Search results for: traditional knowledge resources classification
17383 An Empirical Investigation on the Dynamics of Knowledge and IT Industries in Korea
Authors: Sang Ho Lee, Tae Heon Moon, Youn Taik Leem, Kwang Woo Nam
Abstract:
Knowledge and IT inputs to other industrial production have become more important as a key factor for the competitiveness of national and regional economies, such as knowledge economies in smart cities. Knowledge and IT industries lead the industrial innovation and technical (r)evolution through low cost, high efficiency in production, and by creating a new value chain and new production path chains, which is referred as knowledge and IT dynamics. This study aims to investigate the knowledge and IT dynamics in Korea, which are analyzed through the input-output model and structural path analysis. Twenty-eight industries were reclassified into seven categories; Agriculture and Mining, IT manufacture, Non-IT manufacture, Construction, IT-service, Knowledge service, Non-knowledge service to take close look at the knowledge and IT dynamics. Knowledge and IT dynamics were analyzed through the change of input output coefficient and multiplier indices in terms of technical innovation, as well as the changes of the structural paths of the knowledge and IT to other industries in terms of new production value creation from 1985 and 2010. The structural paths of knowledge and IT explain not only that IT foster the generation, circulation and use of knowledge through IT industries and IT-based service, but also that knowledge encourages IT use through creating, sharing and managing knowledge. As a result, this paper found the empirical investigation on the knowledge and IT dynamics of the Korean economy. Knowledge and IT has played an important role regarding the inter-industrial transactional input for production, as well as new industrial creation. The birth of the input-output production path has mostly originated from the knowledge and IT industries, while the death of the input-output production path took place in the traditional industries from 1985 and 2010. The Korean economy has been in transition to a knowledge economy in the Smart City.Keywords: knowledge and IT industries, input-output model, structural path analysis, dynamics of knowledge and it, knowledge economy, knowledge city and smart city
Procedia PDF Downloads 33317382 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier
Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim
Abstract:
There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.Keywords: data mining, document classifier, text mining, topic modeling
Procedia PDF Downloads 40217381 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network
Authors: Li Qingjian, Li Ke, He Chun, Huang Yong
Abstract:
In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.Keywords: DBN, SOM, pattern classification, hyperspectral, data compression
Procedia PDF Downloads 34117380 Ontology as Knowledge Capture Tool in Organizations: A Literature Review
Authors: Maria Margaretha, Dana Indra Sensuse, Lukman
Abstract:
Knowledge capture is a step in knowledge life cycle to get knowledge in the organization. Tacit and explicit knowledge are needed to organize in a path, so the organization will be easy to choose which knowledge will be use. There are many challenges to capture knowledge in the organization, such as researcher must know which knowledge has been validated by an expert, how to get tacit knowledge from experts and make it explicit knowledge, and so on. Besides that, the technology will be a reliable tool to help the researcher to capture knowledge. Some paper wrote how ontology in knowledge management can be used for proposed framework to capture and reuse knowledge. Organization has to manage their knowledge, process capture and share will decide their position in the business area. This paper will describe further from literature review about the tool of ontology that will help the organization to capture its knowledge.Keywords: knowledge capture, ontology, technology, organization
Procedia PDF Downloads 60617379 A Reliable Multi-Type Vehicle Classification System
Authors: Ghada S. Moussa
Abstract:
Vehicle classification is an important task in traffic surveillance and intelligent transportation systems. Classification of vehicle images is facing several problems such as: high intra-class vehicle variations, occlusion, shadow, illumination. These problems and others must be considered to develop a reliable vehicle classification system. In this study, a reliable multi-type vehicle classification system based on Bag-of-Words (BoW) paradigm is developed. Our proposed system used and compared four well-known classifiers; Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Decision Tree to classify vehicles into four categories: motorcycles, small, medium and large. Experiments on a large dataset show that our approach is efficient and reliable in classifying vehicles with accuracy of 95.7%. The SVM outperforms other classification algorithms in terms of both accuracy and robustness alongside considerable reduction in execution time. The innovativeness of developed system is it can serve as a framework for many vehicle classification systems.Keywords: vehicle classification, bag-of-words technique, SVM classifier, LDA classifier, KNN classifier, decision tree classifier, SIFT algorithm
Procedia PDF Downloads 35817378 Knowledge Sharing Practices in the Healthcare Sector: Evidences from Primary Health Care Organizations in Indonesia
Authors: Galih Imaduddin
Abstract:
Knowledge has been viewed as one of the most important resources in organizations, including those that operate in the healthcare sector. On that basis, Knowledge Management (KM) is crucial for healthcare organizations to improve their productivity and ensure effective utilization of their resources. Despite the growing interests to understand how KM might work for healthcare organizations, there is only a modest amount of empirical inquiries which have specifically focused on the tools and initiatives to share knowledge. Hence, the main purpose of this paper is to investigate the way healthcare organizations, particularly public sector ones, utilize knowledge sharing tools and initiatives for the benefit of patient-care. Employing a qualitative method, 13 (thirteen) Community Health Centers (CHCs) from a high-performing district health setting in Indonesia were observed. Data collection and analysis involved a repetition of document retrievals and interviews (n=41) with multidisciplinary health professionals who work in these CHCs. A single case study was cultivated reflecting on the means that were used to share knowledge, along with the factors that inhibited the exchange of knowledge among those health professionals. The study discovers that all of the thirteen CHCs exhibited and applied knowledge sharing means which included knowledge documents, virtual communication channels (i.e. emails and chatting applications), and social learning forums such as staff meetings, morning briefings, and communities of practices. However, the intensity of utilization was different among these CHCs, in which organizational culture, leadership, professional boundaries, and employees’ technological aptitude were presumed to be the factors that inhibit knowledge sharing processes. Making a distance with the KM literature of other sectors, this study denounces the primacy of technology-based tools, suggesting that socially-based initiatives could be more reliable for sharing knowledge. This suggestion is largely due to the nature of healthcare work which is still predominantly based on the tacit form of knowledge.Keywords: knowledge management, knowledge sharing, knowledge sharing tools and initiatives, knowledge sharing inhibitors, primary health care organizations
Procedia PDF Downloads 24317377 Students’ Perception of E-Learning Systems at Hashemite University
Authors: Muneer Abbad
Abstract:
In search of better, traditional learning universities have expanded their ways to deliver knowledge and integrate cost effective e-learning systems. Universities’ use of information and communication technologies has grown tremendously over the last decade. To ensure efficient use of the e-learning system, this project aimed to evaluate the good and bad practices, detect errors and determine areas for further improvements in usage. This project critically evaluated the students’ perception of the e-learning system and recommended changes to improve students’ e-learning usage, through conducting questionnaire given to the students that have experience with e-learning systems. Results of the study indicated that, in general, students have favourable perceptions toward using the e-learning system. They seemed to value the resources tool and its contribution to building their knowledge more than other e-learning tools. However, they seemed to perceive a limited value from the audio or video podcasts. This study has shown that technology acceptance is the most variable, factor that contributes to students’ perception and satisfaction of the e-learning system.Keywords: e-learning, perception, Jordan, universities
Procedia PDF Downloads 48917376 The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study
Authors: Colin Smith, Linsey S Passarella
Abstract:
Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level.Keywords: hierarchical classification, layer neural network, scientific field of study, scientific taxonomy
Procedia PDF Downloads 13317375 Finding the Theory of Riba Avoidance: A Scoping Review to Set the Research Agenda
Authors: Randa Ismail Sharafeddine
Abstract:
The Islamic economic system is distinctive in that it implicitly recognizes money as a separate, independent component of production capable of assuming risk and so entitled to the same reward as other Entrepreneurial Factors of Production (EFP). Conventional theory does not identify money capital explicitly as a component of production; rather, interest is recognized as a reward for capital, the interest rate is the cost of money capital, and it is also seen as a cost of physical capital. The conventional theory of production examines how diverse non-entrepreneurial resources (Land, Labor, and Capital) are selected; however, the economic theory community is largely unaware of the reasons why these resources choose to remain as non-entrepreneurial resources as opposed to becoming entrepreneurial resources. Should land, labor, and financial asset owners choose to work for others in return for rent, income, or interest, or should they engage in entrepreneurial risk-taking in order to profit. This is a decision made often in the actual world, but it has never been effectively treated in economic theory. This article will conduct a critical analysis of the conventional classification of factors of production and propose a classification for resource allocation and income distribution (Rent, Wages, Interest, and Profits) that is more rational, even within the conventional theoretical framework for evaluating and developing production and distribution theories. Money is an essential component of production in an Islamic economy, and it must be used to sustain economic activity.Keywords: financial capital, production theory, distribution theory, economic activity, riba avoidance, institution of participation
