Search results for: text analytics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1662

Search results for: text analytics

1542 Exploring the Intersection of Accounting, Business, and Economics: Bridging Theory and Practice for Sustainable Growth

Authors: Stephen Acheampong Amoafoh

Abstract:

In today's dynamic economic landscape, businesses face multifaceted challenges that demand strategic foresight and informed decision-making. This abstract explores the pivotal role of financial analytics in driving business performance amidst evolving market conditions. By integrating accounting principles with economic insights, organizations can harness the power of data-driven strategies to optimize resource allocation, mitigate risks, and capitalize on emerging opportunities. This presentation will delve into the practical applications of financial analytics across various sectors, highlighting case studies and empirical evidence to underscore its efficacy in enhancing operational efficiency and fostering sustainable growth. From predictive modeling to performance benchmarking, attendees will gain invaluable insights into leveraging advanced analytics tools to drive profitability, streamline processes, and adapt to changing market dynamics. Moreover, this abstract will address the ethical considerations inherent in financial analytics, emphasizing the importance of transparency, integrity, and accountability in data-driven decision-making. By fostering a culture of ethical conduct and responsible stewardship, organizations can build trust with stakeholders and safeguard their long-term viability in an increasingly interconnected global economy. Ultimately, this abstract aims to stimulate dialogue and collaboration among scholars, practitioners, and policymakers, fostering knowledge exchange and innovation in the realms of accounting, business, and economics. Through interdisciplinary insights and actionable recommendations, participants will be equipped to navigate the complexities of today's business environment and seize opportunities for sustainable success.

Keywords: financial analytics, business performance, data-driven strategies, sustainable growth

Procedia PDF Downloads 53
1541 A Basic Metric Model: Foundation for an Evidence-Based HRM System

Authors: K. M. Anusha, R. Krishnaveni

Abstract:

Crossing a decade of the 21st century, the paradigm of human resources can be seen evolving with the strategic gene induced into it. There seems to be a radical shift descending as the corporate sector calls on its HR team to become strategic rather than administrative. This transferal eventually requires the metrics employed by these HR teams not to be just operationally reactive but to be aligned to an evidence-based strategic thinking. Realizing the growing need for a prescriptive metric model for effective HR analytics, this study has designed a conceptual framework for a basic metric model that can assist IT-HRM professionals to transition to a practice of evidence-based decision-making to enhance organizational performance.

Keywords: metric model, evidence based HR, HR analytics, strategic HR practices, IT sector

Procedia PDF Downloads 403
1540 The Effects of Watching Text-Relevant Video Segments with/without Subtitles on Vocabulary Development of Arabic as a Foreign Language Learners

Authors: Amirreza Karami, Hawraa Nafea Hameed Alzouwain, Freddie A. Bowles

Abstract:

This study investigates the effects of watching text-relevant video segments with/without subtitles on vocabulary development of Arabic as a Foreign Language (AFL) learners. The participants of the study were assigned to two groups: one control group and one experimental group. The control group received no video-based instruction while the experimental group watched a text-relevant video segment in three stages: pre, while, and post-instruction. The preliminary results of the pre-test and post-test show that watching text-relevant video segments through following a pre-while-post procedure can help the vocabulary development of AFL learners more than non-video-based instruction.

Keywords: text-relevant video segments, vocabulary development, Arabic as a Foreign Language, AFL, pre-while-post instruction

Procedia PDF Downloads 165
1539 A Study of Various Ontology Learning Systems from Text and a Look into Future

Authors: Fatima Al-Aswadi, Chan Yong

Abstract:

With the large volume of unstructured data that increases day by day on the web, the motivation of representing the knowledge in this data in the machine processable form is increased. Ontology is one of the major cornerstones of representing the information in a more meaningful way on the semantic Web. The goal of Ontology learning from text is to elicit and represent domain knowledge in the machine readable form. This paper aims to give a follow-up review on the ontology learning systems from text and some of their defects. Furthermore, it discusses how far the ontology learning process will enhance in the future.

