Search results for: dynamic motion
3541 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms
Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat
Abstract:
In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization
Procedia PDF Downloads 1193540 Research of Stalled Operational Modes of Axial-Flow Compressor for Diagnostics of Pre-Surge State
Authors: F. Mohammadsadeghi
Abstract:
Relevance of research: Axial compressors are used in both aircraft engine construction and ground-based gas turbine engines. The compressor is considered to be one of the main gas turbine engine units, which define absolute and relative indicators of engine in general. Failure of compressor often leads to drastic consequences. Therefore, safe (stable) operation must be maintained when using axial compressor. Currently, we can observe a tendency of increase of power unit, productivity, circumferential velocity and compression ratio of axial compressors in gas turbine engines of aircraft and ground-based application whereas metal consumption of their structure tends to fall. This causes the increase of dynamic loads as well as danger of damage of high load compressor or engine structure elements in general due to transient processes. In operating practices of aeronautical engineering and ground units with gas turbine drive the operational stability failure of gas turbine engines is one of relatively often failure causes what can lead to emergency situations. Surge occurrence is considered to be an absolute buckling failure. This is one of the most dangerous and often occurring types of instability. However detailed were the researches of this phenomenon the development of measures for surge before-the-fact prevention is still relevant. This is why the research of transient processes for axial compressors is necessary in order to provide efficient, stable and secure operation. The paper addresses the problem of automatic control system improvement by integrating the anti-surge algorithms for axial compressor of aircraft gas turbine engine. Paper considers dynamic exhaustion of gas dynamic stability of compressor stage, results of numerical simulation of airflow flowing through the airfoil at design and stalling modes, experimental researches to form the criteria that identify the compressor state at pre-surge mode detection. Authors formulated basic ways for developing surge preventing systems, i.e. forming the algorithms that allow detecting the surge origination and the systems that implement the proposed algorithms.Keywords: axial compressor, rotation stall, Surg, unstable operation of gas turbine engine
Procedia PDF Downloads 4103539 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.
Authors: Zabeehullah, Fahim Arif, Yawar Abbas
Abstract:
Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.Keywords: SDN, IoT, DL, ML, DRS
Procedia PDF Downloads 1133538 Uncovering the Complex Structure of Building Design Process Based on Royal Institute of British Architects Plan of Work
Authors: Fawaz A. Binsarra, Halim Boussabaine
Abstract:
The notion of complexity science has been attracting the interest of researchers and professionals due to the need of enhancing the efficiency of understanding complex systems dynamic and structure of interactions. In addition, complexity analysis has been used as an approach to investigate complex systems that contains a large number of components interacts with each other to accomplish specific outcomes and emerges specific behavior. The design process is considered as a complex action that involves large number interacted components, which are ranked as design tasks, design team, and the components of the design process. Those three main aspects of the building design process consist of several components that interact with each other as a dynamic system with complex information flow. In this paper, the goal is to uncover the complex structure of information interactions in building design process. The Investigating of Royal Institute of British Architects Plan Of Work 2013 information interactions as a case study to uncover the structure and building design process complexity using network analysis software to model the information interaction will significantly enhance the efficiency of the building design process outcomes.Keywords: complexity, process, building desgin, Riba, design complexity, network, network analysis
Procedia PDF Downloads 5293537 Design and Implementation of an Image Based System to Enhance the Security of ATM
Authors: Seyed Nima Tayarani Bathaie
Abstract:
In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.Keywords: face detection algorithm, Haar features, security of ATM
Procedia PDF Downloads 4203536 Assignment of Airlines Technical Members under Disruption
Authors: Walid Moudani
Abstract:
The Crew Reserve Assignment Problem (CRAP) considers the assignment of the crew members to a set of reserve activities covering all the scheduled flights in order to ensure a continuous plan so that operations costs are minimized while its solution must meet hard constraints resulting from the safety regulations of Civil Aviation as well as from the airlines internal agreements. The problem considered in this study is of highest interest for airlines and may have important consequences on the service quality and on the economic return of the operations. In this communication, a new mathematical formulation for the CRAP is proposed which takes into account the regulations and the internal agreements. While current solutions make use of Artificial Intelligence techniques run on main frame computers, a low cost approach is proposed to provide on-line efficient solutions to face perturbed operating conditions. The proposed solution method uses a dynamic programming approach for the duties scheduling problem and when applied to the case of a medium airline while providing efficient solutions, shows good potential acceptability by the operations staff. This optimization scheme can then be considered as the core of an on-line Decision Support System for crew reserve assignment operations management.Keywords: airlines operations management, combinatorial optimization, dynamic programming, crew scheduling
Procedia PDF Downloads 3553535 Multi Object Tracking for Predictive Collision Avoidance
Authors: Bruk Gebregziabher
Abstract:
The safe and efficient operation of Autonomous Mobile Robots (AMRs) in complex environments, such as manufacturing, logistics, and agriculture, necessitates accurate multiobject tracking and predictive collision avoidance. This paper presents algorithms and techniques for addressing these challenges using Lidar sensor data, emphasizing ensemble Kalman filter. The developed predictive collision avoidance algorithm employs the data provided by lidar sensors to track multiple objects and predict their velocities and future positions, enabling the AMR to navigate safely and effectively. A modification to the dynamic windowing approach is introduced to enhance the performance of the collision avoidance system. The overall system architecture encompasses object detection, multi-object tracking, and predictive collision avoidance control. The experimental results, obtained from both simulation and real-world data, demonstrate the effectiveness of the proposed methods in various scenarios, which lays the foundation for future research on global planners, other controllers, and the integration of additional sensors. This thesis contributes to the ongoing development of safe and efficient autonomous systems in complex and dynamic environments.Keywords: autonomous mobile robots, multi-object tracking, predictive collision avoidance, ensemble Kalman filter, lidar sensors
Procedia PDF Downloads 843534 Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks
Authors: Ruchi Makani, B. V. R. Reddy
Abstract:
Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS.Keywords: AODV, mobile adhoc networks, intrusion detection, anomaly detection, fuzzy logic, fuzzy membership function, fuzzy inference system
Procedia PDF Downloads 1793533 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling
Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé
Abstract:
Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation
Procedia PDF Downloads 803532 Finite Element Method for Solving the Generalized RLW Equation
Authors: Abdel-Maksoud Abdel-Kader Soliman
Abstract:
The General Regularized Long Wave (GRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the Fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm.Keywords: generalized RLW equation, solitons, quartic b-spline, nonlinear partial differential equations, difference equations
Procedia PDF Downloads 4893531 Nonlinear Free Vibrations of Functionally Graded Cylindrical Shells
Authors: Alexandra Andrade Brandão Soares, Paulo Batista Gonçalves
Abstract:
Using a modal expansion that satisfies the boundary and continuity conditions and expresses the modal couplings characteristic of cylindrical shells in the nonlinear regime, the equations of motion are discretized using the Galerkin method. The resulting algebraic equations are solved by the Newton-Raphson method, thus obtaining the nonlinear frequency-amplitude relation. Finally, a parametric analysis is conducted to study the influence of the geometry of the shell, the gradient of the functional material and vibration modes on the degree and type of nonlinearity of the cylindrical shell, which is the main contribution of this research work.Keywords: cylindrical shells, dynamics, functionally graded material, nonlinear vibrations
Procedia PDF Downloads 663530 Ethnic Minority Small and Medium Enterprises and Entrepreneurial Resilience During the COVID-19 Pandemic: A Case of United Kingdom
Authors: Muhammad Bilal Mustafa, Javed Hussain, Simeon Babatunde
Abstract:
The Covid-19 pandemic has exposed the vulnerabilities of countless organisations beyond their size, type, and location. However, some groups and sectors are disproportionally get impacted by the pandemic. In the context of the UK, ethnic Small and Medium Enterprises (SMEs) turn out to be the most precarious group among all private sectors. Many ethnic SMEs shut down their business operations during a pandemic. A large portion of Black, Asian and minority ethnic (BAME) owners have huge concerns regarding their business’ survival and resilience. The current UK-centric studies have focused on the large business population, and there is a gap in ethnic SMEs and how they get affected by the Covid-19 pandemic. Moreover, there is a need to further knowledge and academic research to investigate the fundamental factors that could strengthen the resilience of ethnic SMEs as well as contribute to long-term sustainability. Therefore, this study aims to capture the effect of the Covid-19 pandemic on ethnic SMEs in the UK and assess the survival measures taken by ethnic SMEs during Covid-19. Besides, this study adopts a dynamic capabilities perspective that how firms' specific capabilities enable ethnic SMEs to exploit entrepreneurial opportunities during the Covid-19 pandemic. Finally, this research will help ethnic SMEs to develop vigorous resilience to address future external shocks and market uncertainties.Keywords: COVID-19 pandemic, ethnic minority SMEs, entrepreneurial resilience, dynamic capabilities, sustainability
Procedia PDF Downloads 1623529 Stabilization Control of the Nonlinear AIDS Model Based on the Theory of Polynomial Fuzzy Control Systems
Authors: Shahrokh Barati
Abstract:
In this paper, we introduced AIDS disease at first, then proposed dynamic model illustrate its progress, after expression of a short history of nonlinear modeling by polynomial phasing systems, we considered the stability conditions of the systems, which contained a huge amount of researches in order to modeling and control of AIDS in dynamic nonlinear form, in this approach using a frame work of control any polynomial phasing modeling system which have been generalized by part of phasing model of T-S, in order to control the system in better way, the stability conditions were achieved based on polynomial functions, then we focused to design the appropriate controller, firstly we considered the equilibrium points of system and their conditions and in order to examine changes in the parameters, we presented polynomial phase model that was the generalized approach rather than previous Takagi Sugeno models, then with using case we evaluated the equations in both open loop and close loop and with helping the controlling feedback, the close loop equations of system were calculated, to simulate nonlinear model of AIDS disease, we used polynomial phasing controller output that was capable to make the parameters of a nonlinear system to follow a sustainable reference model properly.Keywords: polynomial fuzzy, AIDS, nonlinear AIDS model, fuzzy control systems
Procedia PDF Downloads 4703528 Kinematical Analysis of Normal Children in Different Age Groups during Gait
Authors: Nawaf Al Khashram, Graham Arnold, Weijie Wang
Abstract:
Background—Gait classifying allows clinicians to differentiate gait patterns into clinically important categories that help in clinical decision making. Reliable comparison of gait data between normal and patients requires knowledge of the gait parameters of normal children's specific age group. However, there is still a lack of the gait database for normal children of different ages. Objectives—The aim of this study is to investigate the kinematics of the lower limb joints during gait for normal children in different age groups. Methods—Fifty-three normal children (34 boys, 19 girls) were recruited in this study. All the children were aged between 5 to 16 years old. Age groups were defined as three types: young child aged (5-7), child (8-11), and adolescent (12-16). When a participant agreed to take part in the project, their parents signed a consent form. Vicon® motion capture system was used to collect gait data. Participants were asked to walk at their comfortable speed along a 10-meter walkway. Each participant walked up to 20 trials. Three good trials were analyzed using the Vicon Plug-in-Gait model to obtain parameters of the gait, e.g., walking speed, cadence, stride length, and joint parameters, e.g. joint angle, force, moments, etc. Moreover, each gait cycle was divided into 8 phases. The range of motion (ROM) angle of pelvis, hip, knee, and ankle joints in three planes of both limbs were calculated using an in-house program. Results—The temporal-spatial variables of three age groups of normal children were compared between each other; it was found that there was a significant difference (p < 0.05) between the groups. The step length and walking speed were gradually increasing from young child to adolescent, while cadence was gradually decreasing from young child to adolescent group. The mean and standard deviation (SD) of the step length of young child, child and adolescent groups were 0.502 ± 0.067 m, 0.566 ± 0.061 m and 0.672 ± 0.053 m, respectively. The mean and SD of the cadence of the young child, child and adolescent groups were 140.11±15.79 step/min, 129±11.84 step/min, and a 115.96±6.47 step/min, respectively. Moreover, it was observed that there were significant differences in kinematic parameters, either whole gait cycle or each phase. For example, RoM of knee angle in the sagittal plane in whole cycle of young child group is (65.03±0.52 deg) larger than child group (63.47±0.47 deg). Conclusion—Our result showed that there are significant differences between each age group in the gait phases and thus children walking performance changes with ages. Therefore, it is important for the clinician to consider age group when analyzing the patients with lower limb disorders before any clinical treatment.Keywords: age group, gait analysis, kinematics, normal children
