Procedia PDF Downloads 347
3627 Represent Light and Shade of Old Beijing: Construction of Historical Picture Display Platform Based on Geographic Information System (GIS)

Authors: Li Niu, Jihong Liang, Lichao Liu, Huidi Chen

Abstract:

With the drawing of ancient palace painter, the layout of Beijing famous architect and the lens under photographers, a series of pictures which described whether emperors or ordinary people, whether gardens or Hutongs, whether historical events or life scenarios has emerged into our society. These precious resources are scattered around and preserved in different places Such as organizations like archives and libraries, along with individuals. The research combined decentralized photographic resources with Geographic Information System (GIS), focusing on the figure, event, time and location of the pictures to map them with geographic information in webpage and to display them productively. In order to meet the demand of reality, we designed a metadata description proposal, which is referred to DC and VRA standards. Another essential procedure is to formulate a four-tier classification system to correspond with the metadata proposals. As for visualization, we used Photo Waterfall and Time Line to display our resources in front end. Last but not the least, leading the Web 2.0 trend, the research developed an artistic, friendly, expandable, universal and user involvement platform to show the historical and culture precipitation of Beijing.

Keywords: historical picture, geographic information system, display platform, four-tier classification system

Procedia PDF Downloads 270
3626 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis

Authors: Tawfik Thelaidjia, Salah Chenikher

Abstract:

Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approach

Keywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement

Procedia PDF Downloads 437
3625 Impacts of Human Settlement Development on Highland View Wetland in Bizana, South Africa

Authors: Fikile Xaki, Zendy Magayiyana

Abstract:

The increasing population and urbanization, with the demand for land and development, has had adverse impacts on wetland areas which has resulted in changing the hydrology and water chemistry of wetlands, affecting the water supply and water quality in urban areas like the Highland View, a residential area in Mbizana, South Africa. The settlement development in Highland View has led to wetland degradation due to land uses like agriculture and conversion of wetland for settlement development. Interviews with the local community were conducted to show how settlement development on wetland affects them. The results indicated that the environmental rights of people as according to Section 24 of the South African Constitution are compromised, and sustainable development was not put into consideration during development. With the results from the survey - through questionnaires for the Mbizana Local Municipality and the community, it was clear that the community needs education and capacity building on wetland management and conservation. Geographic Information Systems (GIS) was used to map physical properties of the Highland View wetland and houses built on the wetland. With all the information gathered from the research, it was clear that local municipality, together with hydrologists, needs to develop an environmental management framework to protect the wetlands.

Keywords: sustainable development, wetlands, human settlement, water

Procedia PDF Downloads 349
3624 The Role of Agroforestry Practices in Climate Change Mitigation in Western Kenya

Authors: Humphrey Agevi, Harrison Tsingalia, Richard Onwonga, Shem Kuyah

Abstract:

Most of the world ecosystems have been affected by the effects of climate change. Efforts have been made to mitigate against climate change effects. While most studies have been done in forest ecosystems and pure plant plantations, trees on farms including agroforestry have only received attention recently. Agroforestry systems and tree cover on agricultural lands make an important contribution to climate change mitigation but are not systematically accounted for in the global carbon budgets. This study sought to: (i) determine tree diversity in different agroforestry practices; (ii) determine tree biomass in different agroforestry practices. Study area was determined according to the Land degradation surveillance framework (LSDF). Two study sites were established. At each of the site, a 5km x 10km block was established on a map using Google maps and satellite images. Way points were then uploaded in a GPS helped locate the blocks on the ground. In each of the blocks, Nine (8) sentinel clusters measuring 1km x 1km were randomized. Randomization was done in a common spreadsheet program and later be downloaded to a Global Positioning System (GPS) so that during surveys the researchers were able to navigate to the sampling points. In each of the sentinel cluster, two farm boundaries were randomly identified for convenience and to avoid bias. This led to 16 farms in Kakamega South and 16 farms in Kakamega North totalling to 32 farms in Kakamega Site. Species diversity was determined using Shannon wiener index. Tree biomass was determined using allometric equation. Two agroforestry practices were found; homegarden and hedgerow. Species diversity ranged from 0.25-2.7 with a mean of 1.8 ± 0.10. Species diversity in homegarden ranged from 1-2.7 with a mean of 1.98± 0.14. Hedgerow species diversity ranged from 0.25-2.52 with a mean of 1.74± 0.11. Total Aboveground Biomass (AGB) determined was 13.96±0.37 Mgha-1. Homegarden with the highest abundance of trees had higher above ground biomass (AGB) compared to hedgerow agroforestry. This study is timely as carbon budgets in the agroforestry can be incorporated in the global carbon budgets and improve the accuracy of national reporting of greenhouse gases.

