Search results for: boundary layer interaction
5791 An Innovative Auditory Impulsed EEG and Neural Network Based Biometric Identification System
Authors: Ritesh Kumar, Gitanjali Chhetri, Mandira Bhatia, Mohit Mishra, Abhijith Bailur, Abhinav
Abstract:
The prevalence of the internet and technology in our day to day lives is creating more security issues than ever. The need for protecting and providing a secure access to private and business data has led to the development of many security systems. One of the potential solutions is to employ the bio-metric authentication technique. In this paper we present an innovative biometric authentication method that utilizes a person’s EEG signal, which is acquired in response to an auditory stimulus,and transferred wirelessly to a computer that has the necessary ANN algorithm-Multi layer perceptrol neural network because of is its ability to differentiate between information which is not linearly separable.In order to determine the weights of the hidden layer we use Gaussian random weight initialization. MLP utilizes a supervised learning technique called Back propagation for training the network. The complex algorithm used for EEG classification reduces the chances of intrusion into the protected public or private data.Keywords: EEG signal, auditory evoked potential, biometrics, multilayer perceptron neural network, back propagation rule, Gaussian random weight initialization
Procedia PDF Downloads 4095790 Behaviour of Non-local Correlations and Quantum Information Theoretic Measures in Frustrated Molecular Wheels
Authors: Amit Tribedi
Abstract:
Genuine Quantumness present in Quantum Systems is the resource for implementing Quantum Information and Computation Protocols which can outperform the classical counterparts. These Quantumness measures encompass non-local ones known as quantum entanglement (QE) and quantum information theoretic (QIT) ones, e.g. Quantum Discord (QD). In this paper, some well-known measures of QE and QD in some wheel-like frustrated molecular magnetic systems have been studied. One of the systems has already been synthesized using coordination chemistry, and the other is hypothetical, where the dominant interaction is the spin-spin exchange interaction. Exact analytical methods and exact numerical diagonalization methods have been used. Some counter-intuitive non-trivial features, like non-monotonicity of quantum correlations with temperature, persistence of multipartite entanglement over bipartite ones etc. indicated by the behaviour of the correlations and the QIT measures have been found. The measures, being operational ones, can be used to realize the resource of Quantumness in experiments.Keywords: 0D Magnets, discord, entanglement, frustration
Procedia PDF Downloads 2285789 Spatial Variability of Environmental Parameters and Its Relationship with an Environmental Injustice on the Bike Paths of Santiago, Chile
Authors: Alicia Muñoz, Pedro Oyola, Cristian Henriquez
Abstract:
Pollution in Santiago de Chile has a spatial variability due to different factors, including meteorological parameters and emission sources. Socioenvironmental aspects are also significant for pollution in the canopy layer since it influences the type of edification, vegetal mass proportion and other environmental conditions. This study analyzes spatially urban pollution in Santiago, specifically, from the bike path perspective. Bike paths are located in high traffic zones, as consequence, users are constantly exposed to urban pollution. Measurements were made at the higher polluted hour, three days a week, including three transit regimes, on the most polluted month of the year. The environmental parameters are fine particulate matter (Model 8520, DustTrak Aerosol Monitor, TSI), temperature and relative humidity; it was also considerate urban parameters as sky view factor and vegetal mass. Identification of an environmental injustice will be achieved with a spatial modeling, including all urban factors and environmental mediations with an economic index of population.Keywords: canopy layer, environmental injustice, spatial modeling, urban pollution
Procedia PDF Downloads 2315788 Synthesis of Flower-Like Silver Nanoarchitectures in Special Shapes and Their Applications in Surface-Enhanced Raman Scattering
Authors: Radka Králová, Libor Kvítek, Václav Ranc, Aleš Panáček, Radek Zbořil
Abstract:
Surface–Enhanced Raman Scattering (SERS) is an optical spectroscopic technique with very good potential for sensitive detection of substances. In this research, active substrates with high enhancement were provided. Novel silver particles (nanostructures) with high roughened, flower–like morphology were prepared by reduction of cation complex [Ag(NH3)2]+ in presence of sodium borohydride as reducing agent and stabilized polyacrylic acid. The products were characterized by UV/VIS absorption spectrophotometry. Special shapes of silver particles were determined by scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM). Dispersions of this particle were put on fixed substrate to producing suitable layer for SERS. Adenine was applied as basic substance whose effect of enhancement on the layer of silver nanostructures was studied. By comparison with our work, the important influence of stabilizers, polyacrylic acid with various molecular weight and concentration, on the transfer of particles and formation of new structure was confirmed.Keywords: metals, nanostructures, chemical reduction, Raman spectroscopy, optical properties
Procedia PDF Downloads 3715787 Sequential Mixed Methods Study to Examine the Potentiality of Blackboard-Based Collaborative Writing as a Solution Tool for Saudi Undergraduate EFL Students’ Writing Difficulties
Authors: Norah Alosayl
Abstract:
English is considered the most important foreign language in the Kingdom of Saudi Arabia (KSA) because of the usefulness of English as a global language compared to Arabic. As students’ desire to improve their English language skills has grown, English writing has been identified as the most difficult problem for Saudi students in their language learning. Although the English language in Saudi Arabia is taught beginning in the seventh grade, many students have problems at the university level, especially in writing, due to a gap between what is taught in secondary and high schools and university expectations- pupils generally study English at school, based on one book with few exercises in vocabulary and grammar exercises, and there are no specific writing lessons. Moreover, from personal teaching experience at King Saud bin Abdulaziz University, students face real problems with their writing. This paper revolves around the blackboard-based collaborative writing to help the undergraduate Saudi EFL students, in their first year enrolled in two sections of ENGL 101 in the first semester of 2021 at King Saud bin Abdulaziz University, practice the most difficult skill they found in their writing through a small group. Therefore, a sequential mixed methods design will be suited. The first phase of the study aims to highlight the most difficult skill experienced by students from an official writing exam that is evaluated by their teachers through an official rubric used in King Saud bin Abdulaziz University. In the second phase, this study will intend to investigate the benefits of social interaction on the process of learning writing. Students will be provided with five collaborative writing tasks via discussion feature on Blackboard to practice a skill that they found difficult in writing. the tasks will be formed based on social constructivist theory and pedagogic frameworks. The interaction will take place between peers and their teachers. The frequencies of students’ participation and the quality of their interaction will be observed through manual counting, screenshotting. This will help the researcher understand how students actively work on the task through the amount of their participation and will also distinguish the type of interaction (on task, about task, or off-task). Semi-structured interviews will be conducted with students to understand their perceptions about the blackboard-based collaborative writing tasks, and questionnaires will be distributed to identify students’ attitudes with the tasks.Keywords: writing difficulties, blackboard-based collaborative writing, process of learning writing, interaction, participations