Procedia PDF Downloads 9117374 Use of Locally Available Organic Resources for Soil Fertility Improvement on Farmers Yield in the Eastern and Greater Accra Regions of Ghana
Authors: Ebenezer Amoquandoh, Daniel Bruce Sarpong, Godfred K. Ofosu-Budu, Andreas Fliessbach
Abstract:
Soil quality is at stake globally, but under tropical conditions, the loss of soil fertility may be existential. The current rates of soil nutrient depletion, erosion and environmental degradation in most of Africa’s farmland urgently require methods for soil fertility restoration through affordable agricultural management techniques. The study assessed the effects of locally available organic resources to improve soil fertility, crop yield and profitability compared to business as usual on farms in the Eastern and Greater Accra regions of Ghana. Apart from this, we analyzed the change of farmers’ perceptions and knowledge upon the experience with the new techniques; the effect of using locally available organic resource on farmers’ yield and determined the factors influencing the profitability of farming. Using the Difference in Mean Score and Proportion to estimate the extent to which farmers’ perceptions, knowledge and practices have changed, the study showed that farmers’ perception, knowledge and practice on the use of locally available organic resources have changed significantly. This paves way for the sustainable use of locally available organic resource for soil fertility improvement. The Propensity Score Matching technique and Endogenous Switching Regression model used showed that using locally available organic resources have the potential to increase crop yield. It was also observed that using the Profit Margin, Net Farm Income and Return on Investment analysis, it is more profitable to use locally available organic resources than other soil fertility amendments techniques studied. The results further showed that socioeconomic, farm characteristics and institutional factors are significant in influencing farmers’ decision to use locally available organic resources and profitability.Keywords: soil fertility, locally available organic resources, perception, profitability, sustainability
Procedia PDF Downloads 14817373 Investigating Knowledge Management in Financial Organisation: Proposing a New Model for Implementing Knowledge Management
Authors: Ziba R. Tehrani, Sanaz Moayer
Abstract:
In the age of the knowledge-based economy, knowledge management has become a key factor in sustainable competitive advantage. Knowledge management is discovering, acquiring, developing, sharing, maintaining, evaluating, and using right knowledge in right time by right person in organization; which is accomplished by creating a right link between human resources, information technology, and appropriate structure, to achieve organisational goals. Studying knowledge management financial institutes shows the knowledge management in banking system is not different from other industries but because of complexity of bank’s environment, the implementation is more difficult. The bank managers found out that implementation of knowledge management will bring many advantages to financial institutes, one of the most important of which is reduction of threat to lose subsequent information of personnel job quit. Also Special attention to internal conditions and environment of the financial institutes and avoidance from copy-making in designing the knowledge management is a critical issue. In this paper, it is tried first to define knowledge management concept and introduce existing models of knowledge management; then some of the most important models which have more similarities with other models will be reviewed. In second step according to bank requirements with focus on knowledge management approach, most major objectives of knowledge management are identified. For gathering data in this stage face to face interview is used. Thirdly these specified objectives are analysed with the response of distribution of questionnaire which is gained through managers and expert staffs of ‘Karafarin Bank’. Finally based on analysed data, some features of exiting models are selected and a new conceptual model will be proposed.Keywords: knowledge management, financial institute, knowledge management model, organisational knowledge
Procedia PDF Downloads 36017372 Challenges and Opportunities of Cloud-Based E-Learning Systems
Authors: Kashif Laeeq, Zubair A. Shaikh
Abstract:
The paradigm of education is drastically changing from conventional to e-learning model. Due to ease of learning with various other benefits, several educational institutions are adopting the e-learning models. Some institutions are still willing to transform their educational system on to e-learning, but due to limited resources, they are still compromising on the old traditional system. The cloud computing could be one of the best solutions to overcome this problem by providing hardware, software, and infrastructure resources with cost efficient manner. The adoption of cloud computing in education will bring revolution in this paradigm. This paper introduces various positive features of e-learning and presents a way how cloud computing technology can be provisioned e-learning model. This paper also investigates the numerous challenges and opportunities that would be observed in cloud computing adoption in e-learning domain. The concept and knowledge present in this paper may create a new direction of research in the domain of cloud-based e-learning.Keywords: cloud-based e-learning, e-learning, cloud computing application, smart learning