Keywords: agroforestry, allometric equations, biomass, climate change

Procedia PDF Downloads 364
3623 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method

Authors: Dangut Maren David, Skaf Zakwan

Abstract:

Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.

Keywords: prognostics, data-driven, imbalance classification, deep learning

Procedia PDF Downloads 174
3622 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction

Authors: Ling Qi, Matloob Khushi, Josiah Poon

Abstract:

This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.

Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning

Procedia PDF Downloads 128
3621 Application of Groundwater Model for Optimization of Denitrification Strategies to Minimize Public Health Risk

Authors: Mukesh A. Modi

Abstract:

High-nitrate concentration in groundwater of unconfined aquifers has been a serious issue for public health risk at a global scale. Various anthropogenic activities in agricultural land and urban land of alluvial soil have been observed to be responsible for the increment of nitrate in groundwater. The present study was designed to identify suitable denitrification strategies to minimize the effects of high nitrate in groundwater near the Mahi River of Vadodara block, Gujarat. There were 11 wells of Jal Jeevan Mission, Ministry of Jal Shakti, along with 3 observation wells of Gujarat Water Resources Development Corporation have been used for the duration of 21 years. MODFLOW and MT3DMS codes have been used to simulate solute transport phenomena along with attempted effectively for optimization. Current research is one step ahead by optimizing various denitrification strategies with the simulation of the model. The in-situ and ex-situ denitrification strategies viz. NAS (No Action Scenario), CAS (Crop Alternation Scenario), PS (Phytoremediation Scenario), and CAS + PS (Crop Alternation Scenario + Phytoremediation Scenario) have been selected for the optimization. The groundwater model simulates the most suitable denitrification strategy considering the hydrogeological characteristics at the targeted well.

Keywords: groundwater, high nitrate, MODFLOW, MT3DMS, optimization, denitrification strategy

Procedia PDF Downloads 31
3620 Application of Principle Component Analysis for Classification of Random Doppler-Radar Targets during the Surveillance Operations

Authors: G. C. Tikkiwal, Mukesh Upadhyay

Abstract:

During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving army, moving convoys etc. The Radar operator selects one of the promising targets into Single Target Tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper we present a technique using mathematical and statistical methods like Fast Fourier Transformation (FFT) and Principal Component Analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.

Keywords: radar target, fft, principal component analysis, eigenvector, octave-notes, dsp

Procedia PDF Downloads 346
3619 Human Development Strengthening against Terrorism in ASEAN East Asia and Pacific: An Econometric Analysis

Authors: Tismazammi Mustafa, Jaharudin Padli

Abstract:

The frequency of terrorism is increasing throughout years that is resulting in loss of life, damaging people’s property, and destructing the environment. The incident of terrorism is not stationed in one particular country but has spread and scattered in other countries hence causing an increase in the number of terrorism cases. Thus, this paper aims to investigate the factors of human development upon the terrorism in East Asia and Pacific countries. This study used a panel ARDL model, in which it enables to capture the long run and the short run relationship among the variables of interest. Logit Model for Binary data is also used, in which to representing an attributes of dependent variables. This study focuses on several human development variables namely GDP per capita, population, human capital, land area, and technologies. The empirical finding revealed that the GDP per capita, population, human capital, land area, and technologies are positively and statistically significant in influencing the terrorism. Thus, the finding in this study will present as grounds to preserve human rights and develop public awareness and will offer guidelines to policy makers, emergency managers, first responders, public health workers, physicians, and other researchers.

