Search results for: high volume fly ash concrete
21629 Sugarcane Bagasse Ash Geopolymer Mixtures: A Step Towards Sustainable Materials
Authors: Mohammad J. Khattak, Atif Khan, Thomas C. Pesacreta
Abstract:
Millions of tons of sugarcane bagasse ash (SBA) are produced as a byproduct by burning sugarcane bagasse in powerplants to run the steam engines for sugar production. This bagasse ash is disposed into landfills effecting their overall capacity. SBA contains very fine particles that can easily become airborne, causing serious respiratory health risks when inhaled. This research study evaluated the utilization of high dosage of SBA for developing geopolymer based “Green” construction materials. An experimental design matrix was developed with varying dosages of SBA (0, 20%, 60%, and 80%) and Na₂SiO3/NaOH ratio (0, 0.5, 1, 1.5, 2) based on the response surface methodology. Precursor (consisting of SBA and fly ash) to aggregate ration was kept constant at 30:70 and the alkali to binder ratio was maintained at 0.45 for all the mixtures. Geopolymer samples of size 50.8 x 50.8 mm (2” X 2”) were casted and cured at 65oC for 48 hours in a water bath followed by curing at room temperature for 24 hours. The samples were then tested for compressive strength as per ASTM C39. The results revealed that based on varying SBA dosage the compressive strengths ranged from 6.78 MPa to 22.63 MPa. Moreover, the effect of SiO2, Na₂O and Fe₂O₃ on the compressive strength of these mixtures was also evaluated. The results depicted that the compressive strength increased with increasing Na₂O and Fe₂O₃ concentration in the binder. It was also observed that the compressive strength of SBA based geopolymer mixtures improved as the SiO₂ content increased, reaching an optimum at 42%. However, further increase in SiO₂ reduced the strength of the mixtures. The resulting geopolymer mixtures possess compressive strengths according to the requirements set by ASTM standard. Such mixtures can be used as a structural and non-structural element as strong road bases, sidewalks, curbs, bricks for buildings and highway infrastructure. Using industrial SBA in geopolymer based construction materials can address the carbon emissions related to cement production, reduce landfill burden from SBA storage, and mitigate health risks associated with high content of silica in SBA.Keywords: compressive strength, geopolymer concrete, green materials, sugarcane bagasse ash
Procedia PDF Downloads 1021628 Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame
Authors: Keyvan Ramin
Abstract:
The geometric nonlinearity of Off-Diagonal Bracing System (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three-dimensional finite element modeling. Non-linear static analysis is considered to obtain performance level and seismic behavior, and then the response modification factors calculated from each model’s pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan, and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behavior and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.Keywords: FEM, seismic behaviour, pushover analysis, geometric nonlinearity, time history analysis, equivalent viscous damping, passive control, crack investigation, hysteresis curve
Procedia PDF Downloads 37821627 Comparative Study of Bread Prepared with and without Germinated Soyabean (Glycine Max) Flour
Authors: Muhammad Arsalan Mahmoo, Allah Rakha, Muhammad Sohail
Abstract:
The supplementation of wheat flour with high lysine legume flours has positive effects on the nutritional value of bread. In present study, germinated and terminated soya flour blends were prepared and supplemented in bread in variable proportions (10 % and 20 % of each) to check its impact on quality and sensory attributes of bread. The results showed that there was a significant increase in protein, ash and crude fat contents due to increase in the level of germinated and ungerminated soya flour. However, the moisture and crude fiber contents of composite flours containing germinated and ungerminated soya flour decreased with increased level of supplementation. Mean values for physical analysis (loaf volume, specific volume, weight loss and force for texture) were significantly higher in breads prepared with germinated soya bean flour.The scores assigned to sensory parameters of breads like volume, color of crust, symmetry, color of crumb, texture, taste and aroma decreased significantly by increasing the level of germinated and ungerminated soya flour in wheat flour while color of crust and taste slightly improved. The scores given to overall acceptability of bread prepared from composite flour supplemented with 10 % germinated soya flour.Keywords: composite bread, protein energy malnutrition, supplementation, amino acid profile, grain legumes
Procedia PDF Downloads 43021626 Bridge Damage Detection and Stiffness Reduction Using Vibration Data: Experimental Investigation on a Small Scale Steel Bridge
Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti
Abstract:
The design of planning maintenance of civil structures often requires the evaluation of their level of safety in order to be able to choose which structure, and in which measure, it needs a structural retrofit. This work deals with the evaluation of the stiffness reduction of a scaled steel deck due to the presence of localized damages. The dynamic tests performed on it have shown the variability of its main frequencies linked to the gradual reduction of its rigidity. This deck consists in a steel grillage of four secondary beams and three main beams linked to a concrete slab. This steel deck is 6 m long and 3 m wide and it rests on two abutments made of concrete. By processing the signals of the accelerations due to a random excitation of the deck, the main natural frequencies of this bridge have been extracted. In order to assign more reliable parameters to the numerical model of the deck, some load tests have been performed and the mechanical property of the