Keywords: concept discovery, deep learning, ontology learning, semantic relation, semantic web

Procedia PDF Downloads 521
1538 Principle Components Updates via Matrix Perturbations

Authors: Aiman Elragig, Hanan Dreiwi, Dung Ly, Idriss Elmabrook

Abstract:

This paper highlights a new approach to look at online principle components analysis (OPCA). Given a data matrix X R,^m x n we characterise the online updates of its covariance as a matrix perturbation problem. Up to the principle components, it turns out that online updates of the batch PCA can be captured by symmetric matrix perturbation of the batch covariance matrix. We have shown that as n→ n0 >> 1, the batch covariance and its update become almost similar. Finally, utilize our new setup of online updates to find a bound on the angle distance of the principle components of X and its update.

Keywords: online data updates, covariance matrix, online principle component analysis, matrix perturbation

Procedia PDF Downloads 195
1537 Analysing Competitive Advantage of IoT and Data Analytics in Smart City Context

Authors: Petra Hofmann, Dana Koniel, Jussi Luukkanen, Walter Nieminen, Lea Hannola, Ilkka Donoghue

Abstract:

The Covid-19 pandemic forced people to isolate and become physically less connected. The pandemic has not only reshaped people’s behaviours and needs but also accelerated digital transformation (DT). DT of cities has become an imperative with the outlook of converting them into smart cities in the future. Embedding digital infrastructure and smart city initiatives as part of normal design, construction, and operation of cities provides a unique opportunity to improve the connection between people. The Internet of Things (IoT) is an emerging technology and one of the drivers in DT. It has disrupted many industries by introducing different services and business models, and IoT solutions are being applied in multiple fields, including smart cities. As IoT and data are fundamentally linked together, IoT solutions can only create value if the data generated by the IoT devices is analysed properly. Extracting relevant conclusions and actionable insights by using established techniques, data analytics contributes significantly to the growth and success of IoT applications and investments. Companies must grasp DT and be prepared to redesign their offerings and business models to remain competitive in today’s marketplace. As there are many IoT solutions available today, the amount of data is tremendous. The challenge for companies is to understand what solutions to focus on and how to prioritise and which data to differentiate from the competition. This paper explains how IoT and data analytics can impact competitive advantage and how companies should approach IoT and data analytics to translate them into concrete offerings and solutions in the smart city context. The study was carried out as a qualitative, literature-based research. A case study is provided to validate the preservation of company’s competitive advantage through smart city solutions. The results of the research contribution provide insights into the different factors and considerations related to creating competitive advantage through IoT and data analytics deployment in the smart city context. Furthermore, this paper proposes a framework that merges the factors and considerations with examples of offerings and solutions in smart cities. The data collected through IoT devices, and the intelligent use of it, can create competitive advantage to companies operating in smart city business. Companies should take into consideration the five forces of competition that shape industries and pay attention to the technological, organisational, and external contexts which define factors for consideration of competitive advantages in the field of IoT and data analytics. Companies that can utilise these key assets in their businesses will most likely conquer the markets and have a strong foothold in the smart city business.

Keywords: data analytics, smart cities, competitive advantage, internet of things

Procedia PDF Downloads 133
1536 Blame Classification through N-Grams in E-Commerce Customer Reviews

Authors: Subhadeep Mandal, Sujoy Bhattacharya, Pabitra Mitra, Diya Guha Roy, Seema Bhattacharya

Abstract:

E-commerce firms allow customers to evaluate and review the things they buy as a positive or bad experience. The e-commerce transaction processes are made up of a variety of diverse organizations and activities that operate independently but are connected together to complete the transaction (from placing an order to the goods reaching the client). After a negative shopping experience, clients frequently disregard the critical assessment of these businesses and submit their feedback on an all-over basis, which benefits certain enterprises but is tedious for others. In this article, we solely dealt with negative reviews and attempted to distinguish between negative reviews where the e-commerce firm is explicitly blamed by customers for a bad purchasing experience and other negative reviews.