Keywords: terrorism, East Asia and Pacific, human development, econometric analysis

Procedia PDF Downloads 414
3618 Evaluation of the Ardabil City Environmental Potential for Urban Development

Authors: Seiied Taghi Seiied Safavian, Ebrahim Fataei, Taghi Ebadi

Abstract:

Urbanized population increasing has been a major driving force for physical development and expansion. In this regard, selecting optimal management strategies for sustainable development of cities as the most important population centers has gotten more attention by the city managers. One of the most important issues in planning a sustainable development is environmental sustainability. In this research, identifying the optimal physical development strategies of Ardabil city in the future condition have been investigated based on land-use planning principles and regularities. Determination of suitable lands of urban development was conducted through natural variables comprised of slope, topography, geology, distance from fault, underground water's depth, land-use strategies and earth shape using hierarchical process method (AHP) in Geographical information system (GIS). Region's potential capabilities and talents were estimated by environmental elements extraction and its measurement based on environmental criteria. Consequently, specified suitable areas for Ardabil city development were introduced. Results of this research showed that the northern part of the Ardabil city is the most suitable sites for physical development of this city regarding the environmental sustainability criteria.

Keywords: urban development, environmental sustainability, Ardabil city, AHP, GIS

Procedia PDF Downloads 430
3617 A Case Study of Deep Learning for Disease Detection in Crops

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.

Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture

Procedia PDF Downloads 259
3616 Explainable Graph Attention Networks

Authors: David Pham, Yongfeng Zhang

Abstract:

Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.

Keywords: explainable AI, graph attention network, graph neural network, node classification

Procedia PDF Downloads 199
3615 Disclosing a Patriarchal Society: A Socio-Legal Study on the Indigenous Women's Involvement in Natural Resources Management in Kasepuhan Cirompang

Authors: Irena Lucy Ishimora, Eva Maria Putri Salsabila

Abstract:

The constellation on Indonesian Legal System that varies shows a structural injustice – as a result of patriarchy – exists from the biggest range as a country to the smallest such as a family. Women in their lives, carry out excessive responsibilities in the community. However, the unequal positions between men and women in the society restrain women to fulfill their constructed role. Therefore, increasing the chance for women to become the victim of structural injustice. The lack of authority given to women and its effects can be seen through a case study of the Cirompang Indigenous Women’s involvement in natural resources management. The decision to make the Mount Halimun-Salak as a National Park and the expansion itself did not involve nor consider the existence of indigenous people (Kasepuhan Ciromopang) – especially the women’s experience regarding natural resources management – has been significantly impacting the fulfillment of the indigenous women’s rights. Moreover, the adat law that still reflects patriarchy, made matters worse because women are restricted from expressing their opinion. The writers explored the experience of Cirompang indigenous women through in-depth interviews with them and analyzed it with several theories such as ecofeminism, woman’s access to land and legal pluralism. This paper is important to show how the decision and expansion of the National Park reduced the rights of access to land, natural resources, expressing an opinion, and participating in development. Reflecting on the Cirompang Indigenous Women’s conditions on natural resources management, this paper aims to present the implications of the regulations that do not acknowledge Indigenous women’s experience and the proposed solutions. First, there should be an integration between the law regarding indigenous people and traditional rights in a regulation to align the understanding of indigenous people and their rights. Secondly, Indonesia as a country that’s rich with diversity should ratify the ILO Convention no 169 to reaffirm the protection of Indigenous people’s rights. Last, considering the position of indigenous women that still experienced unjustness in the community, the government and NGOs must collaborate to provide adequate assistance for them.

Keywords: Cirompang indigenous women, indigenous women’s rights, structural injustice, women access to land

Procedia PDF Downloads 214
3614 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques

Authors: Joseph Wolff, Jeffrey Eilbott

Abstract:

Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.

Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences

Procedia PDF Downloads 209
3613 Human Behavioral Assessment to Derive Land-Use for Sustenance of River in India

Authors: Juhi Sah

Abstract:

Habitat is characterized by the inter-dependency of environmental elements. Anthropocentric development approach is increasing our vulnerability towards natural hazards. Hence, manmade interventions should have a higher level of sensitivity towards the natural settings. Sensitivity towards the environment can be assessed by the behavior of the stakeholders involved. This led to the establishment of a hypothesis: there exists a legitimate relationship between the behavioral sciences, land use evolution and environment conservation, in the planning process. An attempt has been made to establish this relationship by reviewing the existing set of knowledge and case examples pertaining to the three disciplines under inquiry. Understanding the scarce & deteriorating nature of fresh-water reserves of earth and experimenting the above concept, a case study of a growing urban center's river flood plain is selected, in a developing economy, India. Cases of urban flooding in Chennai, Delhi and other mega cities of India, imposes a high risk on the unauthorized settlement, on the floodplains of the rivers. The issue addressed here is the encroachment of floodplains, through psychological enlightenment and modification through knowledge building. The reaction of an individual or society can be compared to a cognitive process. This study documents all the stakeholders' behavior and perception for their immediate natural environment (water body), and produce various land uses suitable along a river in an urban settlement as per different stakeholder's perceptions. To assess and induce morally responsible behavior in a community (small scale or large scale), tools of psychological inquiry is used for qualitative analysis. The analysis will deal with varied data sets from two sectors namely: River and its geology, Land use planning and regulation. Identification of a distinctive pattern in the built up growth, river ecology degradation, and human behavior, by handling large quantum of data from the diverse sector and comments on the availability of relevant data and its implications, has been done. Along the whole river stretch, condition and usage of its bank vary, hence stakeholder specific survey questionnaires have been prepared to accurately map the responses and habits of the rational inhabitants. A conceptual framework has been designed to move forward with the empirical analysis. The classical principle of virtues says "virtue of a human depends on its character" but another concept defines that the behavior or response is a derivative of situations and to bring about a behavioral change one needs to introduce a disruption in the situation/environment. Owing to the present trends, blindly following the results of data analytics and using it to construct policy, is not proving to be in favor of planned development and natural resource conservation. Thus behavioral assessment of the rational inhabitants of the planet is also required, as their activities and interests have a large impact on the earth's pre-set systems and its sustenance.

Keywords: behavioral assessment, flood plain encroachment, land use planning, river sustenance

Procedia PDF Downloads 117
3612 Assessment of Human Factors Analysis and Classification System in Construction Accident Prevention

Authors: Zakari Mustapha, Clinton Aigbavboa, Wellington Didi Thwala

Abstract:

Majority of the incidents and accidents in complex high-risk systems that exist in the construction industry and other sectors have been attributed to unsafe acts of workers. The purpose of this paper was to asses Human Factors Analysis and Classification System (HFACS) in construction accident prevention. The study was conducted through the use of secondary data from journals, books and internet to achieve the objective of the study. The review of literature looked into details of different views from different scholars about HFACS framework in accidents investigations. It further highlighted on various sections or disciplines of accident occurrences in human performance within the construction. The findings from literature review showed that unsafe acts of a worker and unsafe working conditions are the two major causes of accident in the construction industry.Most significant factor in the cause of site accident in the construction industry is unsafe acts of a worker. The findings also show how the application of HFACS framework in the investigation of accident will lead to the identification of common trends. Further findings show that provision for the prevention of accident will be made based on past accident records to identify and prioritize where intervention is needed within the construction industry.

Keywords: accident, construction, HFACS, unsafe acts

Procedia PDF Downloads 321
3611 Identification and Classification of Medicinal Plants of Indian Himalayan Region Using Hyperspectral Remote Sensing and Machine Learning Techniques

Authors: Kishor Chandra Kandpal, Amit Kumar

Abstract:

The Indian Himalaya region harbours approximately 1748 plants of medicinal importance, and as per International Union for Conservation of Nature (IUCN), the 112 plant species among these are threatened and endangered. To ease the pressure on these plants, the government of India is encouraging its in-situ cultivation. The Saussurea costus, Valeriana jatamansi, and Picrorhiza kurroa have also been prioritized for large scale cultivation owing to their market demand, conservation value and medicinal properties. These species are found from 1000 m to 4000 m elevation ranges in the Indian Himalaya. Identification of these plants in the field requires taxonomic skills, which is one of the major bottleneck in the conservation and management of these plants. In recent years, Hyperspectral remote sensing techniques have been precisely used for the discrimination of plant species with the help of their unique spectral signatures. In this background, a spectral library of the above 03 medicinal plants was prepared by collecting the spectral data using a handheld spectroradiometer (325 to 1075 nm) from farmer’s fields of Himachal Pradesh and Uttarakhand states of Indian Himalaya. The Random forest (RF) model was implied on the spectral data for the classification of the medicinal plants. The 80:20 standard split ratio was followed for training and validation of the RF model, which resulted in training accuracy of 84.39 % (kappa coefficient = 0.72) and testing accuracy of 85.29 % (kappa coefficient = 0.77). This RF classifier has identified green (555 to 598 nm), red (605 nm), and near-infrared (725 to 840 nm) wavelength regions suitable for the discrimination of these species. The findings of this study have provided a technique for rapid and onsite identification of the above medicinal plants in the field. This will also be a key input for the classification of hyperspectral remote sensing images for mapping of these species in farmer’s field on a regional scale. This is a pioneer study in the Indian Himalaya region for medicinal plants in which the applicability of hyperspectral remote sensing has been explored.