materials and the supports have been obtained. The two external beams have been cut at one third of their length and the structural strength has been restored by the design of a bolted plate. The gradual loss of the bolts and the plates removal have made the simulation of localized damage possible. In order to define the relationship between frequency variation and loss in stiffness, the identification of its natural frequencies has been performed, before and after the occurrence of the damage, corresponding to each step. The study of the relationship between stiffness losses and frequency shifts has been reported in this paper: the square of the frequency variation due to the presence of the damage is proportional to the ratio between the rigidities. This relationship can be used to quantify the loss in stiffness of a real scale bridge in an efficient way.Keywords: damage detection, dynamic test, frequency shifts, operational modal analysis, steel bridge
Procedia PDF Downloads 16021625 Atomic Layer Deposition of Metal Oxides on Si/C Materials for the Improved Cycling Stability of High-Capacity Lithium-Ion Batteries
Authors: Philipp Stehle, Dragoljub Vrankovic, Montaha Anjass
Abstract:
Due to its high availability and extremely high specific capacity, silicon (Si) is the most promising anode material for next generation lithium-ion batteries (LIBs). However, Si anodes are suffering from high volume changes during cycling causing unstable solid-electrolyte interface (SEI). One approach for mitigation of these effects is to embed Si particles into a carbon matrix to create silicon/carbon composites (Si/C). These typically show more stable electrochemical performance than bare silicon materials. Nevertheless, the same failure mechanisms mentioned earlier appear in a less pronounced form. In this work, we further improved the cycling performance of two commercially available Si/C materials by coating thin metal oxide films of different thicknesses on the powders via Atomic Layer Deposition (ALD). The coated powders were analyzed via ICP-OES and AFM measurements. Si/C-graphite anodes with automotive-relevant loadings (~3.5 mAh/cm2) were processed out of the materials and tested in half coin cells (HCCs) and full pouch cells (FPCs). During long-term cycling in FPCs, a significant improvement was observed for some of the ALD-coated materials. After 500 cycles, the capacity retention was already up to 10% higher compared to the pristine materials. Cycling of the FPCs continued until they reached a state of health (SOH) of 80%. By this point, up to the triple number of cycles were achieved by ALD-coated compared to pristine anodes. Post-mortem analysis via various methods was carried out to evaluate the differences in SEI formation and thicknesses.Keywords: silicon anodes, li-ion batteries, atomic layer deposition, silicon-carbon composites, surface coatings
Procedia PDF Downloads 12221624 Design and Study of a Low Power High Speed 8 Transistor Based Full Adder Using Multiplexer and XOR Gates
Authors: Biswarup Mukherjee, Aniruddha Ghoshal
Abstract:
In this paper, we propose a new technique for implementing a low power high speed full adder using 8 transistors. Full adder circuits are used comprehensively in Application Specific Integrated Circuits (ASICs). Thus it is desirable to have high speed operation for the sub components. The explored method of implementation achieves a high speed low power design for the full adder. Simulated results indicate the superior performance of the proposed technique over conventional 28 transistor CMOS full adder. Detailed comparison of simulated results for the conventional and present method of implementation is presented.Keywords: high speed low power full adder, 2-T MUX, 3-T XOR, 8-T FA, pass transistor logic, CMOS (complementary metal oxide semiconductor)
Procedia PDF Downloads 34821623 Study on Constitutive Model of Particle Filling Material Considering Volume Expansion
Authors: Xu Jinsheng, Tong Xin, Zheng Jian, Zhou Changsheng
Abstract:
The NEPE (nitrate ester plasticized polyether) propellant is a kind of particle filling material with relatively high filling fraction. The experimental results show that the microcracks, microvoids and dewetting can cause the stress softening of the material. In this paper, a series of mechanical testing in inclusion with CCD technique were conducted to analyze the evolution of internal defects of propellant. The volume expansion function of the particle filling material was established by measuring of longitudinal and transverse strain with optical deformation measurement system. By analyzing the defects and internal damages of the material, a visco-hyperelastic constitutive model based on free energy theory was proposed incorporating damage function. The proposed constitutive model could accurately predict the mechanical properties of uniaxial tensile tests and tensile-relaxation tests.Keywords: dewetting, constitutive model, uniaxial tensile tests, visco-hyperelastic, nonlinear
Procedia PDF Downloads 30121622 Dielectric Properties in Frequency Domain of Main Insulation System of Printed Circuit Board
Authors: Xize Dai, Jian Hao, Claus Leth Bak, Gian Carlo Montanari, Huai Wang
Abstract:
Printed Circuit Board (PCB) is a critical component applicable to power electronics systems, especially for high-voltage applications involving several high-voltage and high-frequency SiC/GaN devices. The insulation system of PCB is facing more challenges from high-voltage and high-frequency stress that can alter the dielectric properties. Dielectric properties of the PCB insulation system also determine the electrical field distribution that correlates with intrinsic and extrinsic aging mechanisms. Hence, investigating the dielectric properties in the frequency domain of the PCB insulation system is a must. The paper presents the frequency-dependent, temperature-dependent, and voltage-dependent dielectric properties, permittivity, conductivity, and dielectric loss tangents of PCB insulation systems. The dielectric properties mechanisms associated with frequency, temperature, and voltage are revealed from the design perspective. It can be concluded that the dielectric properties of PCB in the frequency domain show a strong dependence on voltage, frequency, and temperature. The voltage-, frequency-, and temperature-dependent dielectric properties are associated with intrinsic conduction behavior and polarization patterns from the perspective of dielectric theory. The results may provide some reference for the PCB insulation system design in high voltage, high frequency, and high-temperature power electronics applications.Keywords: electrical insulation system, dielectric properties, high voltage and frequency, printed circuit board