Keywords: e-commerce, online shopping, customer reviews, customer behaviour, text analytics, n-grams classification

Procedia PDF Downloads 257
1535 Teaching Pragmatic Coherence in Literary Text: Analysis of Chimamanda Adichie’s Americanah

Authors: Joy Aworo-Okoroh

Abstract:

Literary texts are mirrors of a real-life situation. Thus, authors choose the linguistic items that would best encode their intended meanings and messages. However, words mean more than they seem. The meaning of words is not static rather, it is dynamic as they constantly enter into relationships within a context. Literary texts can only be meaningful if all pragmatic cues are identified and interpreted. Drawing upon Teun Van Djik's theory of local pragmatic coherence, it is established that words enter into relations in a text and these relations account for sequential speech acts in the texts. Comprehension of the text is dependent on the interpretation of these relations.To show the relevance of pragmatic coherence in literary text analysis, ten conversations were selected in Americanah in order to give a clear idea of the pragmatic relations used. The conversations were analysed, identifying the speech act and epistemic relations inherent in them. A subtle analysis of the structure of the conversations was also carried out. It was discovered that justification is the most commonly used relation and the meaning of the text is dependent on the interpretation of these instances' pragmatic coherence. The study concludes that to effectively teach literature in English, pragmatic coherence should be incorporated as words mean more than they say.

Keywords: pragmatic coherence, epistemic coherence, speech act, Americanah

Procedia PDF Downloads 136
1534 Analyzing Competitive Advantage of Internet of Things and Data Analytics in Smart City Context

Authors: Petra Hofmann, Dana Koniel, Jussi Luukkanen, Walter Nieminen, Lea Hannola, Ilkka Donoghue

Abstract:

The Covid-19 pandemic forced people to isolate and become physically less connected. The pandemic hasnot only reshaped people’s behaviours and needs but also accelerated digital transformation (DT). DT of cities has become an imperative with the outlook of converting them into smart cities in the future. Embedding digital infrastructure and smart city initiatives as part of the normal design, construction, and operation of cities provides a unique opportunity to improve connection between people. Internet of Things (IoT) is an emerging technology and one of the drivers in DT. It has disrupted many industries by introducing different services and business models, and IoT solutions are being applied in multiple fields, including smart cities. As IoT and data are fundamentally linked together, IoT solutions can only create value if the data generated by the IoT devices is analysed properly. Extracting relevant conclusions and actionable insights by using established techniques, data analytics contributes significantly to the growth and success of IoT applications and investments. Companies must grasp DT and be prepared to redesign their offerings and business models to remain competitive in today’s marketplace. As there are many IoT solutions available today, the amount of data is tremendous. The challenge for companies is to understand what solutions to focus on and how to prioritise and which data to differentiate from the competition. This paper explains how IoT and data analytics can impact competitive advantage and how companies should approach IoT and data analytics to translate them into concrete offerings and solutions in the smart city context. The study was carried out as a qualitative, literature-based research. A case study is provided to validate the preservation of company’s competitive advantage through smart city solutions. The results of the researchcontribution provide insights into the different factors and considerations related to creating competitive advantage through IoT and data analytics deployment in the smart city context. Furthermore, this paper proposes a framework that merges the factors and considerations with examples of offerings and solutions in smart cities. The data collected through IoT devices, and the intelligent use of it, can create a competitive advantage to companies operating in smart city business. Companies should take into consideration the five forces of competition that shape industries and pay attention to the technological, organisational, and external contexts which define factors for consideration of competitive advantages in the field of IoT and data analytics. Companies that can utilise these key assets in their businesses will most likely conquer the markets and have a strong foothold in the smart city business.

Keywords: internet of things, data analytics, smart cities, competitive advantage

Procedia PDF Downloads 94
1533 IoT Based Approach to Healthcare System for a Quadriplegic Patient Using EEG

Authors: R. Gautam, P. Sastha Kanagasabai, G. N. Rathna

Abstract:

The proposed healthcare system enables quadriplegic patients, people with severe motor disabilities to send commands to electronic devices and monitor their vitals. The growth of Brain-Computer-Interface (BCI) has led to rapid development in 'assistive systems' for the disabled called 'assistive domotics'. Brain-Computer-Interface is capable of reading the brainwaves of an individual and analyse it to obtain some meaningful data. This processed data can be used to assist people having speech disorders and sometimes people with limited locomotion to communicate. In this Project, Emotiv EPOC Headset is used to obtain the electroencephalogram (EEG). The obtained data is processed to communicate pre-defined commands over the internet to the desired mobile phone user. Other Vital Information like the heartbeat, blood pressure, ECG and body temperature are monitored and uploaded to the server. Data analytics enables physicians to scan databases for a specific illness. The Data is processed in Intel Edison, system on chip (SoC). Patient metrics are displayed via Intel IoT Analytics cloud service.