Keywords: himalaya, hyperspectral remote sensing, machine learning; medicinal plants, random forests

Procedia PDF Downloads 203
3610 Digital Mapping of First-Order Drainages and Springs of the Guajiru River, Northeast of Brazil, Based on Satellite and Drone Images

Authors: Sebastião Milton Pinheiro da Silva, Michele Barbosa da Rocha, Ana Lúcia Fernandes Campos, Miquéias Rildo de Souza Silva

Abstract:

Water is an essential natural resource for life on Earth. Rivers, lakes, lagoons and dams are the main sources of water storage for human consumption. The costs of extracting and using these water sources are lower than those of exploiting groundwater on transition zones to semi-arid terrains. However, the volume of surface water has decreased over time, with the depletion of first-order drainage and the disappearance of springs, phenomena which are easily observed in the field. Climate change worsens water scarcity, compromising supply and hydric security for rural populations. To minimize the expected impacts, producing and storing water through watershed management planning requires detailed cartographic information on the relief and topography, and updated data on the stage and intensity of catchment basin environmental degradation problems. The cartography available of the Brazilian northeastern territory dates to the 70s, with topographic maps, printed, at a scale of 1:100,000 which does not meet the requirements to execute this project. Exceptionally, there are topographic maps at scales of 1:50,000 and 1:25,000 of some coastal regions in northeastern Brazil. Still, due to scale limitations and outdatedness, they are products of little utility for mapping low-order watersheds drainage and springs. Remote sensing data and geographic information systems can contribute to guiding the process of mapping and environmental recovery by integrating detailed relief and topographic data besides social and other environmental information in the Guajiru River Basin, located on the east coast of Rio Grande do Norte, on the Northeast region of Brazil. This study aimed to recognize and map catchment basin, springs and low-order drainage features along estimating morphometric parameters. Alos PALSAR and Copernicus DEM digital elevation models were evaluated and provided regional drainage features and the watersheds limits extracted with Terraview/Terrahidro 5.0 software. CBERS 4A satellite images with 2 m spatial resolution, processed with ESA SNAP Toolbox, allowed generating land use land cover map of Guajiru River. A Mappir Survey 3 multiespectral camera onboard of a DJI Phantom 4, a Mavic 2 Pro PPK Drone and an X91 GNSS receiver to collect the precised position of selected points were employed to detail mapping. Satellite images enabled a first knowledge approach of watershed areas on a more regional scale, yet very current, and drone images were essential in mapping details of catchment basins. The drone multispectral image mosaics, the digital elevation model, the contour lines and geomorphometric parameters were generated using OpenDroneMap/ODM and QGis softwares. The drone images generated facilitated the location, understanding and mapping of watersheds, recharge areas and first-order ephemeral watercourses on an adequate scale and will be used in the following project’s phases: watershed management planning, recovery and environmental protection of Rio's springs Guajiru. Environmental degradation is being analyzed from the perspective of the availability and quality of surface water supply.