Procedia PDF Downloads 40817371 Recreating Home: Restoration and Reflections on the Traditional Houses of Kucapungane
Authors: Sasala Taiban
Abstract:
This paper explores the process and reflections on the restoration of traditional slate houses in the Rukai tribe's old settlement of Kucapungane. Designated as a "Class II Historical Site" by the Ministry of the Interior in 1991 and listed by UNESCO's World Monuments Fund in 2016, Kucapungane holds significant historical and cultural value. However, due to government neglect, tribal migration, and the passing of elders, the traditional knowledge and techniques for constructing slate houses face severe discontinuity. Over the past decades, residents have strived to preserve and transmit these traditional skills through the restoration and reconstruction of their homes. This study employs a qualitative methodology, combining ethnographic fieldwork, historical analysis, and participatory observation. The research includes in-depth interviews, focus group discussions, and hands-on participation in restoration activities to gather comprehensive data. The paper reviews the historical evolution of Kucapungane, the restoration process, and the challenges encountered, such as insufficient resources, technical preservation issues, material acquisition problems, and lack of community recognition. Furthermore, it highlights the importance of house restoration in indigenous consciousness and cultural revival, proposing strategies to address current issues and promote preservation. Through these efforts, the cultural heritage of the Rukai tribe can be sustained and carried forward into the future.Keywords: rukai, kucapungane, slate house restoration, cultural heritage
Procedia PDF Downloads 3717370 Comparison of the Effectiveness of Communication between the Traditional Lecture and IELS
Authors: Ahmed R. Althobaiti, Malcolm Munro
Abstract:
Communication and effective information exchange within technology has become a crucial part of delivering knowledge to students during the learning process. It enables better understanding, builds trust, respect and increase the knowledge between students. This paper examines the communication between undergraduate students and their lecturers during the Traditional lecture and in using the Interactive Electronic Lecture System (IELS). The IELS is an application that offers a set of components, which support the effective communication between students, themselves and their lecturers. Moreover, this paper highlights the communication skills such as sender, receiver, channel and feedback. It will show how the IELS creates a rich communication environment between its users and how they communicate effectively. To examine and check the effectiveness of communication an experiment has been conducted for groups of users; students and lecturers. The first group communicated during the Traditional lecture while the second group communicated by the IELS application. The result showed that there was an effective communication between the second group more than the first group.Keywords: communication, effective information exchange, lecture, student
Procedia PDF Downloads 40417369 A Generalized Weighted Loss for Support Vextor Classification and Multilayer Perceptron
Authors: Filippo Portera
Abstract:
Usually standard algorithms employ a loss where each error is the mere absolute difference between the true value and the prediction, in case of a regression task. In the present, we present several error weighting schemes that are a generalization of the consolidated routine. We study both a binary classification model for Support Vextor Classification and a regression net for Multylayer Perceptron. Results proves that the error is never worse than the standard procedure and several times it is better.Keywords: loss, binary-classification, MLP, weights, regression
Procedia PDF Downloads 9517368 Guidelines for the Development of Community Classroom for Research and Academic Services in Ranong Province
Authors: Jenjira Chinnawong, Phusit Phukamchanoad
Abstract:
The objective of this study is to explore the guidelines for the development of community classroom for research and academic services in Ranong province. By interviewing leaders involved in the development of learning resources, research, and community services, it was found that the leaders' perceptions in the development of learning resources, research, and community services in Ranong, was at the highest level. They perceived at every step on policies of community classroom implementation, research, and community services in Ranong. Leaders' perceptions were at the moderate level in terms of analysis of problems related to procedures of community classroom management, research and community services in Ranong especially in the planning and implementation of the examination, improvement, and development of learning sources to be in good condition and ready to serve the visitors. Their participation in the development of community classroom, research, and community services in Ranong was at a high level, particularly in the participation in monitoring and evaluation of the development of learning resources as well as in reporting on the result of the development of learning resources. The most important thing in the development of community classroom, research and community services in Ranong is the necessity to integrate the three principles of knowledge building in teaching, research and academic services in order to create the identity of the local and community classroom for those who are interested to visit to learn more about the useful knowledge. As a result, community classroom, research, and community services were well-known both inside and outside the university.Keywords: community classroom, learning resources, development, participation