Procedia PDF Downloads 9421621 Construal Level Perceptions of Environmental vs. Social Sustainability in Online Fashion Shopping Environments
Authors: Barbara Behre, Verolien Cauberghe, Dieneke Van de Sompel
Abstract:
Sustainable consumption is on the rise, yet it has still not entered the mainstream in several industries, such as the fashion industry. In online fashion contexts, sustainability cues have been used to signal the sustainable benefits of certain garments to promote sustainable consumption. These sustainable cues may focus on the ecological or social dimension of sustainability. Since sustainability, in general, relates to distant, abstract benefits, the current study aims to examine if and how psychological distance may mediate the effects of exposure to different sustainability cues on consumption outcomes. Following the framework of Construal Level Theory of Psychological Distance, reduced psychological distance renders the construal level more concrete, which may influence attitudes and subsequent behavior in situations like fashion shopping. Most studies investigated sustainability as a composite, failing to differentiate between ecological and societal aspects of sustainability. The few studies examining sustainability more in detail uncovered that environmental sustainability is rather perceived in abstract cognitive construal, whereas social sustainability is linked to concrete construal. However, the construal level affiliation of the sustainability dimensions likely is not universally applicable to different domains and stages of consumption, which further suggest a need to clarify the relationships between environmental and social sustainability dimensions and the construal level of psychological distance within fashion brand consumption. While psychological distance and construal level have been examined in the context of sustainability, these studies yielded mixed results. The inconsistent findings of past studies might be due to the context-dependence of psychological distance as inducing construal differently in diverse situations. Especially in a hedonic consumption context like online fashion shopping, the role of visual processing of information could determine behavioural outcomes as linked to situational construal. Given the influence of the mode of processing on psychological distance and construal level, the current study examines the moderating role of verbal versus non-verbal presentation of the sustainability cues. In a 3 (environmental sustainability vs. social sustainability vs. control) x 2 (non-verbal message vs. verbal message) between subjects experiment, the present study thus examines how consumers evaluate sustainable brands in online shopping contexts in terms of psychological distance and construal level, as well as the impact on brand attitudes and buying intentions. The results among 246 participants verify the differential impact of the sustainability dimensions on fashion brand purchase intent as mediated by construal level and perceived psychological distance. The ecological sustainability cue is perceived as more concrete, which might be explained by consumer bias induced by the predominance of pro-environmental sustainability messages. The verbal versus non-verbal presentation of the sustainability cue neither had a significant influence on distance perceptions and construal level nor on buying intentions. This study offers valuable contributions to the sustainable consumption literature, as well as a theoretical basis for construal-level framing as applied in sustainable fashion branding.Keywords: construal level theory, environmental vs social sustainability, online fashion shopping, sustainable fashion
Procedia PDF Downloads 10321620 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads
Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan
Abstract:
In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.Keywords: elastic foundation, impact, moving load, thick plate
Procedia PDF Downloads 31321619 Optimization of Manufacturing Process Parameters: An Empirical Study from Taiwan's Tech Companies
Authors: Chao-Ton Su, Li-Fei Chen
Abstract:
The parameter design is crucial to improving the uniformity of a product or process. In the product design stage, parameter design aims to determine the optimal settings for the parameters of each element in the system, thereby minimizing the functional deviations of the product. In the process design stage, parameter design aims to determine the operating settings of the manufacturing processes so that non-uniformity in manufacturing processes can be minimized. The parameter design, trying to minimize the influence of noise on the manufacturing system, plays an important role in the high-tech companies. Taiwan has many well-known high-tech companies, which show key roles in the global economy. Quality remains the most important factor that enables these companies to sustain their competitive advantage. In Taiwan however, many high-tech companies face various quality problems. A common challenge is related to root causes and defect patterns. In the R&D stage, root causes are often unknown, and defect patterns are difficult to classify. Additionally, data collection is not easy. Even when high-volume data can be collected, data interpretation is difficult. To overcome these challenges, high-tech companies in Taiwan use more advanced quality improvement tools. In addition to traditional statistical methods and quality tools, the new trend is the application of powerful tools, such as neural network, fuzzy theory, data mining, industrial engineering, operations research, and innovation skills. In this study, several examples of optimizing the parameter settings for the manufacturing process in Taiwan’s tech companies will be presented to illustrate proposed approach’s effectiveness. Finally, a discussion of using traditional experimental design versus the proposed approach for process optimization will be made.Keywords: quality engineering, parameter design, neural network, genetic algorithm, experimental design