Keywords: imaging, relief, UAV, water

Procedia PDF Downloads 31
3609 Evaluation of Ecological Resilience in Mountain-plain Transition Zones: A Case Study of Dujiangyan City, Chengdu

Authors: Zhu Zhizheng, Huang Yong, Li Tong

Abstract:

In the context of land and space development and resource environmental protection. Due to its special geographical location, mountain-plain transition zones are limited by many factors such as topography, mountain forest protection, etc., and their ecology is also more sensitive, with the characteristics of disaster susceptibility and resource gradient. Taking Dujiangyan City, Chengdu as an example, this paper establishes resilience evaluation indicators on the basis of ecological suitability evaluation through the analysis of current situation data and relevant policies: water conservation evaluation, soil and water conservation evaluation, biodiversity evaluation, soil erosion sensitivity evaluation, etc. Based on GIS spatial analysis, the ecological suitability and resilience evaluation results of Dujiangyan city were obtained by disjunction operation. The ecological resilience level of Dujiangyan city was divided into three categories: high, medium and low, with an area ratio of 50.81%, 16.4% and 32.79%, respectively. This paper can provide ideas for solving the contradiction between man and land in the mountain-plain transition zones, and also provide a certain basis for the construction of regional ecological protection and the delineation of three zones and three lines.

Keywords: urban and rural planning, ecological resilience, dujiangyan city, mountain-plain transition zones

Procedia PDF Downloads 110
3608 Sponge Urbanism as a Resilient City Design to Overcome Urban Flood Risk, for the Case of Aluva, Kerala, India

Authors: Gayathri Pramod, Sheeja K. P.

Abstract:

Urban flooding has been seen rising in cities for the past few years. This rise in urban flooding is the result of increasing urbanization and increasing climate change. A resilient city design focuses on 'living with water'. This means that the city is capable of accommodating the floodwaters without having to risk any loss of lives or properties. The resilient city design incorporates green infrastructure, river edge treatment, open space design, etc. to form a city that functions as a whole for resilience. Sponge urbanism is a recent method for building resilient cities and is founded by China in 2014. Sponge urbanism is the apt method for resilience building for a tropical town like Aluva of Kerala. Aluva is a tropical town that experiences rainfall of about 783 mm per month during the rainy season. Aluva is an urbanized town which faces the risk of urban flooding and riverine every year due to the presence of Periyar River in the town. Impervious surfaces and hard construction and developments contribute towards flood risk by posing as interference for a natural flow and natural filtration of water into the ground. This type of development is seen in Aluva also. Aluva is designed in this research as a town that have resilient strategies of sponge city and which focusses on natural methods of construction. The flood susceptibility of Aluva is taken into account to design the spaces for sponge urbanism and in turn, reduce the flood susceptibility for the town. Aluva is analyzed, and high-risk zones for development are identified through studies. These zones are designed to withstand the risk of flooding. Various catchment areas are identified according to the natural flow of water, and then these catchment areas are designed to act as a public open space and as detention ponds in case of heavy rainfall. Various development guidelines, according to land use, is also prescribed, which help in increasing the green cover of the town. Aluva is then designed to be a completely flood-adapted city or sponge city according to the guidelines and interventions.

Keywords: climate change, flooding, resilient city, sponge city, sponge urbanism, urbanization

Procedia PDF Downloads 155
3607 Tenure Security, Agricultural Diversity and Food Security

Authors: Amanuel Hadera Gebreyesus

Abstract:

In the literature, the study of tenure and food security has largely involved separate lines of inquiry. In effect, the nexus among these has received little attention; and the underinvestment in research related to the relationship between tenure and food security deters generation of tenure-related knowledge and policy guidance for improving food and nutrition security. Drawing from this motivation, we study the relationship among tenure security, agricultural diversity and food security and dietary diversity. We employ IV approaches to examine the effect of tenure security and agricultural diversity on food security and dietary diversity. We find tenure security is inversely related with food insecurity as shown by its negative association with hunger scale, hunger index and hunger category. On the other hand, results suggest that tenure security improves minimum dietary diversity of women while we find no association with child dietary diversity. Moreover, agricultural diversity is positively related with minimum dietary diversity of women, which may point to higher accessibility and consumption of dietary food groups by women. Also, findings suggest that farmers use their human (knowledge and skills) and resource (land) endowments to improve food security and dietary diversity. An implication from this is the importance of not only improving access to land but also long-term tenure security to promote agricultural diversity, food security and dietary diversity.