Procedia PDF Downloads 15817367 Preparing Faculty to Deliver Academic Continuity during and after a Disaster
Authors: Melissa Houston
Abstract:
Political pressures, financial restraints, and recent legislation has led to administrators’ at academic institutions to rely upon online education as a viable means for delivering education to students anytime and anywhere. Administrators at academic institutions have utilized online education as a way to ensure that academic continuity takes place while campuses are physically closed or are recovering from damages during and after disaster. There is a gap in the research as to how to best train faculty for academic continuity during and after disasters occur. The lack of available research regarding how faculty members at academic institutions prepared themselves prior to a disaster served as a major rationale for this study. The problem that was addressed in this phenomenological study was to identify the training needed by faculty to provide academic continuity during and after times of disaster. The purpose of the phenomenological study was to provide further knowledge and understanding of the training needed by faculty to provide academic continuity after a disaster. Data collection from this study will help human resource professionals as well as administrators of academic institutions to better prepare faculty to provide academic continuity in the future. Participants were recruited on LinkedIn and were qualified as having been faculty who taught traditional courses during or after a disaster. Faculty members were asked a series of open-ended questions to gain understanding of their experiences of how they acquired training for themselves for academic continuity during and after a disaster. The findings from this study showed that faculty members identified assistance needed including professional development in the form of training and support, communication, and technological resources in order to provide academic continuity. The first conclusion from this study was that academic institutions need to support their students, staff and faculty with disaster training and the resources needed to provide academic continuity during and after disasters. The second conclusion from this study is that while disasters and other academic institution incidents are occurring more frequently, limited funding and the push for online education has created limited resources for academic institutions. The need to create partnerships and consortiums with other academic institutions and communities is crucial for the success and sustainability of academic institutions. Through these partnerships and consortiums academic institutions can share resources, knowledge, and training.Keywords: training, faculty, disaster, academic continuity
Procedia PDF Downloads 18917366 Distributed Actor System for Traffic Simulation
Authors: Han Wang, Zhuoxian Dai, Zhe Zhu, Hui Zhang, Zhenyu Zeng
Abstract:
In traditional microscopic traffic simulation, various approaches have been suggested to implement the single-agent behaviors about lane changing and intelligent driver model. However, when it comes to very large metropolitan areas, microscopic traffic simulation requires more resources and become time-consuming, then macroscopic traffic simulation aggregate trends of interests rather than individual vehicle traces. In this paper, we describe the architecture and implementation of the actor system of microscopic traffic simulation, which exploits the distributed architecture of modern-day cloud computing. The results demonstrate that our architecture achieves high-performance and outperforms all the other traditional microscopic software in all tasks. To the best of our knowledge, this the first system that enables single-agent behavior in macroscopic traffic simulation. We thus believe it contributes to a new type of system for traffic simulation, which could provide individual vehicle behaviors in microscopic traffic simulation.Keywords: actor system, cloud computing, distributed system, traffic simulation
Procedia PDF Downloads 19217365 Multilabel Classification with Neural Network Ensemble Method
Authors: Sezin Ekşioğlu
Abstract:
Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.Keywords: multilabel, classification, neural network, KNN
Procedia PDF Downloads 15517364 Conceptualizing the Knowledge to Manage and Utilize Data Assets in the Context of Digitization: Case Studies of Multinational Industrial Enterprises
Authors: Martin Böhmer, Agatha Dabrowski, Boris Otto
Abstract:
The trend of digitization significantly changes the role of data for enterprises. Data turn from an enabler to an intangible organizational asset that requires management and qualifies as a tradeable good. The idea of a networked economy has gained momentum in the data domain as collaborative approaches for data management emerge. Traditional organizational knowledge consequently needs to be extended by comprehensive knowledge about data. The knowledge about data is vital for organizations to ensure that data quality requirements are met and data can be effectively utilized and sovereignly governed. As this specific knowledge has been paid little attention to so far by academics, the aim of the research presented in this paper is to conceptualize it by proposing a “data knowledge model”. Relevant model entities have been identified based on a design science research (DSR) approach that iteratively integrates insights of various industry case studies and literature research.Keywords: data management, digitization, industry 4.0, knowledge engineering, metamodel