Procedia PDF Downloads 1915786 Effect of Eddy Irrigant Activation on Cleanliness of the Root Canal Wall during Pulpectomy of Primary Teeth
Authors: Rasha Sharaf, Nehal Sharaf
Abstract:
Pulpectomy of primary teeth aims to remove the necrotic pulp tissue from the infected root canal and clean the root canal walls from any remnant of pulp tissue. Different irrigant activation systems have been recently used, and one of these devices is the Eddy which helps in removal of smear layer and improves the intimate contact between the filling material and the root canal wall. Aim: To evaluate the efficacy of Eddy in cleanliness of the root canal during pulpectomy of primary teeth. Materials and methods: 45 freshly extracted primary anterior teeth were divided into 3 equal groups, in the 1st group sodium hypochlorite only was used during pulpectomy, in the 2nd group irrigation using sodium hypochlorite with file agitation was performed and in the 3rd group sodium hypochlorite was used with Eddy for irrigant activation. All samples were sectioned longitudinally and scanned using scanning electron microscope to evaluate the cleanliness of the root canals. Results: It was found that Eddy showed high efficacy in removal of smear layer during pulpectomy of primary teeth.Keywords: Eddy, irrigant activation, irrigation, pulpectomy
Procedia PDF Downloads 1525785 Effects of Channel Orientation on Heat Transfer in a Rotating Rectangular Channel with Jet Impingement Cooling and Film Coolant Extraction
Authors: Hua Li, Hongwu Deng
Abstract:
The turbine blade's leading edge is usually cooled by jet impingement cooling technology due to the heaviest heat load. For a rotating turbine blade, however, the channel orientation (β, the angle between the jet direction and the rotating plane) could play an important role in influencing the flow field and heat transfer. Therefore, in this work, the effects of channel orientation (from 90° to 180°) on heat transfer in a jet impingement cooling channel are experimentally investigated. Furthermore, the investigations are conducted under an isothermal boundary condition. Both the jet-to-target surface distance and jet-to-jet spacing are three times the jet hole diameter. The jet Reynolds number is 5,000, and the maximum jet rotation number reaches 0.24. The results show that the rotation-induced variations of heat transfer are different in each channel orientation. In the cases of 90°≤β≤135°, a vortex generated in the low-radius region of the supply channel changes the mass-flowrate distribution in each jet hole. Therefore, the heat transfer in the low-radius region decreases with the rotation number, whereas the heat transfer in the high-radius region increases, indicating that a larger temperature gradient in the radial direction could appear in the turbine blade's leading edge. When 135°<β≤180°; however, the heat transfer of the entire stagnant zone decreases with the rotation number. The rotation-induced jet deflection is the primary factor that weakens the heat transfer, and jets cannot reach the target surface at high rotation numbers. For the downstream regions, however, the heat transfer is enhanced by 50%-80% in every channel orientation because the dead zone is broken by the rotation-induced secondary flow in the impingement channel.Keywords: heat transfer, jet impingement cooling, channel orientation, high rotation number, isothermal boundary
Procedia PDF Downloads 1055784 Role of SiOx Interlayer on Lead Oxide Electrodeposited on Stainless Steel for Promoting Electrochemical Treatment of Wastewater Containing Textile Dye
Authors: Hanene Akrout, Ines Elaissaoui, Sabrina Grassini, Daniele Fulginiti, Latifa Bousselmi
Abstract:
The main objective of this work is to investigate the efficiency of depollution power related to PbO₂ layer deposited onto a stainless steel (SS) substrate with SiOx as interlayer. The elaborated electrode was used as anode for anodic oxidation of wastewater containing Amaranth dye, as recalcitrant organic pollutant model. SiOx interlayer was performed using Plasma Enhanced Chemical Vapor Deposition ‘PECVD’ in plasma fed with argon, oxygen, and tetraethoxysilane (TEOS, Si precursor) in different ratios, onto the SS substrate. PbO₂ layer was produced by pulsed electrodeposition on SS/SiOx. The morphological of different surfaces are depicted with Field Emission Scanning Electron Microscope (FESEM) and the composition of the lead oxide layer was investigated by X-Ray Diffractometry (XRD). The results showed that the SiOx interlayer with more rich oxygen content improved better the nucleation of β-PbO₂ form. Electrochemical Impedance Spectroscopy (EIS) measurements undertaken on different interfaces (at optimized conditions) revealed a decrease of Rfilm while CPE film increases for SiOx interlayer, characterized by a more inorganic nature and deposited in a plasma fed by higher O2-to-TEOS ratios. Quantitative determinations of the Amaranth dye degradation rate were performed in terms of colour and COD removals, reaching a 95% and an 80% respectively removal at pH = 2 in 300 min. Results proved the improvement of the degradation wastewater containing the amaranth dye. During the electrolysis, the Amaranth dye solution was sampled at 30 min intervals and analyzed by ‘High-performance Liquid Chromatography’ HPLC. The gradual degradation of the Amaranth dye confirmed by the decrease in UV absorption using the SS/SiOx(20:20:1)/PbO₂ anode, the reaction exhibited an apparent first-order kinetic for electrolysis time of 5 hours, with an initial rate constant of about 0.02 min⁻¹.Keywords: electrochemical treatment, PbO₂ anodes, COD removal, plasma
Procedia PDF Downloads 1935783 Rural-Urban Partnership for Balanced Spatial Development in Latvia
Authors: Zane Bulderberga
Abstract:
Spatial dimension in development planning is becoming more topical in 21st century as a result of changes in population structure. Sustainable spatial development focuses on identifying and using territorial advantages to foster the harmonized development of the entire country, reducing negative effects of population concentration, increasing availability and mobility. EU and national development planning documents state polycentrism as main tool for balance spatial development, including investment concentration in growth centres. If mutual cooperation of growth centres as well as urban-rural cooperation is not fostered, then territorial differences can deepen and create unbalanced development. The aim of research: to evaluate the urban-rural interaction, elaborating spatial development scenarios in framework of Latvian regional policy. To perform the research monographic, comparison, abstract-logical method, synthesis and analysis will be used when studying the theoretical aspects of research aiming at collecting the ideas of scientists from different countries, concepts, regulations as well as to create meaningful scientific discussion. Hierarchy analysis process (AHP) will be used to state further scenarios of spatial development in Latvia. Experts from various institutions recognized urban-rural interaction and co-operation as an essential tool for the development. The most important factors for balanced spatial development in Latvia are availability of public transportation and improvement of service availability. Evaluating the three alternative scenarios, it was concluded that the urban-rural partnership will ensure a balanced development in Latvian regions.Keywords: rural-urban interaction, rural-urban cooperation, spatial development, AHP
Procedia PDF Downloads 3085782 Mealtime Talk as a Context of Learning: A Multiple Case Study of Australian Chinese Parents' Interaction with Their Preschool Aged Children at Dinner Table
Authors: Jiangbo Hu, Frances Hoyte, Haiquan Huang
Abstract:
Research identifies that mealtime talk can be a significant learning context that provides children with rich experiences to foster their language and cognitive development. Middle-classed parents create an extended learning discourse for their children through sophisticated vocabulary, narrative and explanation genres at dinner table. However, mealtime opportunities vary with some parents having little interaction with their children and some parents focusing on directive of children’s behaviors. This study investigated five Chinese families’ parent-child interaction during mealtime that was rarely reported in the literature. The five families differ in terms of their living styles. Three families are from professional background where both mothers the fathers work in Australian companies and both of them present at dinner time. The other two families own business. The mothers are housemakers and the fathers are always absent at dinner time due to their busy business life. Employing case study method, the five Chinese families’ parent-child interactions at dinner table were recorded using a video camera. More than 3000 clauses were analyzed with the framework of 'systems of clause complexing' from systemic functional linguistic theory. The finding shows that mothers played a critical role in the interaction with their children by initiating most conversations. The three mothers from professional background tended to use more language in extending and expanding pattern that is beneficial for children’s language development and high level of thinking (e.g., logical thinking). The two house making mothers’ language focused more on the directive of their children’s social manners and dietary behaviors. The fathers though seemed to be less active, contributing to the richness of the conversation through their occasional props such as asking open questions or initiating a new topic. In general, the families from professional background were more advantaged in providing learning opportunities for their children at dinner table than the families running business were. The home experiences of Chinese children is an important topic in research due to the rapidly increasing number of Chinese children in Australia and other English speaking countries. Such research assist educators in the education of Chinese children with more awareness of Chinese children experiences at home that could be very unlike the settings in English schools. This study contributes to the research in this area through the analysis of language in parent-child interaction during mealtime, which is very different from previous research that mainly investigated Chinese families through survey and interview. The finding of different manners in language use between the professional families and business families has implication for the understanding of the variation of Chinese children’s home experiences that is influenced not only by parents’ socioeconomic status but their lifestyles.Keywords: Chinese children, Chinese parents, mealtime talk, parent-child interaction
Procedia PDF Downloads 2335781 Efficient Pre-Processing of Single-Cell Assay for Transposase Accessible Chromatin with High-Throughput Sequencing Data
Authors: Fan Gao, Lior Pachter
Abstract:
The primary tool currently used to pre-process 10X Chromium single-cell ATAC-seq data is Cell Ranger, which can take very long to run on standard datasets. To facilitate rapid pre-processing that enables reproducible workflows, we present a suite of tools called scATAK for pre-processing single-cell ATAC-seq data that is 15 to 18 times faster than Cell Ranger on mouse and human samples. Our tool can also calculate chromatin interaction potential matrices, and generate open chromatin signal and interaction traces for cell groups. We use scATAK tool to explore the chromatin regulatory landscape of a healthy adult human brain and unveil cell-type specific features, and show that it provides a convenient and computational efficient approach for pre-processing single-cell ATAC-seq data.Keywords: single-cell, ATAC-seq, bioinformatics, open chromatin landscape, chromatin interactome
Procedia PDF Downloads 1555780 Stem Cell Fate Decision Depending on TiO2 Nanotubular Geometry
Authors: Jung Park, Anca Mazare, Klaus Von Der Mark, Patrik Schmuki
Abstract:
In clinical application of TiO2 implants on tooth and hip replacement, migration, adhesion and differentiation of neighboring mesenchymal stem cells onto implant surfaces are critical steps for successful bone regeneration. In a recent decade, accumulated attention has been paid on nanoscale electrochemical surface modifications on TiO2 layer for improving bone-TiO2 surface integration. We generated, on titanium surfaces, self-assembled layers of vertically oriented TiO2 nanotubes with defined diameters between 15 and 100 nm and here we show that mesenchymal stem cells finely sense TiO2 nanotubular geometry and quickly decide their cell fate either to differentiation into osteoblasts or to programmed cell death (apoptosis) on TiO2 nanotube layers. These cell fate decisions are critically dependent on nanotube size differences (15-100nm in diameters) of TiO2 nanotubes sensing by integrin clustering. We further demonstrate that nanoscale topography-sensing is feasible not only in mesenchymal stem cells but rather seems as generalized nanoscale microenvironment-cell interaction mechanism in several cell types composing bone tissue network including osteoblasts, osteoclast, endothelial cells and hematopoietic stem cells. Additionally we discuss the synergistic effect of simultaneous stimulation by nanotube-bound growth factor and nanoscale topographic cues on enhanced bone regeneration.Keywords: TiO2 nanotube, stem cell fate decision, nano-scale microenvironment, bone regeneration
Procedia PDF Downloads 4325779 High Cycle Fatigue Analysis of a Lower Hopper Knuckle Connection of a Large Bulk Carrier under Dynamic Loading
Authors: Vaso K. Kapnopoulou, Piero Caridis
Abstract:
The fatigue of ship structural details is of major concern in the maritime industry as it can generate fracture issues that may compromise structural integrity. In the present study, a fatigue analysis of the lower hopper knuckle connection of a bulk carrier was conducted using the Finite Element Method by means of ABAQUS/CAE software. The fatigue life was calculated using Miner’s Rule and the long-term distribution of stress range by the use of the two-parameter Weibull distribution. The cumulative damage ratio was estimated using the fatigue damage resulting from the stress range occurring at each load condition. For this purpose, a cargo hold model was first generated, which extends over the length of two holds (the mid-hold and half of each of the adjacent holds) and transversely over the full breadth of the hull girder. Following that, a submodel of the area of interest was extracted in order to calculate the hot spot stress of the connection and to estimate the fatigue life of the structural detail. Two hot spot locations were identified; one at the top layer of the inner bottom plate and one at the top layer of the hopper plate. The IACS Common Structural Rules (CSR) require that specific dynamic load cases for each loading condition are assessed. Following this, the dynamic load case that causes the highest stress range at each loading condition should be used in the fatigue analysis for the calculation of the cumulative fatigue damage ratio. Each load case has a different effect on ship hull response. Of main concern, when assessing the fatigue strength of the lower hopper knuckle connection, was the determination of the maximum, i.e. the critical value of the stress range, which acts in a direction normal to the weld toe line. This acts in the transverse direction, that is, perpendicularly to the ship's centerline axis. The load cases were explored both theoretically and numerically in order to establish the one that causes the highest damage to the location examined. The most severe one was identified to be the load case induced by beam sea condition where the encountered wave comes from the starboard. At the level of the cargo hold model, the model was assumed to be simply supported at its ends. A coarse mesh was generated in order to represent the overall stiffness of the structure. The elements employed were quadrilateral shell elements, each having four integration points. A linear elastic analysis was performed because linear elastic material behavior can be presumed, since only localized yielding is allowed by most design codes. At the submodel level, the displacements of the analysis of the cargo hold model to the outer region nodes of the submodel acted as boundary conditions and applied loading for the submodel. In order to calculate the hot spot stress at the hot spot locations, a very fine mesh zone was generated and used. The fatigue life of the detail was found to be 16.4 years which is lower than the design fatigue life of the structure (25 years), making this location vulnerable to fatigue fracture issues. Moreover, the loading conditions that induce the most damage to the location were found to be the various ballasting conditions.Keywords: dynamic load cases, finite element method, high cycle fatigue, lower hopper knuckle
Procedia PDF Downloads 4195778 The Role of Group Dynamics in Creativity: A Study Case from Italy
Authors: Sofya Komarova, Frashia Ndungu, Alessia Gavazzoli, Roberta Mineo
Abstract:
Modern society requires people to be flexible and to develop innovative solutions to unexpected situations. Creativity refers to the “interaction among aptitude, process, and the environment by which an individual or group produces a perceptible product that is both novel and useful as defined within a social context”. It allows humans to produce novel ideas, generate new solutions, and express themselves uniquely. Only a few scientific studies have examined group dynamics' influence on individuals' creativity. There exist some gaps in the research on creative thinking, such as the fact that collaborative effort frequently results in the enhanced production of new information and knowledge. Therefore, it is critical to evaluate creativity via social settings. The study aimed at exploring the group dynamics of young adults in small group settings and the influence of these dynamics on their creativity. The study included 30 participants aged 20 to 25 who were attending university after completing a bachelor's degree. The participants were divided into groups of three, in gender homogenous and heterogeneous groups. The groups’ creative task was tied to the Lego mosaic created for the Scintillae laboratory at the Reggio Children Foundation. Group dynamics were operationalized into patterns of behaviors classified into three major categories: 1) Social Interactions, 2) Play, and 3) Distraction. Data were collected through audio and video recording and observation. The qualitative data were converted into quantitative data using the observational coding system; then, they were analyzed, revealing correlations between behaviors using median points and averages. For each participant and group, the percentages of represented behavior signals were computed. The findings revealed a link between social interaction, creative thinking, and creative activities. Other findings revealed that the more intense the social interaction, the lower the amount of creativity demonstrated. This study bridges the research gap between group dynamics and creativity. The approach calls for further research on the relationship between creativity and social interaction.Keywords: group dynamics, creative thinking, creative action, social interactions, group play
Procedia PDF Downloads 1275777 Analysis of Moving Loads on Bridges Using Surrogate Models
Authors: Susmita Panda, Arnab Banerjee, Ajinkya Baxy, Bappaditya Manna
Abstract:
The design of short to medium-span high-speed bridges in critical locations is an essential aspect of vehicle-bridge interaction. Due to dynamic interaction between moving load and bridge, mathematical models or finite element modeling computations become time-consuming. Thus, to reduce the computational effort, a universal approximator using an artificial neural network (ANN) has been used to evaluate the dynamic response of the bridge. The data set generation and training of surrogate models have been conducted over the results obtained from mathematical modeling. Further, the robustness of the surrogate model has been investigated, which showed an error percentage of less than 10% with conventional methods. Additionally, the dependency of the dynamic response of the bridge on various load and bridge parameters has been highlighted through a parametric study.Keywords: artificial neural network, mode superposition method, moving load analysis, surrogate models
Procedia PDF Downloads 1005776 Investigation of Lead and Zinc Oxide Deposits Using Geological and Geophysical Techniques at Oshiri Province in Onicha Local Government Area of Ebonyi State Located Within Southeastern Part of Nigeria, West Africa
Authors: Amaechi O. Azi, Uche D. Aluge, Lim H. San, Godwin A. Agbo
Abstract:
This paper is centered on the investigation of mineral deposits in selected locations in Oshiri province in Ebonyi State. Mineral deposits contribute immensely to the economic growth of a society. In researching lead and zinc oxide-bearing sites at Oshiri, geological and geophysical research technique was employed. Petrozenith, Earth Resistivity Meter, and Schlumberger setup were selected to examine the electrical characteristics of the subsurface. To determine the apparent resistivity of the subsurface, five soundings were taken, and the field data were processed using WinResist software. The mudstone, lead-shale, shale-granite, and lateritic topsoil were the four geoelectric strata that were found. The third layer, which corresponds to the shale-lead lithology, has a resistivity value between 211.9 m to 807.7 m at a depth of 25 m. Due to its resistivity levels and geological trend, this layer makes an excellent signature for lead-zinc occurrence. This zone is expected to house deposits of lead and zinc oxide in commercial quantity.Keywords: Schlumberger, current, resistivity, lithology
Procedia PDF Downloads 765775 Efficient Implementation of Finite Volume Multi-Resolution Weno Scheme on Adaptive Cartesian Grids
Authors: Yuchen Yang, Zhenming Wang, Jun Zhu, Ning Zhao
Abstract:
An easy-to-implement and robust finite volume multi-resolution Weighted Essentially Non-Oscillatory (WENO) scheme is proposed on adaptive cartesian grids in this paper. Such a multi-resolution WENO scheme is combined with the ghost cell immersed boundary method (IBM) and wall-function technique to solve Navier-Stokes equations. Unlike the k-exact finite volume WENO schemes which involve large amounts of extra storage, repeatedly solving the matrix generated in a least-square method or the process of calculating optimal linear weights on adaptive cartesian grids, the present methodology only adds very small overhead and can be easily implemented in existing edge-based computational fluid dynamics (CFD) codes with minor modifications. Also, the linear weights of this adaptive finite volume multi-resolution WENO scheme can be any positive numbers on condition that their sum is one. It is a way of bypassing the calculation of the optimal linear weights and such a multi-resolution WENO scheme avoids dealing with the negative linear weights on adaptive cartesian grids. Some benchmark viscous problems are numerical solved to show the efficiency and good performance of this adaptive multi-resolution WENO scheme. Compared with a second-order edge-based method, the presented method can be implemented into an adaptive cartesian grid with slight modification for big Reynolds number problems.Keywords: adaptive mesh refinement method, finite volume multi-resolution WENO scheme, immersed boundary method, wall-function technique.
Procedia PDF Downloads 1505774 Seam Slippage of Light Woven Fabrics with Regards to Sewing Parameters
Authors: Mona Shawky, Khaled M. Elsheikh, Heba M. Darwish, Eman Abd El Elsamea
Abstract:
Seams are the basic component in the structure of any apparel. The seam quality of the garment is a term that indicates both the aesthetic and functional performance of the garment. Seam slippage is one of the important properties that determine garment performance. Lightweight fabrics are preferred for their aesthetic properties. Since seam slippage is one of the most occurable faults for woven garments, in this study, a design of experiment of the following sewing parameters (three levels of needle size, three levels of stitch density, three levels of the seam allowance, two levels of sewing thread count, and two fabric types) was used to obtain the effect of the interaction between different sewing parameters on-seam slippage force. Two lightweight polyester woven fabrics with different constructions were used with lock stitch 301 to perform this study. Regression equations which can predict seam slippage force in both warp and weft directions were concluded. It was found that fabric type has a significant positive effect on seam slippage force in the warp direction, while it has a significant negative effect on seam slippage force on weft direction. Also, the interaction between needle size and stitch density has a significant positive effect on seam slippage force on warp direction, while the interaction between stitch density and seam allowance has a negative effect on seam slippage force in the weft direction.Keywords: needle size, regression equation, seam allowance, seam slippage, stitch density
Procedia PDF Downloads 1605773 The Relationship between Life Event Stress, Depressive Thoughts, and Working Memory Capacity
Authors: Eid Abo Hamza, Ahmed Helal
Abstract:
Purpose: The objective is to measure the capacity of the working memory, ie. the maximum number of elements that can be retrieved and processed, by measuring the basic functions of working memory (inhibition/transfer/update), and also to investigate its relationship to life stress and depressive thoughts. Methods: The study sample consisted of 50 students from Egypt. A cognitive task was designed to measure the working memory capacity based on the determinants found in previous research, which showed that cognitive tasks are the best measurements of the functions and capacity of working memory. Results: The results indicated that there were statistically significant differences in the level of life stress events (high/low) on the task of measuring the working memory capacity. The results also showed that there were no statistically significant differences between males and females or between academic major on the task of measuring the working memory capacity. Furthermore, the results reported that there was no statistically significant effect of the interaction of the level of life stress (high/low) and gender (male/female) on the task of measuring working memory capacity. Finally, the results showed that there were significant differences in the level of depressive thoughts (high/low) on the task of measuring working memory. Conclusions: The current research concludes that neither the interaction of stressful life events, gender, and academic major, nor the interaction of depressive thoughts, gender, and academic major, influence on working memory capacity.Keywords: working memory, depression, stress, life event
Procedia PDF Downloads 1615772 Towards the Modeling of Lost Core Viability in High-Pressure Die Casting: A Fluid-Structure Interaction Model with 2-Phase Flow Fluid Model
Authors: Sebastian Kohlstädt, Michael Vynnycky, Stephan Goeke, Jan Jäckel, Andreas Gebauer-Teichmann
Abstract:
This paper summarizes the progress in the latest computational fluid dynamics research towards the modeling in of lost core viability in high-pressure die casting. High-pressure die casting is a process that is widely employed in the automotive and neighboring industries due to its advantages in casting quality and cost efficiency. The degrees of freedom are however somewhat limited as it has been so far difficult to use lost cores in the process. This is right now changing and the deployment of lost cores is considered a future growth potential for high-pressure die casting companies. The use of this technology itself is difficult though. The strength of the core material, as chiefly salt is used, is limited and experiments have shown that the cores will not hold under all circumstances and process designs. For this purpose, the publicly available CFD library foam-extend (OpenFOAM) is used, and two additional fluid models for incompressible and compressible two-phase flow are implemented as fluid solver models into the FSI library. For this purpose, the volume-of-fluid (VOF) methodology is used. The necessity for the fluid-structure interaction (FSI) approach is shown by a simple CFD model geometry. The model is benchmarked against analytical models and experimental data. Sufficient agreement is found with the analytical models and good agreement with the experimental data. An outlook on future developments concludes the paper.Keywords: CFD, fluid-structure interaction, high-pressure die casting, multiphase flow