Keywords: tenure security, food security, agricultural diversity, dietary diversity, women

Procedia PDF Downloads 217
3606 Linguistic Summarization of Structured Patent Data

Authors: E. Y. Igde, S. Aydogan, F. E. Boran, D. Akay

Abstract:

Patent data have an increasingly important role in economic growth, innovation, technical advantages and business strategies and even in countries competitions. Analyzing of patent data is crucial since patents cover large part of all technological information of the world. In this paper, we have used the linguistic summarization technique to prove the validity of the hypotheses related to patent data stated in the literature.

Keywords: data mining, fuzzy sets, linguistic summarization, patent data

Procedia PDF Downloads 272
3605 Delineation of Soil Physical Properties Using Electrical Conductivity, Case Study: Volcanic Soil Simulation Model

Authors: Twin Aji Kusumagiani, Eleonora Agustine, Dini Fitriani

Abstract:

The value changes of soil physical properties in the agricultural area are giving impacts on soil fertility. This can be caused by excessive usage of inorganic fertilizers and imbalances on organic fertilization. Soil physical parameters that can be measured include soil electrical conductivity, water content volume, soil porosity, dielectric permittivity, etc. This study used the electrical conductivity and volume water content as the measured physical parameters. The study was conducted on volcanic soil obtained from agricultural land conditioned with NPK fertilizer and salt in a certain amount. The dimension of the conditioned soil being used is 1 x 1 x 0.5 meters. By using this method, we can delineate the soil electrical conductivity value of land due to changes in the provision of inorganic NPK fertilizer and the salinity in the soil. Zone with the additional 1 kg of salt has the dimension of 60 cm in width, 20 cm in depth and 1 cm in thickness while zone with the additional of 10 kg NPK fertilizer has the dimensions of 70 cm in width, 20 cm in depth and 3 cm in thickness. This salt addition resulted in EC values changes from the original condition. Changes of the EC value tend to occur at a depth of 20 to 40 cm on the line 1B at 9:45 dS/cm and line 1C of 9.35 dS/cm and tend to have the direction to the Northeast.

Keywords: EC, electrical conductivity, VWC, volume water content, NPK fertilizer, salt, volcanic soil

Procedia PDF Downloads 312
3604 A Technique for Image Segmentation Using K-Means Clustering Classification

Authors: Sadia Basar, Naila Habib, Awais Adnan

Abstract:

The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.

Keywords: clustering, image segmentation, K-means function, local and global minimum, region

Procedia PDF Downloads 376
3603 Assessment of Spectral Indices for Soil Salinity Estimation in Irrigated Land

Authors: R. Lhissou , A. El Harti , K. Chokmani, E. Bachaoui, A. El Ghmari

Abstract:

Soil salinity is a serious environmental hazard in many countries around the world especially the arid and semi-arid countries like Morocco. Salinization causes negative effects on the ground; it affects agricultural production, infrastructure, water resources and biodiversity. Remote sensing can provide soil salinity information for large areas, and in a relatively short time. In addition, remote sensing is not limited by extremes in terrain or hazardous condition. Contrariwise, experimental methods for monitoring soil salinity by direct measurements in situ are very demanding of time and resources, and also very limited in spatial coverage. In the irrigated perimeter of Tadla plain in central Morocco, the increased use of saline groundwater and surface water, coupled with agricultural intensification leads to the deterioration of soil quality especially by salinization. In this study, we assessed several spectral indices of soil salinity cited in the literature using Landsat TM satellite images and field measurements of electrical conductivity (EC). Three Landsat TM satellite images were taken during 3 months in the dry season (September, October and November 2011). Based on field measurement data of EC collected in three field campaigns over the three dates simultaneously with acquisition dates of Landsat TM satellite images, a two assessment techniques are used to validate a soil salinity spectral indices. Firstly, the spectral indices are validated locally by pixel. The second validation technique is made using a window of size 3x3 pixels. The results of the study indicated that the second technique provides getting a more accurate validation and the assessment has shown its limits when it comes to assess across the pixel. In addition, the EC values measured from field have a good correlation with some spectral indices derived from Landsat TM data and the best results show an r² of 0.88, 0.79 and 0.65 for Salinity Index (SI) in the three dates respectively. The results have shown the usefulness of spectral indices as an auxiliary variable in the spatial estimation and mapping salinity in irrigated land.

Keywords: remote sensing, spectral indices, soil salinity, irrigated land

Procedia PDF Downloads 391