Keywords: brain computer interface, Intel Edison, Emotiv EPOC, IoT analytics, electroencephalogram

Procedia PDF Downloads 186
1532 The Impact of Text Modifications on Ethiopian Students’ Reading Comprehension and Motivation

Authors: Asefa Kenefergib, Dawit Amogne, Yinager Teklesellassie

Abstract:

A study investigated the effects of text modifications on reading comprehension and motivation among Ethiopian secondary school students. A total of 120 students participated, initially taking a reading comprehension pretest and completing a reading motivation questionnaire. Afterward, they were divided into three groups: control, simplified, and elaborated. Each group then took part in a reading comprehension posttest and another reading motivation questionnaire following an eight-week instructional intervention. Despite initial differences, both the simplified and elaborated text groups showed comparable levels of reading motivation and comprehension. The data were analyzed using SPSS version 25, with a one-way ANOVA used to assess the effectiveness of the modified texts in enhancing reading comprehension. The results indicated that the experimental groups performed significantly better on the posttest compared to the control group, suggesting that text modifications can positively influence students' comprehension skills. Furthermore, the impact of text modifications on student reading motivation was assessed using a one-way ANOVA. The findings revealed that both the elaborated and simplified text groups scored higher than the control group in various dimensions of reading motivation, including reading efficacy, curiosity, challenge, compliance, and reading work avoidance. However, the control and simplified groups had nearly similar mean scores in the dimension of reading competition. These results clearly demonstrate that modifying texts can enhance EFL learners' reading motivation and comprehension.

Keywords: simplification, elaboration, reading motivation, reading comprehension

Procedia PDF Downloads 38
1531 A Similarity Measure for Classification and Clustering in Image Based Medical and Text Based Banking Applications

Authors: K. P. Sandesh, M. H. Suman

Abstract:

Text processing plays an important role in information retrieval, data-mining, and web search. Measuring the similarity between the documents is an important operation in the text processing field. In this project, a new similarity measure is proposed. To compute the similarity between two documents with respect to a feature the proposed measure takes the following three cases into account: (1) The feature appears in both documents; (2) The feature appears in only one document and; (3) The feature appears in none of the documents. The proposed measure is extended to gauge the similarity between two sets of documents. The effectiveness of our measure is evaluated on several real-world data sets for text classification and clustering problems, especially in banking and health sectors. The results show that the performance obtained by the proposed measure is better than that achieved by the other measures.

Keywords: document classification, document clustering, entropy, accuracy, classifiers, clustering algorithms

Procedia PDF Downloads 518
1530 Mitigating Supply Chain Risk for Sustainability Using Big Data Knowledge: Evidence from the Manufacturing Supply Chain

Authors: Mani Venkatesh, Catarina Delgado, Purvishkumar Patel

Abstract:

The sustainable supply chain is gaining popularity among practitioners because of increased environmental degradation and stakeholder awareness. On the other hand supply chain, risk management is very crucial for the practitioners as it potentially disrupts supply chain operations. Prediction and addressing the risk caused by social issues in the supply chain is paramount importance to the sustainable enterprise. More recently, the usage of Big data analytics for forecasting business trends has been gaining momentum among professionals. The aim of the research is to explore the application of big data, predictive analytics in successfully mitigating supply chain social risk and demonstrate how such mitigation can help in achieving sustainability (environmental, economic & social). The method involves the identification and validation of social issues in the supply chain by an expert panel and survey. Later, we used a case study to illustrate the application of big data in the successful identification and mitigation of social issues in the supply chain. Our result shows that the company can predict various social issues through big data, predictive analytics and mitigate the social risk. We also discuss the implication of this research to the body of knowledge and practice.