Procedia PDF Downloads 3325771 Effect of Cryogenic Pre-stretching on the Room Temperature Tensile Behavior of AZ61 Magnesium Alloy and Dominant Grain Growth Mechanisms During Subsequent Annealing
Authors: Umer Masood Chaudry, Hafiz Muhammad Rehan Tariq, Chung-soo Kim, Tea-sung Jun
Abstract:
This study explored the influence of pre-stretching temperature on the microstructural characteristics and deformation behavior of AZ61 magnesium alloy and its implications on grain growth during subsequent annealing. AZ61 alloy was stretched to 5% plastic strain along rolling (RD) and transverse direction (TD) at room (RT) and cryogenic temperature (-150 oC, CT) followed by annealing at 320 oC for 1 h to investigate the twinning and dislocation evolution and its consequent effect on the flow stress, plastic strain and strain hardening rate. Compared to RT-stretched samples, significant improvement in yield stress, strain hardening rate and moderate reduction in elongation to failure were witnessed for CT-stretched samples along RD and TD. The subsequent EBSD analysis revealed the increased fraction of fine {10-12} twins and nucleation of multiple {10-12} twin variants caused by higher local stress concentration at the grain boundaries in CT-stretched samples as manifested by the kernel average misorientation. This higher twin fraction and twin-twin interaction imposed the strengthening by restricting the mean free path of dislocations, leading to higher flow stress and strain hardening rate. During annealing of the RT/CT-stretched samples, the residual strain energy and twin boundaries were decreased due to static recovery, leading to a coarse-grained twin-free microstructure. Strain induced boundary migration (SBIM) was found to be the predominant mechanism governing the grain growth during annealing via movement of high angle grain boundaries.Keywords: magnesium, twinning, twinning variant selection, EBSD, cryogenic deformation
Procedia PDF Downloads 675770 Non-Newtonian Fluid Flow Simulation for a Vertical Plate and a Square Cylinder Pair
Authors: Anamika Paul, Sudipto Sarkar
Abstract:
The flow behaviour of non-Newtonian fluid is quite complicated, although both the pseudoplastic (n < 1, n being the power index) and dilatant (n > 1) fluids under this category are used immensely in chemical and process industries. A limited research work is carried out for flow over a bluff body in non-Newtonian flow environment. In the present numerical simulation we control the vortices of a square cylinder by placing an upstream vertical splitter plate for pseudoplastic (n=0.8), Newtonian (n=1) and dilatant (n=1.2) fluids. The position of the upstream plate is also varied to calculate the critical distance between the plate and cylinder, below which the cylinder vortex shedding suppresses. Here the Reynolds number is considered as Re = 150 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid), which comes under laminar periodic vortex shedding regime. The vertical plate is having a dimension of 0.5a × 0.05a and it is placed at the cylinder centre-line. Gambit 2.2.30 is used to construct the flow domain and to impose the boundary conditions. In detail, we imposed velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. The unsteady 2-D Navier Stokes equations in fully conservative form are then discretized in second-order spatial and first-order temporal form. These discretized equations are then solved by Ansys Fluent 14.5 implementing SIMPLE algorithm written in finite volume method. Here, fine meshing is used surrounding the plate and cylinder. Away from the cylinder, the grids are slowly stretched out in all directions. To get an account of mesh quality, a total of 297 × 208 grid points are used for G/a = 3 (G being the gap between the plate and cylinder) in the streamwise and flow-normal directions respectively after a grid independent study. The computed mean flow quantities obtained from Newtonian flow are agreed well with the available literatures. The results are depicted with the help of instantaneous and time-averaged flow fields. Qualitative and quantitative noteworthy differences are obtained in the flow field with the changes in rheology of fluid. Also, aerodynamic forces and vortex shedding frequencies differ with the gap-ratio and power index of the fluid. We can conclude from the present simulation that fluent is capable to capture the vortex dynamics of unsteady laminar flow regime even in the non-Newtonian flow environment.Keywords: CFD, critical gap-ratio, splitter plate, wake-wake interactions, dilatant, pseudoplastic
Procedia PDF Downloads 1125769 Application of Rapid Prototyping to Create Additive Prototype Using Computer System
Authors: Meftah O. Bashir, Fatma A. Karkory
Abstract:
Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimize the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing.Keywords: rapid prototyping, wax, manufacturing processes, shape
Procedia PDF Downloads 4645768 Effect of Blade Layout on Unidirectional Rotation of a Vertical-Axis Rotor in Waves
Authors: Yingchen Yang
Abstract:
Ocean waves are a rich renewable energy source that is nearly untapped to date, even though many wave energy conversion (WEC) technologies are currently under development. The present work discusses a vertical-axis WEC rotor for power generation. The rotor was specially designed to allow easy rearrangement of the same blades to achieve different rotor configurations and result in different wave-rotor interaction behaviors. These rotor configurations were tested in a wave tank under various wave conditions. The testing results indicate that all the rotor configurations perform unidirectional rotation about the vertical axis in waves, but the response characteristics are somewhat different. The rotor's unidirectional rotation about its vertical axis is essential in wave energy harvesting since it makes the rotor respond well in a wide range of the wave frequency and in any wave propagation directions. Result comparison among different configurations leads to a preferred rotor design for further hydrodynamic optimization.Keywords: unidirectional rotation, vertical axis rotor, wave energy conversion, wave-rotor interaction
Procedia PDF Downloads 1725767 Validation and Fit of a Biomechanical Bipedal Walking Model for Simulation of Loads Induced by Pedestrians on Footbridges
Authors: Dianelys Vega, Carlos Magluta, Ney Roitman
Abstract:
The simulation of loads induced by walking people in civil engineering structures is still challenging It has been the focus of considerable research worldwide in the recent decades due to increasing number of reported vibration problems in pedestrian structures. One of the most important key in the designing of slender structures is the Human-Structure Interaction (HSI). How moving people interact with structures and the effect it has on their dynamic responses is still not well understood. To rely on calibrated pedestrian models that accurately estimate the structural response becomes extremely important. However, because of the complexity of the pedestrian mechanisms, there are still some gaps in knowledge and more reliable models need to be investigated. On this topic several authors have proposed biodynamic models to represent the pedestrian, whether these models provide a consistent approximation to physical reality still needs to be studied. Therefore, this work comes to contribute to a better understanding of this phenomenon bringing an experimental validation of a pedestrian walking model and a Human-Structure Interaction model. In this study, a bi-dimensional bipedal walking model was used to represent the pedestrians along with an interaction model which was applied to a prototype footbridge. Numerical models were implemented in MATLAB. In parallel, experimental tests were conducted in the Structures Laboratory of COPPE (LabEst), at Federal University of Rio de Janeiro. Different test subjects were asked to walk at different walking speeds over instrumented force platforms to measure the walking force and an accelerometer was placed at the waist of each subject to measure the acceleration of the center of mass at the same time. By fitting the step force and the center of mass acceleration through successive numerical simulations, the model parameters are estimated. In addition, experimental data of a walking pedestrian on a flexible structure was used to validate the interaction model presented, through the comparison of the measured and simulated structural response at mid span. It was found that the pedestrian model was able to adequately reproduce the ground reaction force and the center of mass acceleration for normal and slow walking speeds, being less efficient for faster speeds. Numerical simulations showed that biomechanical parameters such as leg stiffness and damping affect the ground reaction force, and the higher the walking speed the greater the leg length of the model. Besides, the interaction model was also capable to estimate with good approximation the structural response, that remained in the same order of magnitude as the measured response. Some differences in frequency spectra were observed, which are presumed to be due to the perfectly periodic loading representation, neglecting intra-subject variabilities. In conclusion, this work showed that the bipedal walking model could be used to represent walking pedestrians since it was efficient to reproduce the center of mass movement and ground reaction forces produced by humans. Furthermore, although more experimental validations are required, the interaction model also seems to be a useful framework to estimate the dynamic response of structures under loads induced by walking pedestrians.Keywords: biodynamic models, bipedal walking models, human induced loads, human structure interaction
Procedia PDF Downloads 1325766 Simplified Modeling of Post-Soil Interaction for Roadside Safety Barriers
Authors: Charly Julien Nyobe, Eric Jacquelin, Denis Brizard, Alexy Mercier
Abstract:
The performance of road side safety barriers depends largely on the dynamic interactions between post and soil. These interactions play a key role in the response of barriers to crash testing. In the literature, soil-post interaction is modeled in crash test simulations using three approaches. Many researchers have initially used the finite element approach, in which the post is embedded in a continuum soil modelled by solid finite elements. This method represents a more comprehensive and detailed approach, employing a mesh-based continuum to model the soil’s behavior and its interaction with the post. Although this method takes all soil properties into account, it is nevertheless very costly in terms of simulation time. In the second approach, all the points of the post located at a predefined depth are fixed. Although this approach reduces CPU computing time, it overestimates soil-post stiffness. The third approach involves modeling the post as a beam supported by a set of nonlinear springs in the horizontal directions. For support in the vertical direction, the posts were constrained at a node at ground level. This approach is less costly, but the literature does not provide a simple procedure to determine the constitutive law of the springs The aim of this study is to propose a simple and low-cost procedure to obtain the constitutive law of nonlinear springs that model the soil-post interaction. To achieve this objective, we will first present a procedure to obtain the constitutive law of nonlinear springs thanks to the simulation of a soil compression test. The test consists in compressing the soil contained in the tank by a rigid solid, up to a vertical displacement of 200 mm. The resultant force exerted by the ground on the rigid solid and its vertical displacement are extracted and, a force-displacement curve was determined. The proposed procedure for replacing the soil with springs must be tested against a reference model. The reference model consists of a wooden post embedded into the ground and impacted with an impactor. Two simplified models with springs are studied. In the first model, called Kh-Kv model, the springs are attached to the post in the horizontal and vertical directions. The second Kh model is the one described in the literature. The two simplified models are compared with the reference model according to several criteria: the displacement of a node located at the top of the post in vertical and horizontal directions; displacement of the post's center of rotation and impactor velocity. The results given by both simplified models are very close to the reference model results. It is noticeable that the Kh-Kv model is slightly better than the Kh model. Further, the former model is more interesting than the latter as it involves less arbitrary conditions. The simplified models also reduce the simulation time by a factor 4. The Kh-Kv model can therefore be used as a reliable tool to represent the soil-post interaction in a future research and development of road safety barriers.Keywords: crash tests, nonlinear springs, soil-post interaction modeling, constitutive law
Procedia PDF Downloads 305765 Understanding Knowledge Sharing and Its Effect on Creative Performance from a Dyadic Relationship Perspective
Authors: Fan Wei, Tang Yipeng
Abstract:
Knowledge sharing is of great value to organizational performance and innovation ability. However, the mainstream research has focused largely on the impact of knowledge sharing at the team level on individuals and teams. There is a lack of empirical studies on how employees interact in the exchange of knowledge and its effect on employees’ own creative performance. Based on communication accommodation theory and social exchange theory, this article explores the construction of an employee knowledge interaction mechanism under the moderating of social status and introduces the leader's creativity expectation as a moderating variable to explore its cross-level moderating effect on employee knowledge sharing and their own creative performance. An empirical test was conducted on 36 teaching and research teams in the two primary schools, and the results showed that: (1) Explicit/tacit knowledge of employees is positively correlated with acquisition of explicit/tacit knowledge; (2) Colleagues’ evaluations of employees’ social status play a moderating role between the employees’ explicit/tacit knowledge and the acquisition of explicit/tacit knowledge. (3) The leadership creativity expectation positively regulates the relationship between the employees' explicit knowledge acquisition and creative performance. This research helps to open the "black box" of the interpersonal interaction mechanism of knowledge sharing and also provides an important theoretical basis and practical guidance for organizational managers to effectively stimulate employee knowledge sharing and creative performance.Keywords: knowledge sharing, knowledge interaction, social status, leadership creativity expectations, creative performance