Procedia PDF Downloads 35617363 Tourist’s Perception and Identification of Landscape Elements of Traditional Village
Authors: Mengxin Feng, Feng Xu, Zhiyong Lai
Abstract:
As a typical representative of the countryside, traditional Chinese villages are rich in cultural landscape resources and historical information, but they are still in continuous decline. The problems of people's weak protection awareness and low cultural recognition are still serious, and the protection of cultural heritage is imminent. At the same time, with the rapid development of rural tourism, its cultural value has been explored and paid attention to again. From the perspective of tourists, this study aimed to explore people's perception and identity of cultural landscape resources under the current cultural tourism development background. We selected eleven typical landscape elements of Lingshui Village, a traditional village in Beijing, as research objects and conducted a questionnaire survey with two scales of perception and identity to explore the characteristics of people's perception and identification of landscape elements. We found that there was a strong positive correlation between the perception and identity of each element and that geographical location influenced visitors' overall perception. The perception dimensions scored the highest in location, and the lowest in history and culture, and the identity dimensions scored the highest in meaning and lowest in emotion. We analyzed the impact of visitors' backgrounds on people's perception and identity characteristics and found that age and education were two important factors. The elderly had a higher degree of perceived identity, as the familiarity effect increased their attention. Highly educated tourists had more stringent criteria for perception and identification. The above findings suggest strategies for conserving and optimizing landscape elements in the traditional village to improve the acceptance and recognition of cultural information in traditional villages, which will inject new vitality into the development of traditional villages.Keywords: traditional village, tourist perception, landscape elements, perception and identity
Procedia PDF Downloads 14617362 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 16717361 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 15917360 The Implementation of the Multi-Agent Classification System (MACS) in Compliance with FIPA Specifications
Authors: Mohamed R. Mhereeg
Abstract:
The paper discusses the implementation of the MultiAgent classification System (MACS) and utilizing it to provide an automated and accurate classification of end users developing applications in the spreadsheet domain. However, different technologies have been brought together to build MACS. The strength of the system is the integration of the agent technology with the FIPA specifications together with other technologies, which are the .NET widows service based agents, the Windows Communication Foundation (WCF) services, the Service Oriented Architecture (SOA), and Oracle Data Mining (ODM). Microsoft's .NET windows service based agents were utilized to develop the monitoring agents of MACS, the .NET WCF services together with SOA approach allowed the distribution and communication between agents over the WWW. The Monitoring Agents (MAs) were configured to execute automatically to monitor excel spreadsheets development activities by content. Data gathered by the Monitoring Agents from various resources over a period of time was collected and filtered by a Database Updater Agent (DUA) residing in the .NET client application of the system. This agent then transfers and stores the data in Oracle server database via Oracle stored procedures for further processing that leads to the classification of the end user developers.Keywords: MACS, implementation, multi-agent, SOA, autonomous, WCF
Procedia PDF Downloads 27417359 Impact of E-Resources and Its Acceessability by Faculty and Research Scholars of Academic Libraries: A Case Study
Authors: M. Jaculine Mary
Abstract:
Today electronic resources are considered as an integral part of information sources to impart efficient services to the people aspiring to acquire knowledge in different fields. E-resources are those resources which include documents in e-format that can be accessed via the Internet in a digital library environment. The present study focuses on accessibility and use of e-resources by faculty and research scholars of academic libraries of Coimbatore, TamilNadu, India. The main objectives are to identify their purpose of using e-resources, know the users’ Information and Communication Technology (ICT) skills, identify satisfaction level of availability of e-resources, use of different e-resources, overall user satisfaction of using e-resources, impact of e-resources on their research and problems faced by them in the access of e-resources. The research methodology adopted to collect data for this study includes analysis of survey reports carried out by distributing questionnaires to the users. The findings of the research are based on the study of responses received from questionnaires distributed to a sample population of 200 users. Among the 200 respondents, 55 percent of research students and 45 percent of faculty members were users of e-resources. It was found that a majority of the users agreed that relevant, updated information at a fast pace had influenced them to use e-resources. Most of the respondents were of the view that more numbers of computers in the library would facilitate quick learning. Academic libraries have to take steps to arrange various training and orientation programmes for research students and faculty members to use the availability of e-resources. This study helps the librarian in planning and development of e-resources to provide modern services to their users of libraries. The study recommends that measures should be taken to increase the accessibility level of e-resource services among the information seekers for increasing the best usage of available electronic resources in the academic libraries.Keywords: academic libraries, accessibility, electronic resources, satisfaction level, survey