Keywords: big data, sustainability, supply chain social sustainability, social risk, case study

Procedia PDF Downloads 408
1529 Assessment of the Validity of Sentiment Analysis as a Tool to Analyze the Emotional Content of Text

Authors: Trisha Malhotra

Abstract:

Sentiment analysis is a recent field of study that computationally assesses the emotional nature of a body of text. To assess its test-validity, sentiment analysis was carried out on the emotional corpus of text from a personal 15-day mood diary. Self-reported mood scores varied more or less accurately with daily mood evaluation score given by the software. On further assessment, it was found that while sentiment analysis was good at assessing ‘global’ mood, it was not able to ‘locally’ identify and differentially score synonyms of various emotional words. It is further critiqued for treating the intensity of an emotion as universal across cultures. Finally, the software is shown not to account for emotional complexity in sentences by treating emotions as strictly positive or negative. Hence, it is posited that a better output could be two (positive and negative) affect scores for the same body of text.

Keywords: analysis, data, diary, emotions, mood, sentiment

Procedia PDF Downloads 269
1528 3D Text Toys: Creative Approach to Experiential and Immersive Learning for World Literacy

Authors: Azyz Sharafy

Abstract:

3D Text Toys is an innovative and creative approach that utilizes 3D text objects to enhance creativity, literacy, and basic learning in an enjoyable and gamified manner. By using 3D Text Toys, children can develop their creativity, visually learn words and texts, and apply their artistic talents within their creative abilities. This process incorporates haptic engagement with 2D and 3D texts, word building, and mechanical construction of everyday objects, thereby facilitating better word and text retention. The concept involves constructing visual objects made entirely out of 3D text/words, where each component of the object represents a word or text element. For instance, a bird can be recreated using words or text shaped like its wings, beak, legs, head, and body, resulting in a 3D representation of the bird purely composed of text. This can serve as an art piece or a learning tool in the form of a 3D text toy. These 3D text objects or toys can be crafted using natural materials such as leaves, twigs, strings, or ropes, or they can be made from various physical materials using traditional crafting tools. Digital versions of these objects can be created using 2D or 3D software on devices like phones, laptops, iPads, or computers. To transform digital designs into physical objects, computerized machines such as CNC routers, laser cutters, and 3D printers can be utilized. Once the parts are printed or cut out, students can assemble the 3D texts by gluing them together, resulting in natural or everyday 3D text objects. These objects can be painted to create artistic pieces or text toys, and the addition of wheels can transform them into moving toys. One of the significant advantages of this visual and creative object-based learning process is that students not only learn words but also derive enjoyment from the process of creating, painting, and playing with these objects. The ownership and creation process further enhances comprehension and word retention. Moreover, for individuals with learning disabilities such as dyslexia, ADD (Attention Deficit Disorder), or other learning difficulties, the visual and haptic approach of 3D Text Toys can serve as an additional creative and personalized learning aid. The application of 3D Text Toys extends to both the English language and any other global written language. The adaptation and creative application may vary depending on the country, space, and native written language. Furthermore, the implementation of this visual and haptic learning tool can be tailored to teach foreign languages based on age level and comprehension requirements. In summary, this creative, haptic, and visual approach has the potential to serve as a global literacy tool.

Keywords: 3D text toys, creative, artistic, visual learning for world literacy

Procedia PDF Downloads 64
1527 Motion Effects of Arabic Typography on Screen-Based Media

Authors: Ibrahim Hassan

Abstract:

Motion typography is one of the most important types of visual communication based on display. Through the digital display media, we can control the text properties (size, direction, thickness, color, etc.). The use of motion typography in visual communication made it have several images. We need to adjust the terminology and clarify the different differences between them, so relying on the word motion typography -considered a general term- is not enough to separate the different communicative functions of the moving text. In this paper, we discuss the different effects of motion typography on Arabic writing and how we can achieve harmony between the movement and the letterform, and we will, during our experiments, present a new type of text movement.

Keywords: Arabic typography, motion typography, kinetic typography, fluid typography, temporal typography

Procedia PDF Downloads 160
1526 Recognition of Grocery Products in Images Captured by Cellular Phones

Authors: Farshideh Einsele, Hassan Foroosh

Abstract:

In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using wellknown geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.

Keywords: camera-based OCR, feature extraction, document, image processing, grocery products

Procedia PDF Downloads 406
1525 Pragmatic Survey of Precedence as Linguistic 'Déjà Vu' in Political Text and Talk

Authors: Zarine Avetisyan

Abstract:

Both in language and literature there exists the theory of recurrence of text and talk chunks which brings us to the notion of precedence. It must be stated that precedence as a pragma-linguistic phenomenon is yet underknown and it is the main objective of the present research to revisit and reveal it thoroughly. In line with the main research objective, analysis of political text and talk provides abundant relevant data for the illustration of the phenomenon of precedence. The analysis focuses on certain pragmatic universals (e.g. intention) and categories (e.g. speech techniques) which lead to the disclosure of the present object of study.