Procedia PDF Downloads 14521618 Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method
Authors: A. Ashok, K.Satapathy, B. Prerana Nashine
Abstract:
The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium.Keywords: participating media, finite volume method, radiation coupled with conduction, transient radiative heat transfer
Procedia PDF Downloads 38921617 Geotechnical Design of Bridge Foundations and Approaches in Hilly Granite Formation
Authors: Q. J. Yang
Abstract:
This paper presents a case study of geotechnical design of bridge foundations and approaches in hilly granite formation in northern New South Wales of Australia. Firstly, the geological formation and existing cut slope conditions which have high risks of rock fall will be described. The bridge has three spans to be constructed using balanced cantilever method with a middle span of 150 m. After concept design option engineering, it was decided to change from pile foundation to pad footing with ground anchor system to optimize the bridge foundation design. The geotechnical design parameters were derived after two staged site investigations. The foundation design was carried out to satisfy both serviceability limit state and ultimate limit state during construction and in operation. It was found that the pad footing design was governed by serviceability limit state design loading cases. The design of bridge foundation also considered presence of weak rock layer intrusion and a layer of “no core” to ensure foundation stability. The precast mass concrete block system was considered for the retaining walls for the bridge approaches to resolve the constructability issue over hilly terrain. The design considered the retaining wall block sliding stability, while the overturning and internal stabilities are satisfied.Keywords: pad footing, Hilly formation, stability, block works
Procedia PDF Downloads 33221616 Alkali Silica Reaction Mitigation and Prevention Measures for Arkansas Local Aggregates
Authors: Amin Kamal Akhnoukh, Lois Zaki Kamel, Magued Mourad Barsoum
Abstract:
The objective of this research is to mitigate and prevent the alkali silica reactivity (ASR) in highway construction projects. ASR is a deleterious reaction initiated when the silica content of the aggregate reacts with alkali hydroxides in cement in the presence of relatively high moisture content. The ASR results in the formation of an expansive white colored gel-like material which forms the destructive tensile stresses inside hardened concrete. In this research, different types of local aggregates available in the State of Arkansas were mixed and mortar bars were poured according to the ASTM specifications. Mortar bars expansion was measured versus time and aggregates with potential ASR problems were detected. Different types of supplementary cementitious materials (SCMs) were used in remixing mortar bars with highly reactive aggregates. Length changes for remixed bars proved that different types of SCMs can be successfully used in reducing the expansive effect of ASR. SCMs percentage by weight is highly dependent on the SCM type. The result of this study will help avoiding future losses due to ASR cracking in construction project and reduce the maintenance, repair, and replacement budgets required for highways network.Keywords: alkali silica reaction, aggregates, misture, cracks, Mortar Bar Test, supplementary cementitious materials
Procedia PDF Downloads 33421615 A High Step-Up DC-DC Converter for Renewable Energy System Applications
Authors: Sopida Vacharasukpo, Sudarat Khwan-On
Abstract:
This paper proposes a high step-up DC-DC converter topology for renewable energy system applications. The proposed converter employs only a single power switch instead of using several switches. Compared to the conventional DC-DC step-up converters the higher voltage gain with small output ripples can be achieved by using the proposed high step-up DC-DC converter topology. It can step up the low input voltage (20-50Vdc) generated from the photovoltaic modules to the high output voltage level approximately 600Vdc in order to supply the three-phase inverter fed the three-phase motor drive. In this paper, the operating principle of the proposed converter topology and its control strategy under the continuous conduction mode (CCM) are described. Finally, simulation results are shown to demonstrate the effectiveness of the proposed high step-up DC-DC converter with its control strategy to increase the voltage step-up conversion ratio.Keywords: DC-DC converter, high step-up ratio, renewable energy, single switch
Procedia PDF Downloads 119321614 The Use of Synthetic Soil for The Vegetables Cultivation in Conditions of Limited Water Consumption
Authors: Italo Luigi de Paoli
Abstract:
The use of synthetic soil for the vegetables cultivation in conditions of limited water consumption The separate collection of urban organic waste and green waste for the countries of the European Union averages 100 kg / inhabitant x year with an annual growth of about 10%. The production of quality compost averages 38% - 40% of the production of organic waste material. Most of the compost produced is used as an organic soil improver in those nutrient-poor soils in order to improve its quality. This study seeks to enhance the production of quality compost by creating a synthetic soil, where the percentages of compost on average oscillate between 50% and 60% in which, with appropriate precautions, different species of horticultural can be grown in conditions of high environmental safety without the use of pesticides and with a consumption of water used for irrigation limited to the actual evaporation of the plants. The project started in 2018 and is still ongoing, confirms its validity through a series of different horticultural productions, especially if this technology is applied where the availability of land suitable for the cultivation of vegetables is limited and where the use of water for irrigation represents a cultural criticality. Furthermore, the creation of "open field" crops, together with their automation, represents a further possibility in the concrete development of such technologies, giving the final product organoleptic characteristics equal if not superior to what the market offers today for human nutrition.Keywords: water scarcity, compost, vegetable foods, syntetic soil
Procedia PDF Downloads 17321613 Performance Based Seismic Retrofit of Masonry Infiled Reinforced Concrete Frames Using Passive Energy Dissipation Devices
Authors: Alok Madan, Arshad K. Hashmi
Abstract:
The paper presents a plastic analysis procedure based on the energy balance concept for performance based seismic retrofit of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames with a ‘soft’ ground story using passive energy dissipation (PED) devices with the objective of achieving a target performance level of the retrofitted R/C frame for a given seismic hazard level at the building site. The proposed energy based plastic analysis procedure was employed for developing performance based design (PBD) formulations for PED devices for a simulated application in seismic retrofit of existing frame structures designed in compliance with the prevalent standard codes of practice. The PBD formulations developed for PED devices were implemented for simulated seismic retrofit of a representative code-compliant masonry infilled R/C frame with a ‘soft’ ground story using friction dampers as the PED device. Non-linear dynamic analyses of the retrofitted masonry infilled R/C frames is performed to investigate the efficacy and accuracy of the proposed energy based plastic analysis procedure in achieving the target performance level under design level earthquakes. Results of non-linear dynamic analyses demonstrate that the maximum inter-story drifts in the masonry infilled R/C frames with a ‘soft’ ground story that is retrofitted with the friction dampers designed using the proposed PBD formulations are controlled within the target drifts under near-field as well far-field earthquakes.Keywords: energy methods, masonry infilled frame, near-field earthquakes, seismic protection, supplemental damping devices
Procedia PDF Downloads 29821612 A Dual Spark Ignition Timing Influence for the High Power Aircraft Radial Engine Using a CFD Transient Modeling
Authors: Tytus Tulwin, Ksenia Siadkowska, Rafał Sochaczewski
Abstract:
A high power radial reciprocating engine is characterized by a large displacement volume of a combustion chamber. Choosing the right moment for ignition is important for a high performance or high reliability and ignition certainty. This work shows methods of simulating ignition process and its impact on engine parameters. For given conditions a flame speed is limited when a deflagration combustion takes place. Therefore, a larger length scale of the combustion chamber compared to a standard size automotive engine makes combustion take longer time to propagate. In order to speed up the mixture burn-up time the second spark is introduced. The transient Computational Fluid Dynamics model capable of simulating multicycle engine processes was developed. The CFD model consists of ECFM-3Z combustion and species transport models. A relative ignition timing difference for the both spark sources is constant. The temperature distribution on engine walls was calculated in the separate conjugate heat transfer simulation. The in-cylinder pressure validation was performed for take-off power flight conditions. The influence of ignition timing on parameters like in-cylinder temperature or rate of heat release was analyzed. The most advantageous spark timing for the highest power output was chosen. The conditions around the spark plug locations for the pre-ignition period were analyzed. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: CFD, combustion, ignition, simulation, timing
Procedia PDF Downloads 29621611 Study on Pressurized Reforming System for the Application of Hydrogen Permeable Membrane Applying to Proton Exchange Membrane Fuel Cell
Authors: Kwangho Lee, Joongmyeon Bae
Abstract:
Fuel cells are spotlighted in the world for being highly efficient and environmentally friendly. A hydrogen fuel for a fuel cell is obtained from a number of sources. Most of fuel cell for APU(Auxiliary power unit) system using diesel fuel as a hydrogen source. Diesel fuel has many advantages, such as high hydrogen storage density, easy to transport and also well-infra structure. However, conventional diesel reforming system for PEMFC(Proton exchange membrane fuel cell) requires a large volume and complex CO removal system for the lower the CO level to less than 10ppm. In addition, the PROX(Preferential Oxidation) reaction cooling load is needed because of the strong exothermic reaction. However, the hydrogen separation membrane that we propose can be eliminated many disadvantages, because the volume is small and permeates only pure hydrogen. In this study, we were conducted to the pressurized diesel reforming and water-gas shift reaction experiment for the hydrogen permeable membrane application.Keywords: hydrogen, diesel, reforming, ATR, WGS, PROX, membrane, pressure