Procedia PDF Downloads 14217358 Application of Rapid Eye Imagery in Crop Type Classification Using Vegetation Indices
Authors: Sunita Singh, Rajani Srivastava
Abstract:
For natural resource management and in other applications about earth observation revolutionary remote sensing technology plays a significant role. One of such application in monitoring and classification of crop types at spatial and temporal scale, as it provides latest, most precise and cost-effective information. Present study emphasizes the use of three different vegetation indices of Rapid Eye imagery on crop type classification. It also analyzed the effect of each indices on classification accuracy. Rapid Eye imagery is highly demanded and preferred for agricultural and forestry sectors as it has red-edge and NIR bands. The three indices used in this study were: the Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) and all of these incorporated the Red Edge band. The study area is Varanasi district of Uttar Pradesh, India and Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Classification was performed with these three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 85% was obtained using three vegetation indices. The study concluded that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the Rapid Eye imagery can get satisfactory results of classification accuracy without original bands.Keywords: GNDVI, NDRE, NDVI, rapid eye, vegetation indices
Procedia PDF Downloads 36217357 The Level of Satisfaction of the Training Program from the ASEAN Camp II: A Camp to Prepare Human Resources for AEC 2015
Authors: Tanakom Potjanapitak, Kevin Wongleedee
Abstract:
The purpose of this research study was to study the level of satisfaction of the faculty members who participated in the ASEAN camp which aimed to prepare them for the readiness of AEC 2015. The population of this study included all the faculty members who participated in the activities of the ASEAN camp during April, 2014. Based on the survey of 120 faculty members who answered the questionnaire, the data was complied by using SPSS. Mean and standard deviation were utilized in analyzing the data. The findings revealed that the average mean of satisfaction was 4.41, and standard deviation was 0.7188. Moreover, the average mean can be used to rank the level of satisfaction from each of the following factors: helpful knowledge, understandable knowledge, proper materials, suitable knowledge, schedule of activities, staff, and advertising.Keywords: ASEAN camp, training, satisfaction, human resources
Procedia PDF Downloads 42817356 Impact of Dynamic Capabilities on Knowledge Management Processes
Authors: Farzad Yavari, Fereydoun Ohadi
Abstract:
Today, with the development and growth of technology and extreme environmental changes, organizations need to identify opportunities and create creativity and innovation in order to be able to maintain or improve their position in competition with others. In this regard, it is necessary that the resources and assets of the organization are coordinated and reviewed in accordance with the orientation of the strategy. One of the competitive advantages of the present age is knowledge management, which is to equip the organization with the knowledge of the day and disseminate among employees and use it in the development of products and services. Therefore, in the forthcoming research, the impact of dynamic capabilities components (sense, seize, and reconfiguration) has been investigated on knowledge management processes (acquisition, integration and knowledge utilization) in the MAPNA Engineering and Construction Company using a field survey and applied research method. For this purpose, a questionnaire was filled out in the form of 15 questions for dynamic components and 15 questions for measuring knowledge management components and distributed among 46 employees of the knowledge management organization. Validity of the questionnaire was evaluated through content validity and its reliability with Cronbach's coefficient. Pearson correlation test and structural equation technique were used to analyze the data. The results of the research indicate a positive significant correlation between the components of dynamic capabilities and knowledge management.Keywords: dynamic capabilities, knowledge management, sense capability, seize capability, reconfigurable capability, knowledge acquisition, knowledge integrity, knowledge utilization
Procedia PDF Downloads 11917355 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance
Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan
Abstract:
A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection
Procedia PDF Downloads 12517354 Performance Analysis of Artificial Neural Network Based Land Cover Classification
Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul
Abstract:
Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5
Procedia PDF Downloads 546