Procedia PDF Downloads 1203527 View Synthesis of Kinetic Depth Imagery for 3D Security X-Ray Imaging
Authors: O. Abusaeeda, J. P. O. Evans, D. Downes
Abstract:
We demonstrate the synthesis of intermediary views within a sequence of X-ray images that exhibit depth from motion or kinetic depth effect in a visual display. Each synthetic image replaces the requirement for a linear X-ray detector array during the image acquisition process. Scale invariant feature transform, SIFT, in combination with epipolar morphing is employed to produce synthetic imagery. Comparison between synthetic and ground truth images is reported to quantify the performance of the approach. Our work is a key aspect in the development of a 3D imaging modality for the screening of luggage at airport checkpoints. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.Keywords: X-ray, kinetic depth, KDE, view synthesis
Procedia PDF Downloads 2653526 Investigation of Single Particle Breakage inside an Impact Mill
Authors: E. Ghasemi Ardi, K. J. Dong, A. B. Yu, R. Y. Yang
Abstract:
In current work, a numerical model based on the discrete element method (DEM) was developed which provided information about particle dynamic and impact event condition inside a laboratory scale impact mill (Fritsch). It showed that each particle mostly experiences three impacts inside the mill. While the first impact frequently happens at front surface of the rotor’s rib, the frequent location of the second impact is side surfaces of the rotor’s rib. It was also showed that while the first impact happens at small impact angle mostly varying around 35º, the second impact happens at around 70º which is close to normal impact condition. Also analyzing impact energy revealed that varying mill speed from 6000 to 14000 rpm, the ratio of first impact’s average impact energy and minimum required energy to break particle (Wₘᵢₙ) increased from 0.30 to 0.85. Moreover, it was seen that second impact poses intense impact energy on particle which can be considered as the main cause of particle splitting. Finally, obtained information from DEM simulation along with obtained data from conducted experiments was implemented in semi-empirical equations in order to find selection and breakage functions. Then, using a back-calculation approach, those parameters were used to predict the PSDs of ground particles under different impact energies. Results were compared with experiment results and showed reasonable accuracy and prediction ability.Keywords: single particle breakage, particle dynamic, population balance model, particle size distribution, discrete element method
Procedia PDF Downloads 2913525 Characterization of Waste Thermocol Modified Bitumen by Spectroscopy, Microscopic Technique, and Dynamic Shear Rheometer
Authors: Supriya Mahida, Sangita, Yogesh U. Shah, Shanta Kumar
Abstract:
The global production of thermocol increasing day by day, due to vast applications of the use of thermocole in many sectors. Thermocol being non-biodegradable and more toxic than plastic leads towards a number of problems like its management into value-added products, environmental damage and landfill problems due to weight to volume ratio. Utilization of waste thermocol for modification of bitumen binders resulted in waste thermocol modified bitumen (WTMB) used in road construction and maintenance technology. Modification of bituminous mixes through incorporating thermocol into bituminous mixes through a dry process is one of the new options besides recycling process which consumes lots of waste thermocol. This process leads towards waste management and remedies against thermocol waste disposal. The present challenge is to dispose the thermocol waste under different forms in road infrastructure, either through the dry process or wet process to be developed in future. This paper focuses on the use of thermocol wastes which is mixed with VG 10 bitumen in proportions of 0.5%, 1%, 1.5%, and 2% by weight of bitumen. The physical properties of neat bitumen are evaluated and compared with modified VG 10 bitumen having thermocol. Empirical characterization like penetration, softening, and viscosity of bitumen has been carried out. Thermocol and waste thermocol modified bitumen (WTMB) were further analyzed by Fourier Transform Infrared Spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), and Dynamic Shear Rheometer (DSR).Keywords: DSR, FESEM, FT-IR, thermocol wastes
Procedia PDF Downloads 1673524 Investigation of Enhancement of Heat Transfer in Natural Convection Utilizing of Nanofluids
Authors: S. Etaig, R. Hasan, N. Perera
Abstract:
This paper analyses the heat transfer performance and fluid flow using different nanofluids in a square enclosure. The energy equation and Navier-Stokes equation are solved numerically using finite volume scheme. The effect of volume fraction concentration on the enhancement of heat transfer has been studied icorporating the Brownian motion; the influence of effective thermal conductivity on the enhancement was also investigated for a range of volume fraction concentration. The velocity profile for different Rayleigh number. Water-Cu, water AL2O3 and water-TiO2 were tested.Keywords: computational fluid dynamics, natural convection, nanofluid and thermal conductivity
Procedia PDF Downloads 4273523 A Prediction Method of Pollutants Distribution Pattern: Flare Motion Using Computational Fluid Dynamics (CFD) Fluent Model with Weather Research Forecast Input Model during Transition Season
Authors: Benedictus Asriparusa, Lathifah Al Hakimi, Aulia Husada
Abstract:
A large amount of energy is being wasted by the release of natural gas associated with the oil industry. This release interrupts the environment particularly atmosphere layer condition globally which contributes to global warming impact. This research presents an overview of the methods employed by researchers in PT. Chevron Pacific Indonesia in the Minas area to determine a new prediction method of measuring and reducing gas flaring and its emission. The method emphasizes advanced research which involved analytical studies, numerical studies, modeling, and computer simulations, amongst other techniques. A flaring system is the controlled burning of natural gas in the course of routine oil and gas production operations. This burning occurs at the end of a flare stack or boom. The combustion process releases emissions of greenhouse gases such as NO2, CO2, SO2, etc. This condition will affect the chemical composition of air and environment around the boundary layer mainly during transition season. Transition season in Indonesia is absolutely very difficult condition to predict its pattern caused by the difference of two air mass conditions. This paper research focused on transition season in 2013. A simulation to create the new pattern of the pollutants distribution is needed. This paper has outlines trends in gas flaring modeling and current developments to predict the dominant variables in the pollutants distribution. A Fluent model is used to simulate the distribution of pollutants gas coming out of the stack, whereas WRF model output is used to overcome the limitations of the analysis of meteorological data and atmospheric conditions in the study area. Based on the running model, the most influence factor was wind speed. The goal of the simulation is to predict the new pattern based on the time of fastest wind and slowest wind occurs for pollutants distribution. According to the simulation results, it can be seen that the fastest wind (last of March) moves pollutants in a horizontal direction and the slowest wind (middle of May) moves pollutants vertically. Besides, the design of flare stack in compliance according to EPA Oil and Gas Facility Stack Parameters likely shows pollutants concentration remains on the under threshold NAAQS (National Ambient Air Quality Standards).Keywords: flare motion, new prediction, pollutants distribution, transition season, WRF model
Procedia PDF Downloads 5563522 Dynamic Distribution Calibration for Improved Few-Shot Image Classification
Authors: Majid Habib Khan, Jinwei Zhao, Xinhong Hei, Liu Jiedong, Rana Shahzad Noor, Muhammad Imran
Abstract:
Deep learning is increasingly employed in image classification, yet the scarcity and high cost of labeled data for training remain a challenge. Limited samples often lead to overfitting due to biased sample distribution. This paper introduces a dynamic distribution calibration method for few-shot learning. Initially, base and new class samples undergo normalization to mitigate disparate feature magnitudes. A pre-trained model then extracts feature vectors from both classes. The method dynamically selects distribution characteristics from base classes (both adjacent and remote) in the embedding space, using a threshold value approach for new class samples. Given the propensity of similar classes to share feature distributions like mean and variance, this research assumes a Gaussian distribution for feature vectors. Subsequently, distributional features of new class samples are calibrated using a corrected hyperparameter, derived from the distribution features of both adjacent and distant base classes. This calibration augments the new class sample set. The technique demonstrates significant improvements, with up to 4% accuracy gains in few-shot classification challenges, as evidenced by tests on miniImagenet and CUB datasets.Keywords: deep learning, computer vision, image classification, few-shot learning, threshold
Procedia PDF Downloads 673521 Effect of Variation of Injection Timing on Performance and Emission Characteristics of Compression Ignition Engine: A CFD Approach
Authors: N. Balamurugan, N. V. Mahalakshmi
Abstract:
Compression ignition (CI) engines are known for their high thermal efficiency in comparison with spark-ignited (SI) engines. This makes CI engines a potential candidate for the future prime source of power for transportation sector to reduce greenhouse gas emissions and to shrink carbon footprint. However, CI engines produce high levels of NOx and soot emissions. Conventional methods to reduce NOx and soot emissions often result in the infamous NOx-soot trade-off. The injection parameters are one of the most important factors in the working of CI engines. The engine performance, power output, economy etc., is greatly dependent on the effectiveness of the injection parameters. The injection parameter has their direct impact on combustion process and pollutant formation. The injection parameter’s values are required to be optimised according to the application of the engine. Control of fuel injection mode is one method for reduction of NOx and soot emissions that is achievable. This study aims to assess, compare and analyse the influence of the effect of injection characteristics that is SOI timing studied on combustion and emissions in in-cylinder combustion processes with that of conventional DI Diesel Engine system using the commercial Computational Fluid Dynamic (CFD) package STAR- CD ES-ICE.Keywords: variation of injection timing, compression ignition engine, spark-ignited, Computational Fluid Dynamic
Procedia PDF Downloads 2953520 A Cloud-Based Spectrum Database Approach for Licensed Shared Spectrum Access
Authors: Hazem Abd El Megeed, Mohamed El-Refaay, Norhan Magdi Osman
Abstract:
Spectrum scarcity is a challenging obstacle in wireless communications systems. It hinders the introduction of innovative wireless services and technologies that require larger bandwidth comparing to legacy technologies. In addition, the current worldwide allocation of radio spectrum bands is already congested and can not afford additional squeezing or optimization to accommodate new wireless technologies. This challenge is a result of accumulative contributions from different factors that will be discussed later in this paper. One of these factors is the radio spectrum allocation policy governed by national regulatory authorities nowadays. The framework for this policy allocates specified portion of radio spectrum to a particular wireless service provider on exclusive utilization basis. This allocation is executed according to technical specification determined by the standard bodies of each Radio Access Technology (RAT). Dynamic access of spectrum is a framework for flexible utilization of radio spectrum resources. In this framework there is no exclusive allocation of radio spectrum and even the public safety agencies can share their spectrum bands according to a governing policy and service level agreements. In this paper, we explore different methods for accessing the spectrum dynamically and its associated implementation challenges.Keywords: licensed shared access, cognitive radio, spectrum sharing, spectrum congestion, dynamic spectrum access, spectrum database, spectrum trading, reconfigurable radio systems, opportunistic spectrum allocation (OSA)
Procedia PDF Downloads 4333519 Non-Destructive Evaluation for Physical State Monitoring of an Angle Section Thin-Walled Curved Beam
Authors: Palash Dey, Sudip Talukdar
Abstract:
In this work, a cross-breed approach is presented for obtaining both the amount of the damage intensity and location of damage existing in thin-walled members. This cross-breed approach is developed based on response surface methodology (RSM) and genetic algorithm (GA). Theoretical finite element (FE) model of cracked angle section thin walled curved beam has been linked to the developed approach to carry out trial experiments to generate response surface functions (RSFs) of free, forced and heterogeneous dynamic response data. Subsequently, the error between the computed response surface functions and measured dynamic response data has been minimized using GA to find out the optimum damage parameters (amount of the damage intensity and location). A single crack of varying location and depth has been considered in this study. The presented approach has been found to reveal good accuracy in prediction of crack parameters and possess great potential in crack detection as it requires only the current response of a cracked beam.Keywords: damage parameters, finite element, genetic algorithm, response surface methodology, thin walled curved beam
Procedia PDF Downloads 2483518 Study on Resource Allocation of Cloud Operating System Based on Multi-Tenant Data Resource Sharing Technology
Authors: Lin Yunuo, Seow Xing Quan, Burra Venkata Durga Kumar
Abstract:
In this modern era, the cloud operating system is the world trend applied in various industries such as business, healthy, etc. In order to deal with the large capacity of requirements in cloud computing, research come up with multi-tenant cloud computing to maximize the benefits of server providers and clients. However, there are still issues in multi-tenant cloud computing especially regarding resource allocation. Issues such as inefficient resource utilization, large latency, lack of scalability and elasticity and poor data isolation had caused inefficient resource allocation in multi-tenant cloud computing. Without a doubt, these issues prevent multitenancy reaches its best condition. In fact, there are multiple studies conducted to determine the optimal resource allocation to solve these problems these days. This article will briefly introduce the cloud operating system, Multi-tenant cloud computing and resource allocation in cloud computing. It then discusses resource allocation in multi-tenant cloud computing and the current challenges it faces. According to the issue ‘ineffective resource utilization’, we will discuss an efficient dynamic scheduling technique for multitenancy, namely Multi-tenant Dynamic Resource Scheduling Model (MTDRSM). Moreover, there also have some recommendations to improve the shortcoming of this model in this paper’s final section.Keywords: cloud computing, cloud operation system, multitenancy, resource allocation, utilization of cloud resources
Procedia PDF Downloads 873517 Dynamic Modeling of the Impact of Chlorine on Aquatic Species in Urban Lake Ecosystem
Authors: Zhiqiang Yan, Chen Fan, Yafei Wang, Beicheng Xia
Abstract:
Urban lakes play an invaluable role in urban water systems such as flood control, water supply, and public recreation. However, over 38% of the urban lakes have suffered from severe eutrophication in China. Chlorine that could remarkably inhibit the growth of phytoplankton in eutrophic, has been widely used in the agricultural, aquaculture and industry in the recent past. However, little information has been reported regarding the effects of chlorine on the lake ecosystem, especially on the main aquatic species.To investigate the ecological response of main aquatic species and system stability to chlorine interference in shallow urban lakes, a mini system dynamic model was developed based on the competition and predation of main aquatic species and total phosphorus circulation. The main species of submerged macrophyte, phytoplankton, zooplankton, benthos, spiroggra and total phosphorus in water and sediment were used as variables in the model,while the interference of chlorine on phytoplankton was represented by an exponential attenuation equation. Furthermore, the eco-exergy expressing the development degree of ecosystem was used to quantify the complexity of the shallow urban lake. The model was validated using the data collected in the Lotus Lake in Guangzhoufrom1 October 2015 to 31 January 2016.The correlation coefficient (R), root mean square error-observations standard deviation ratio (RSR) and index of agreement (IOA) were calculated to evaluate accuracy and reliability of the model.The simulated values showed good qualitative agreement with the measured values of all components. The model results showed that chlorine had a notable inhibitory effect on Microcystis aeruginos,Rachionus plicatilis, Diaphanosoma brachyurum Liévin and Mesocyclops leuckarti (Claus).The outbreak of Spiroggra.spp. inhibited the growth of Vallisneria natans (Lour.) Hara, leading to a gradual decrease of eco-exergy and the breakdown of ecosystem internal equilibria. This study gives important insight into using chlorine to achieve eutrophication control and understand mechanism process.Keywords: system dynamic model, urban lake, chlorine, eco-exergy
Procedia PDF Downloads 2363516 Assessing the Effect of Grid Connection of Large-Scale Wind Farms on Power System Small-Signal Angular Stability
Authors: Wenjuan Du, Jingtian Bi, Tong Wang, Haifeng Wang
Abstract:
Grid connection of a large-scale wind farm affects power system small-signal angular stability in two aspects. Firstly, connection of the wind farm brings about the change of load flow and configuration of a power system. Secondly, the dynamic interaction is introduced by the wind farm with the synchronous generators (SGs) in the power system. This paper proposes a method to assess the two aspects of the effect of the wind farm on power system small-signal angular stability. The effect of the change of load flow/system configuration brought about by the wind farm can be examined separately by displacing wind farms with constant power sources, then the effect of the dynamic interaction of the wind farm with the SGs can be also computed individually. Thus, a clearer picture and better understanding on the power system small-signal angular stability as affected by grid connection of the large-scale wind farm are provided. In the paper, an example power system with grid connection of a wind farm is presented to demonstrate the proposed approach.Keywords: power system small-signal angular stability, power system low-frequency oscillations, electromechanical oscillation modes, wind farms, double fed induction generator (DFIG)
Procedia PDF Downloads 4833515 Dynamic Simulation of a Hybrid Wind Farm with Wind Turbines and Distributed Compressed Air Energy Storage System
Authors: Eronini Iheanyi Umez-Eronini
Abstract:
Most studies and existing implementations of compressed air energy storage (CAES) coupled with a wind farm to overcome intermittency and variability of wind power are based on bulk or centralized CAES plants. A dynamic model of a hybrid wind farm with wind turbines and distributed CAES, consisting of air storage tanks and compressor and expander trains at each wind turbine station, is developed and simulated in MATLAB. An ad hoc supervisory controller, in which the wind turbines are simply operated under classical power optimizing region control while scheduling power production by the expanders and air storage by the compressors, including modulation of the compressor power levels within a control range, is used to regulate overall farm power production to track minute-scale (3-minutes sampling period) TSO absolute power reference signal, over an eight-hour period. Simulation results for real wind data input with a simple wake field model applied to a hybrid plant composed of ten 5-MW wind turbines in a row and ten compatibly sized and configured Diabatic CAES stations show the plant controller is able to track the power demand signal within an error band size on the order of the electrical power rating of a single expander. This performance suggests that much improved results should be anticipated when the global D-CAES control is combined with power regulation for the individual wind turbines using available approaches for wind farm active power control. For standalone power plant fuel electrical efficiency estimate of up to 60%, the round trip electrical storage efficiency computed for the distributed CAES wherein heat generated by running compressors is utilized in the preheat stage of running high pressure expanders while fuel is introduced and combusted before the low pressure expanders, was comparable to reported round trip storage electrical efficiencies for bulk Adiabatic CAES.Keywords: hybrid wind farm, distributed CAES, diabatic CAES, active power control, dynamic modeling and simulation
Procedia PDF Downloads 843514 Quadrotor in Horizontal Motion Control and Maneuverability
Authors: Ali Oveysi Sarabi
Abstract:
In this paper, controller design for the attitude and altitude dynamics of an outdoor quadrotor, which is constructed with low cost actuators and drivers, is aimed. Before designing the controller, the quadrotor is modeled mathematically in Matlab-Simulink environment. To control attitude dynamics, linear quadratic regulator (LQR) based controllers are designed, simulated and applied to the system. Two different proportional-integral-derivative action (PID) controllers are designed to control yaw and altitude dynamics. During the implementation of the designed controllers, different test setups are used. Designed controllers are implemented and tuned on the real system using xPC Target. Tests show that these basic control structures are successful to control the attitude and altitude dynamics.Keywords: helicopter balance, flight dynamics, autonomous landing, control robotics
Procedia PDF Downloads 5133513 The Thinking of Dynamic Formulation of Rock Aging Agent Driven by Data
Authors: Longlong Zhang, Xiaohua Zhu, Ping Zhao, Yu Wang
Abstract:
The construction of mines, railways, highways, water conservancy projects, etc., have formed a large number of high steep slope wounds in China. Under the premise of slope stability and safety, the minimum cost, green and close to natural wound space repair, has become a new problem. Nowadays, in situ element testing and analysis, monitoring, field quantitative factor classification, and assignment evaluation will produce vast amounts of data. Data processing and analysis will inevitably differentiate the morphology, mineral composition, physicochemical properties between rock wounds, by which to dynamically match the appropriate techniques and materials for restoration. In the present research, based on the grid partition of the slope surface, tested the content of the combined oxide of rock mineral (SiO₂, CaO, MgO, Al₂O₃, Fe₃O₄, etc.), and classified and assigned values to the hardness and breakage of rock texture. The data of essential factors are interpolated and normalized in GIS, which formed the differential zoning map of slope space. According to the physical and chemical properties and spatial morphology of rocks in different zones, organic acids (plant waste fruit, fruit residue, etc.), natural mineral powder (zeolite, apatite, kaolin, etc.), water-retaining agent, and plant gum (melon powder) were mixed in different proportions to form rock aging agents. To spray the aging agent with different formulas on the slopes in different sections can affectively age the fresh rock wound, providing convenience for seed implantation, and reducing the transformation of heavy metals in the rocks. Through many practical engineering practices, a dynamic data platform of rock aging agent formula system is formed, which provides materials for the restoration of different slopes. It will also provide a guideline for the mixed-use of various natural materials to solve the complex, non-uniformity ecological restoration problem.Keywords: data-driven, dynamic state, high steep slope, rock aging agent, wounds
Procedia PDF Downloads 1163512 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm
Authors: Vahid Bayrami Rad
Abstract:
In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability
Procedia PDF Downloads 67