Keywords: intention, precedence, political discourse, pragmatic universals

Procedia PDF Downloads 430
1524 IoT and Advanced Analytics Integration in Biogas Modelling

Authors: Rakesh Choudhary, Ajay Kumar, Deepak Sharma

Abstract:

The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement.

Keywords: internet of things, biogas, renewable energy, sustainability, anaerobic digestion, real-time monitoring, optimization

Procedia PDF Downloads 20
1523 Automatic Assignment of Geminate and Epenthetic Vowel for Amharic Text-to-Speech System

Authors: Tadesse Anberbir, Felix Bankole, Tomio Takara, Girma Mamo

Abstract:

In the development of a text-to-speech synthesizer, automatic derivation of correct pronunciation from the grapheme form of a text is a central problem. Particularly deriving phonological features which are not shown in orthography is challenging. In the Amharic language, geminates and epenthetic vowels are very crucial for proper pronunciation but neither is shown in orthography. In this paper, we proposed and integrated a morphological analyzer into an Amharic Text-to-Speech system, mainly to predict geminates and epenthetic vowel positions, and prepared a duration modeling method. Amharic Text-to-Speech system (AmhTTS) is a parametric and rule-based system that adopts a cepstral method and uses a source filter model for speech production and a Log Magnitude Approximation (LMA) filter as the vocal tract filter. The naturalness of the system after employing the duration modeling was evaluated by sentence listening test and we achieved an average Mean Opinion Score (MOS) 3.4 (68%) which is moderate. By modeling the duration of geminates and controlling the locations of epenthetic vowel, we are able to synthesize good quality speech. Our system is mainly suitable to be customized for other Ethiopian languages with limited resources.

Keywords: Amharic, gemination, speech synthesis, morphology, epenthesis

Procedia PDF Downloads 87
1522 Part of Speech Tagging Using Statistical Approach for Nepali Text

Authors: Archit Yajnik

Abstract:

Part of Speech Tagging has always been a challenging task in the era of Natural Language Processing. This article presents POS tagging for Nepali text using Hidden Markov Model and Viterbi algorithm. From the Nepali text, annotated corpus training and testing data set are randomly separated. Both methods are employed on the data sets. Viterbi algorithm is found to be computationally faster and accurate as compared to HMM. The accuracy of 95.43% is achieved using Viterbi algorithm. Error analysis where the mismatches took place is elaborately discussed.

Keywords: hidden markov model, natural language processing, POS tagging, viterbi algorithm

Procedia PDF Downloads 327
1521 Deep Learning Based-Object-classes Semantic Classification of Arabic Texts

Authors: Imen Elleuch, Wael Ouarda, Gargouri Bilel

Abstract:

We proposes in this paper a Deep Learning based approach to classify text in order to enrich an Arabic ontology based on the objects classes of Gaston Gross. Those object classes are defined by taking into account the syntactic and semantic features of the treated language. Thus, our proposed approach is a hybrid one. In fact, it is based on the one hand on the object classes that represents a knowledge based-approach on classification of text and in the other hand it uses the deep learning approach that use the word embedding-based-approach to classify text. We have applied our proposed approach on a corpus constructed from an Arabic dictionary. The obtained semantic classification of text will enrich the Arabic objects classes ontology. In fact, new classes can be added to the ontology or an expansion of the features that characterizes each object class can be updated. The obtained results are compared to a similar work that treats the same object with a classical linguistic approach for the semantic classification of text. This comparison highlight our hybrid proposed approach that can be ameliorated by broaden the dataset used in the deep learning process.