Procedia PDF Downloads 43021610 Performance Evaluation of Composite Beam under Uniform Corrosion
Authors: Ririt Aprilin Sumarsono
Abstract:
Composite member (concrete and steel) has been widely advanced for structural utilization due to its best performance in resisting load, reducing the total weight of the structure, increasing stiffness, and other available advantages. On the other hand, the environment load such as corrosion (e.g. chloride ingress) creates significant time-dependent degradation for steel. Analysis performed in this paper is mainly considered uniform corrosion for evaluating the composite beam without examining the pit corrosion as the initial corrosion formed. Corrosion level in terms of weight loss is modified in yield stress and modulus elasticity of steel. Those two mechanical properties are utilized in this paper for observing the stresses due to corrosion attacked. As corrosion level increases, the effective width of the composite beam in the concrete section will be wider. The position of a neutral axis of composite section will indicate the composite action due to corrosion of composite beam so that numerous shear connectors provided must be reconsidered. Flexure capacity quantification provides stresses, and shear capacity calculation derives connectors needed in overcoming the shear problem for composite beam under corrosion. A model of simply supported composite beam examined in this paper under uniform corrosion where the stresses as the focus of the evaluation. Principal stress at the first stage of composite construction decline as the corrosion level incline, parallel for the second stage stress analysis where the tension region held by the steel undergoes lower capacity due to corrosion. Total stresses of the composite section for steel to be born significantly decreases particularly in the outermost fiber of tension side. Whereas, the available compression side is smaller as the corrosion level increases so that the stress occurs on the compression side shows reduction as well. As a conclusion, the increment of corrosion level will degrade both compression and tension side of stresses.Keywords: composite beam, modulus of elasticity, stress analysis, yield strength, uniform corrosion
Procedia PDF Downloads 28621609 Porosity Characterization and Its Destruction by Authigenic Minerals: Reservoir Sandstones, Mamuniyat Formation, Murzuq Basin, SW Libya
Authors: Mohamrd Ali Alrabib
Abstract:
Sandstones samples were selected from cores of seven wells ranging in depth from 5040 to 7181.4 ft. The dominant authigenic cement phase is quartz overgrowth cement (up to 13% by volume) and this is the major mechanism for porosity reduction. Late stage carbonate cements (siderite and dolomite/ferroan dolomite) are present and these minerals infill intergranular porosity and, therefore, further reduce porosity and probably permeability. Authigenic clay minerals are represented by kaolinite, illite, and grain coating clay minerals. Kaolinite occurs as booklet and vermicular forms. Minor amounts of illite were noted in the studied samples, which commonly block pore throats, thereby reducing permeability. Primary porosity of up to 26.5% is present. Secondary porosity (up to 17%) is also present as a result of feldspar dissolution. The high intergranular volume (IGV) of the sandstones indicates that mechanical and chemical compaction played a more important role than cementation of porosity loss.Keywords: authigenic minerals, porosity types, porosity reduction, mamuniyat sandstone reservoir
Procedia PDF Downloads 37721608 Testing of Infill Walls with Joint Reinforcement Subjected to in Plane Lateral Load
Authors: J. Martin Leal-Graciano, Juan J. Pérez-Gavilán, A. Reyes-Salazar, J. H. Castorena, J. L. Rivera-Salas
Abstract:
The experimental results about the global behavior of twelve 1:2 scaled reinforced concrete frame subject to in-plane lateral load are presented. The main objective was to generate experimental evidence about the use of steel bars within mortar bed-joints as shear reinforcement in infill walls. Similar to the Canadian and New Zealand standards, the Mexican code includes specifications for this type of reinforcement. However, these specifications were obtained through experimental studies of load-bearing walls, mainly confined walls. Little information is found in the existing literature about the effects of joint reinforcement on the seismic behavior of infill masonry walls. Consequently, the Mexican code establishes the same equations to estimate the contribution of joint reinforcement for both confined walls and infill walls. A confined masonry construction and a reinforced concrete frame infilled with masonry walls have similar appearances. However, substantial differences exist between these two construction systems, which are mainly related to the sequence of construction and to how these structures support vertical and lateral loads. To achieve the objective established, ten reinforced concrete frames with masonry infill walls were built and tested in pairs, having both specimens in the pair identical characteristics except that one of them included joint reinforcement. The variables between pairs were the type of units, the size of the columns of the frame and the aspect ratio of the wall. All cases included tie-columns and tie-beams on the perimeter of the wall to anchor the joint reinforcement. Also, two bare frame with identical characteristic to the infilled frames were tested. The purpose was to investigate the effects of the infill wall on the behavior of the system to in-plane lateral load. In addition, the experimental results were compared with the prediction of the Mexican code. All the specimens were tested in cantilever under reversible cyclic lateral load. To simulate gravity load, constant vertical load was applied on the top of the columns. The results indicate that the contribution of the joint reinforcement to lateral strength depends on the size of the columns of the frame. Larger size columns produce a failure mode that is predominantly a sliding mode. Sliding inhibits the production of new inclined cracks, which are necessary to activate (deform) the joint reinforcement. Regarding the effects of joint reinforcement in the performance of confined masonry walls, many facts were confirmed for infill walls: this type of reinforcement increases the lateral strength of the wall, produces a more distributed cracking and reduces the width of the cracks. Moreover, it reduces the ductility demand of the system at maximum strength. The prediction of the lateral strength provided by the Mexican code is property in some cases; however, the effect of the size of the columns on the contribution of joint reinforcement needs to be better understood.Keywords: experimental study, Infill wall, Infilled frame, masonry wall