Procedia PDF Downloads 1215764 Correlation between Defect Suppression and Biosensing Capability of Hydrothermally Grown ZnO Nanorods
Authors: Mayoorika Shukla, Pramila Jakhar, Tejendra Dixit, I. A. Palani, Vipul Singh
Abstract:
Biosensors are analytical devices with wide range of applications in biological, chemical, environmental and clinical analysis. It comprises of bio-recognition layer which has biomolecules (enzymes, antibodies, DNA, etc.) immobilized over it for detection of analyte and transducer which converts the biological signal into the electrical signal. The performance of biosensor primarily the depends on the bio-recognition layer and therefore it has to be chosen wisely. In this regard, nanostructures of metal oxides such as ZnO, SnO2, V2O5, and TiO2, etc. have been explored extensively as bio-recognition layer. Recently, ZnO has the attracted attention of researchers due to its unique properties like high iso-electric point, biocompatibility, stability, high electron mobility and high electron binding energy, etc. Although there have been many reports on usage of ZnO as bio-recognition layer but to the authors’ knowledge, none has ever observed correlation between optical properties like defect suppression and biosensing capability of the sensor. Here, ZnO nanorods (ZNR) have been synthesized by a low cost, simple and low-temperature hydrothermal growth process, over Platinum (Pt) coated glass substrate. The ZNR have been synthesized in two steps viz. initially a seed layer was coated over substrate (Pt coated glass) followed by immersion of it into nutrient solution of Zinc nitrate and Hexamethylenetetramine (HMTA) with in situ addition of KMnO4. The addition of KMnO4 was observed to have a profound effect over the growth rate anisotropy of ZnO nanostructures. Clustered and powdery growth of ZnO was observed without addition of KMnO4, although by addition of it during the growth, uniform and crystalline ZNR were found to be grown over the substrate. Moreover, the same has resulted in suppression of defects as observed by Normalized Photoluminescence (PL) spectra since KMnO4 is a strong oxidizing agent which provides an oxygen rich growth environment. Further, to explore the correlation between defect suppression and biosensing capability of the ZNR Glucose oxidase (Gox) was immobilized over it, using physical adsorption technique followed by drop casting of nafion. Here the main objective of the work was to analyze effect of defect suppression over biosensing capability, and therefore Gox has been chosen as model enzyme, and electrochemical amperometric glucose detection was performed. The incorporation of KMnO4 during growth has resulted in variation of optical and charge transfer properties of ZNR which in turn were observed to have deep impact on biosensor figure of merits. The sensitivity of biosensor was found to increase by 12-18 times, due to variations introduced by addition of KMnO4 during growth. The amperometric detection of glucose in continuously stirred buffer solution was performed. Interestingly, defect suppression has been observed to contribute towards the improvement of biosensor performance. The detailed mechanism of growth of ZNR along with the overall influence of defect suppression on the sensing capabilities of the resulting enzymatic electrochemical biosensor and different figure of merits of the biosensor (Glass/Pt/ZNR/Gox/Nafion) will be discussed during the conference.Keywords: biosensors, defects, KMnO4, ZnO nanorods
Procedia PDF Downloads 2825763 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network
Authors: Shoujia Fang, Guoqing Ding, Xin Chen
Abstract:
The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.Keywords: keypoint detection, curve feature, convolutional neural network, press-fit assembly
Procedia PDF Downloads 2305762 The Ideal for Building Reservior Under the Ground in Mekong Delta in Vietnam
Authors: Huu Hue Van
Abstract:
The Mekong Delta is the region in southwestern Vietnam where the Mekong River approaches and flow into the sea through a network of distributaries. The Climate Change Research Institute at University of Can Tho, in studying the possible consequences of climate change, has predicted that, many provinces in the Mekong Delta will be flooded by the year 2030. The Mekong Delta lacks fresh water in the dry season. Being served for daily life, industry and agriculture in the dry season, the water is mainly taken from layers of soil contained water under the ground (aquifers) depleted water; the water level in aquifers have decreased. Previously, the Mekong Delta can withstand two bad scenarios in the future: 1) The Mekong Delta will be submerged into the sea again: Due to subsidence of the ground (over-exploitation of groundwater), subsidence of constructions because of the low groundwater level (10 years ago, some of constructions were built on the foundation of Melaleuca poles planted in Mekong Delta, Melaleuca poles have to stay in saturated soil layer fully, if not, they decay easyly; due to the top of Melaleuca poles are higher than the groundwater level, the top of Melaleuca poles will decay and cause subsidence); erosion the river banks (because of the hydroelectric dams in the upstream of the Mekong River is blocking the flow, reducing the concentration of suspended substances in the flow caused erosion the river banks) and the delta will be flooded because of sea level rise (climate change). 2) The Mekong Delta will be deserted: People will migrate to other places to make a living because of no planting due to alum capillary (In Mekong Delta, there is a layer of alum soil under the ground, the elevation of groundwater level is lower than the the elevation of layer of alum soil, alum will be capillary to the arable soil layer); there is no fresh water for cultivation and daily life (because of saline intrusion and groundwater depletion in the aquifers below). Mekong Delta currently has about seven aquifers below with a total depth about 500 m. The water mainly has exploited in the middle - upper Pleistocene aquifer (qp2-3). The major cause of two bad scenarios in the future is over-exploitation of water in aquifers. Therefore, studying and building water reservoirs in seven aquifers will solve many pressing problems such as preventing subsidence, providing water for the whole delta, especially in coastal provinces, favorable to nature, saving land ( if we build the water lake on the surface of the delta, we will need a lot of land), pollution limitation (because when building some hydraulic structures for preventing the salt instrutions and for storing water in the lake on the surface, we cause polluted in the lake)..., It is necessary to build a reservoir under the ground in aquifers in the Mekong Delta. The super-sized reservoir will contribute to the existence and development of the Mekong Delta.Keywords: aquifers, aquifers storage, groundwater, land subsidence, underground reservoir
Procedia PDF Downloads 85