Keywords: deep-learning approach, object-classes, semantic classification, Arabic

Procedia PDF Downloads 88
1520 An Empirical Study of the Impacts of Big Data on Firm Performance

Authors: Thuan Nguyen

Abstract:

In the present time, data to a data-driven knowledge-based economy is the same as oil to the industrial age hundreds of years ago. Data is everywhere in vast volumes! Big data analytics is expected to help firms not only efficiently improve performance but also completely transform how they should run their business. However, employing the emergent technology successfully is not easy, and assessing the roles of big data in improving firm performance is even much harder. There was a lack of studies that have examined the impacts of big data analytics on organizational performance. This study aimed to fill the gap. The present study suggested using firms’ intellectual capital as a proxy for big data in evaluating its impact on organizational performance. The present study employed the Value Added Intellectual Coefficient method to measure firm intellectual capital, via its three main components: human capital efficiency, structural capital efficiency, and capital employed efficiency, and then used the structural equation modeling technique to model the data and test the models. The financial fundamental and market data of 100 randomly selected publicly listed firms were collected. The results of the tests showed that only human capital efficiency had a significant positive impact on firm profitability, which highlighted the prominent human role in the impact of big data technology.

Keywords: big data, big data analytics, intellectual capital, organizational performance, value added intellectual coefficient

Procedia PDF Downloads 245
1519 Towards a Deconstructive Text: Beyond Language and the Politics of Absences in Samuel Beckett’s Waiting for Godot

Authors: Afia Shahid

Abstract:

The writing of Samuel Beckett is associated with meaning in the meaninglessness and the production of what he calls ‘literature of unword’. The casual escape from the world of words in the form of silences and pauses, in his play Waiting for Godot, urges to ask question of their existence and ultimately leads to investigate the theory behind their use in the play. This paper proposes that these absences (silence and pause) in Beckett’s play force to think ‘beyond’ language. This paper asks how silence and pause in Beckett’s text speak for the emergence of poststructuralist text. It aims to identify the significant features of the philosophy of deconstruction in the play of Beckett to demystify the hostile complicity between literature and philosophy. With the interpretive paradigm of poststructuralism this research focuses on the text as a research data. It attempts to delineate the relationship between poststructuralist theoretical concerns and text of Beckett. Keeping in view the theoretical concerns of Poststructuralist theorist Jacques Derrida, the main concern of the discussion is directed towards the notion of ‘beyond’ language into the absences that are aimed at silencing the existing discourse with the ‘radical irony’ of this anti-formal art that contains its own denial and thus represents the idea of ceaseless questioning and radical contradiction in art and any text. This article asks how text of Beckett vibrates with loud silence and has disrupted language to demonstrate the emptiness of words and thus exploring the limitless void of absences. Beckett’s text resonates with silence and pause that is neither negation nor affirmation rather a poststructuralist’s suspension of reality that is ever changing with the undecidablity of all meanings. Within the theoretical notion of Derrida’s Différance this study interprets silence and pause in Beckett’s art. The silence and pause behave like Derrida’s Différance and have questioned their own existence in the text to deconstruct any definiteness and finality of reality to extend an undecidable threshold of poststructuralists that aims to evade the ‘labyrinth of language’.

Keywords: Différance, language, pause, poststructuralism, silence, text

Procedia PDF Downloads 209
1518 The Platform for Digitization of Georgian Documents

Authors: Erekle Magradze, Davit Soselia, Levan Shughliashvili, Irakli Koberidze, Shota Tsiskaridze, Victor Kakhniashvili, Tamar Chaghiashvili

Abstract:

Since the beginning of active publishing activity in Georgia, voluminous printed material has been accumulated, the digitization of which is an important task. Digitized materials will be available to the audience, and it will be possible to find text in them and conduct various factual research. Digitizing scanned documents means scanning documents, extracting text from the scanned documents, and processing the text into a corresponding language model to detect inaccuracies and grammatical errors. Implementing these stages requires a unified, scalable, and automated platform, where the digital service developed for each stage will perform the task assigned to it; at the same time, it will be possible to develop these services dynamically so that there is no interruption in the work of the platform.