Procedia PDF Downloads 7721607 Relationship of Mean Platelets Volume with Ischemic Cerebrovascular Stroke
Authors: Pritam Kitey
Abstract:
Platelets play a key role in the development of atherothrombosis, a major contributor of cardiovascular evevts. The contributor of platelets to cardiovascular events has been noted for decades. Mean paltelets volume [MPV] is a marker of platelets size that is easily determined on routine automated haemograms and routinely available at low cost. Subjects with higher MPV have larger platelets that are metabolically and enzamatically more active and have greater prothombotic potential than smaller platelets. In fact several studies have demonstrated a significant association between higher MPV and an increased incidence of cerebrovascular events and all-cause mortality.Keywords: mean paltelets volume (MPV), platelets, cerebrovascular stroke, cardiovascular events
Procedia PDF Downloads 18521606 Fluid Structure Interaction Study between Ahead and Angled Impact of AGM 88 Missile Entering Relatively High Viscous Fluid for K-Omega Turbulence Model
Authors: Abu Afree Andalib, Rafiur Rahman, Md Mezbah Uddin
Abstract:
The main objective of this work is to anatomize on the various parameters of AGM 88 missile anatomized using FSI module in Ansys. Computational fluid dynamics is used for the study of fluid flow pattern and fluidic phenomenon such as drag, pressure force, energy dissipation and shockwave distribution in water. Using finite element analysis module of Ansys, structural parameters such as stress and stress density, localization point, deflection, force propagation is determined. Separate analysis on structural parameters is done on Abacus. State of the art coupling module is used for FSI analysis. Fine mesh is considered in every case for better result during simulation according to computational machine power. The result of the above-mentioned parameters is analyzed and compared for two phases using graphical representation. The result of Ansys and Abaqus are also showed. Computational Fluid Dynamics and Finite Element analyses and subsequently the Fluid-Structure Interaction (FSI) technique is being considered. Finite volume method and finite element method are being considered for modelling fluid flow and structural parameters analysis. Feasible boundary conditions are also utilized in the research. Significant change in the interaction and interference pattern while the impact was found. Theoretically as well as according to simulation angled condition was found with higher impact.Keywords: FSI (Fluid Surface Interaction), impact, missile, high viscous fluid, CFD (Computational Fluid Dynamics), FEM (Finite Element Analysis), FVM (Finite Volume Method), fluid flow, fluid pattern, structural analysis, AGM-88, Ansys, Abaqus, meshing, k-omega, turbulence model
Procedia PDF Downloads 46721605 High-Temperature X-Ray Powder Diffraction of Secondary Gypsum
Authors: D. Gazdič, I. Hájková, M. Fridrichová
Abstract:
This paper involved the performance of a high-temperature X-Ray powder diffraction analysis (XRD) of a sample of chemical gypsum generated in the production of titanium white; this gypsum originates by neutralizing highly acidic water with limestone suspension. Specifically, it was gypsum formed in the first stage of neutralization when the resulting material contains, apart from gypsum, a number of waste products resulting from the decomposition of ilmenite by sulphuric acid. So it can be described as red titanogypsum. By conducting the experiment using XRD apparatus Bruker D8 Advance with a Cu anode (λkα=1.54184 Å) equipped with high-temperature chamber Anton Paar HTK 16, it was possible to identify clearly in the sample each phase transition in the system of CaSO4•xH2O.Keywords: anhydrite, gypsum, bassanite, hematite, XRD, powder, high-temperature
Procedia PDF Downloads 34421604 Multiphase Flow Model for 3D Numerical Model Using ANSYS for Flow over Stepped Cascade with End Sill
Authors: Dheyaa Wajid Abbood, Hanan Hussien Abood
Abstract:
Stepped cascade has been utilized as a hydraulic structure for years. It has proven to be the least costly aeration system in replenishing dissolved oxygen. Numerical modeling of stepped cascade with end sill is very complicated and challenging because of the high roughness and velocity re circulation regions. Volume of fluid multiphase flow model (VOF) is used .The realizable k-ξ model is chosen to simulate turbulence. The computational results are compared with lab-scale stepped cascade data. The lab –scale model was constructed in the hydraulic laboratory, Al-Mustansiriya University, Iraq. The stepped cascade was 0.23 m wide and consisted of 3 steps each 0.2m high and 0.6 m long with variable end sill. The discharge was varied from 1 to 4 l/s. ANSYS has been employed to simulate the experimental data and their related results. This study shows that ANSYS is able to predict results almost the same as experimental findings in some regions of the structure.Keywords: stepped cascade weir, aeration, multiphase flow model, ansys
Procedia PDF Downloads 33621603 Structuralism of Architectural Details in the Design of Modern High-Rise Buildings