Keywords: NLP, OCR, BERT, Kubernetes, transformers

Procedia PDF Downloads 144
1517 In-Context Meta Learning for Automatic Designing Pretext Tasks for Self-Supervised Image Analysis

Authors: Toktam Khatibi

Abstract:

Self-supervised learning (SSL) includes machine learning models that are trained on one aspect and/or one part of the input to learn other aspects and/or part of it. SSL models are divided into two different categories, including pre-text task-based models and contrastive learning ones. Pre-text tasks are some auxiliary tasks learning pseudo-labels, and the trained models are further fine-tuned for downstream tasks. However, one important disadvantage of SSL using pre-text task solving is defining an appropriate pre-text task for each image dataset with a variety of image modalities. Therefore, it is required to design an appropriate pretext task automatically for each dataset and each downstream task. To the best of our knowledge, the automatic designing of pretext tasks for image analysis has not been considered yet. In this paper, we present a framework based on In-context learning that describes each task based on its input and output data using a pre-trained image transformer. Our proposed method combines the input image and its learned description for optimizing the pre-text task design and its hyper-parameters using Meta-learning models. The representations learned from the pre-text tasks are fine-tuned for solving the downstream tasks. We demonstrate that our proposed framework outperforms the compared ones on unseen tasks and image modalities in addition to its superior performance for previously known tasks and datasets.

Keywords: in-context learning (ICL), meta learning, self-supervised learning (SSL), vision-language domain, transformers

Procedia PDF Downloads 80
1516 Emotional Analysis for Text Search Queries on Internet

Authors: Gemma García López

Abstract:

The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.

Keywords: emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing

Procedia PDF Downloads 141
1515 Predictive Analytics for Theory Building

Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim

Abstract:

Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.

Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building

Procedia PDF Downloads 276
1514 Encryption and Decryption of Nucleic Acid Using Deoxyribonucleic Acid Algorithm

Authors: Iftikhar A. Tayubi, Aabdulrahman Alsubhi, Abdullah Althrwi

Abstract:

The deoxyribonucleic acid text provides a single source of high-quality Cryptography about Deoxyribonucleic acid sequence for structural biologists. We will provide an intuitive, well-organized and user-friendly web interface that allows users to encrypt and decrypt Deoxy Ribonucleic Acid sequence text. It includes complex, securing by using Algorithm to encrypt and decrypt Deoxy Ribonucleic Acid sequence. The utility of this Deoxy Ribonucleic Acid Sequence Text is that, it can provide a user-friendly interface for users to Encrypt and Decrypt store the information about Deoxy Ribonucleic Acid sequence. These interfaces created in this project will satisfy the demands of the scientific community by providing fully encrypt of Deoxy Ribonucleic Acid sequence during this website. We have adopted a methodology by using C# and Active Server Page.NET for programming which is smart and secure. Deoxy Ribonucleic Acid sequence text is a wonderful piece of equipment for encrypting large quantities of data, efficiently. The users can thus navigate from one encoding and store orange text, depending on the field for user’s interest. Algorithm classification allows a user to Protect the deoxy ribonucleic acid sequence from change, whether an alteration or error occurred during the Deoxy Ribonucleic Acid sequence data transfer. It will check the integrity of the Deoxy Ribonucleic Acid sequence data during the access.

Keywords: algorithm, ASP.NET, DNA, encrypt, decrypt

Procedia PDF Downloads 234
1513 ViraPart: A Text Refinement Framework for Automatic Speech Recognition and Natural Language Processing Tasks in Persian

Authors: Narges Farokhshad, Milad Molazadeh, Saman Jamalabbasi, Hamed Babaei Giglou, Saeed Bibak

Abstract:

The Persian language is an inflectional subject-object-verb language. This fact makes Persian a more uncertain language. However, using techniques such as Zero-Width Non-Joiner (ZWNJ) recognition, punctuation restoration, and Persian Ezafe construction will lead us to a more understandable and precise language. In most of the works in Persian, these techniques are addressed individually. Despite that, we believe that for text refinement in Persian, all of these tasks are necessary. In this work, we proposed a ViraPart framework that uses embedded ParsBERT in its core for text clarifications. First, used the BERT variant for Persian followed by a classifier layer for classification procedures. Next, we combined models outputs to output cleartext. In the end, the proposed model for ZWNJ recognition, punctuation restoration, and Persian Ezafe construction performs the averaged F1 macro scores of 96.90%, 92.13%, and 98.50%, respectively. Experimental results show that our proposed approach is very effective in text refinement for the Persian language.

Keywords: Persian Ezafe, punctuation, ZWNJ, NLP, ParsBERT, transformers

Procedia PDF Downloads 215