Authors: Joanna Pietrzak, Anna Stefanska, Wieslaw Rokicki
Abstract:
Contemporary high-rise buildings constructed in recent years are often tremendous examples of original and unique architectural forms, being at the same time the affirmation of technical and technological progress accomplishments. The search for more efficient, sophisticated generations of structures also concerns the shaping of high-quality details. The concept of structural detail designing is connected with the rationalization of engineering solutions as well as through the optimisation and reduction of used material. Contemporary structural detail perceived through the development of building technologies is often a very aesthetic technical and material solution, which significantly influences the visual perception of architecture. Structural details are more often seen in shaping the forms of high-rise buildings, which are erected in many culturally different countries.Keywords: aesthetic expression, high-rise buildings, structural detail, tall buildings
Procedia PDF Downloads 16421602 Superiority of High Frequency Based Volatility Models: Empirical Evidence from an Emerging Market
Authors: Sibel Celik, Hüseyin Ergin
Abstract:
The paper aims to find the best volatility forecasting model for stock markets in Turkey. For this purpose, we compare performance of different volatility models-both traditional GARCH model and high frequency based volatility models- and conclude that both in pre-crisis and crisis period, the performance of high frequency based volatility models are better than traditional GARCH model. The findings of paper are important for policy makers, financial institutions and investors.Keywords: volatility, GARCH model, realized volatility, high frequency data
Procedia PDF Downloads 48621601 On the Volume of Ganglion Cell Stimulation in Visual Prostheses by Finite Element Discretization
Authors: Diego Luján Villarreal
Abstract:
Visual prostheses are designed to repair some eyesight in patients blinded by photoreceptor diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Electrode-to-cell proximity has drawn attention due to its implications on secure single-localized stimulation. Yet, few techniques are available for understanding the relationship between the number of cells activated and the current injection. We propose an answering technique by solving the governing equation for time-dependent electrical currents using finite element discretization to obtain the volume of stimulation.Keywords: visual prosthetic devices, volume for stimulation, FEM discretization, 3D simulation
Procedia PDF Downloads 7321600 Experimental Study of Infill Walls with Joint Reinforcement Subjected to In-Plane Lateral Load
Authors: J. Martin Leal-Graciano, Juan J. Pérez-Gavilán, A. Reyes-Salazar, J. H. Castorena, J. L. Rivera-Salas
Abstract:
The experimental results about the global behavior of twelve 1:2 scaled reinforced concrete frames subject to in-plane lateral load are presented. The main objective was to generate experimental evidence about the use of steel bars within mortar bed joints as shear reinforcement in infill walls. Similar to the Canadian and New Zealand standards, the Mexican code includes specifications for this type of reinforcement. However, these specifications were obtained through experimental studies of load-bearing walls, mainly confined walls. Little information is found in the existing literature about the effects of joint reinforcement on the seismic behavior of infill masonry walls. Consequently, the Mexican code establishes the same equations to estimate the contribution of joint reinforcement for both confined walls and infill walls. Confined masonry construction and a reinforced concrete frame infilled with masonry walls have similar appearances. However, substantial differences exist between these two construction systems, which are mainly related to the sequence of construction and to how these structures support vertical and lateral loads. To achieve the objective established, ten reinforced concrete frames with masonry infill walls were built and tested in pairs, having both specimens in the pair identical characteristics except that one of them included joint reinforcement. The variables between pairs were the type of units, the size of the columns of the frame, and the aspect ratio of the wall. All cases included tie columns and tie beams on the perimeter of the wall to anchor the joint reinforcement. Also, two bare frames with identical characteristics to the infilled frames were tested. The purpose was to investigate the effects of the infill wall on the behavior of the system to in-plane lateral load. In addition, the experimental results were compared with the prediction of the Mexican code. All the specimens were tested in a cantilever under reversible cyclic lateral load. To simulate gravity load, constant vertical load was applied on the top of the columns. The results indicate that the contribution of the joint reinforcement to lateral strength depends on the size of the columns of the frame. Larger size columns produce a failure mode that is predominantly a sliding mode. Sliding inhibits the production of new inclined cracks, which are necessary to activate (deform) the joint reinforcement. Regarding the effects of joint reinforcement in the performance of confined masonry walls, many facts were confirmed for infill walls. This type of reinforcement increases the lateral strength of the wall, produces a more distributed cracking, and reduces the width of the cracks. Moreover, it reduces the ductility demand of the system at maximum strength. The prediction of the lateral strength provided by the Mexican code is a property in some cases; however, the effect of the size of the columns on the contribution of joint reinforcement needs to be better understood.Keywords: experimental study, infill wall, infilled frame, masonry wall
Procedia PDF Downloads 175