Search results for: neutron activation detectors
1138 Effect of Particle Size on Alkali-Activation of Slag
Authors: E. Petrakis, V. Karmali, K. Komnitsas
Abstract:
In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 μm to 11.9 μm. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties.Keywords: alkali activation, compressive strength, grinding time, particle size distribution, slag, structural integrity
Procedia PDF Downloads 1371137 Effect of Eddy Irrigant Activation on Cleanliness of the Root Canal Wall during Pulpectomy of Primary Teeth
Authors: Rasha Sharaf, Nehal Sharaf
Abstract:
Pulpectomy of primary teeth aims to remove the necrotic pulp tissue from the infected root canal and clean the root canal walls from any remnant of pulp tissue. Different irrigant activation systems have been recently used, and one of these devices is the Eddy which helps in removal of smear layer and improves the intimate contact between the filling material and the root canal wall. Aim: To evaluate the efficacy of Eddy in cleanliness of the root canal during pulpectomy of primary teeth. Materials and methods: 45 freshly extracted primary anterior teeth were divided into 3 equal groups, in the 1st group sodium hypochlorite only was used during pulpectomy, in the 2nd group irrigation using sodium hypochlorite with file agitation was performed and in the 3rd group sodium hypochlorite was used with Eddy for irrigant activation. All samples were sectioned longitudinally and scanned using scanning electron microscope to evaluate the cleanliness of the root canals. Results: It was found that Eddy showed high efficacy in removal of smear layer during pulpectomy of primary teeth.Keywords: Eddy, irrigant activation, irrigation, pulpectomy
Procedia PDF Downloads 1521136 Pool Fire Tests of Dual Purpose Casks for Spent Nuclear Fuel
Authors: K. S. Bang, S. H. Yu, J. C. Lee, K. S. Seo, S. H. Lee
Abstract:
Dual purpose casks are used for storage and transport of spent nuclear fuel assemblies. Therefore, they satisfy the requirements prescribed in the Korea NSSC Act 2013-27, the IAEA Safety Standard Series No. SSR-6, and US 10 CFR Part 71. These regulatory guidelines classify the dual purpose cask as a Type B package, and state that a Type B package must be able to withstand a temperature of 800°C for a period of 30 min. Therefore, a fire test was conducted using a one-sixth slice of a real cask to estimate the thermal integrity of the dual purpose cask at a temperature of 800°C. The neutron shield reached a maximum temperature of 183°C, which indicates that dual purpose cask was properly insulated from the heat of the flames. The temperature rise of the basket during the fire test was 29°C. Therefore, the integrity of a spent nuclear fuel is estimated to be maintained. The temperature was lower when a cooling pin was installed. The neutron shielding was therefore protected adequately by cooling pin. As a result, the thermal integrity of the dual purpose cask was maintained and the cask is judged to be sufficiently safe for temperatures under 800°C.Keywords: dual purpose cask, spent nuclear fuel, pool fire test, integrity
Procedia PDF Downloads 4611135 The Monitor for Neutron Dose in Hadrontherapy Project: Secondary Neutron Measurement in Particle Therapy
Authors: V. Giacometti, R. Mirabelli, V. Patera, D. Pinci, A. Sarti, A. Sciubba, G. Traini, M. Marafini
Abstract:
The particle therapy (PT) is a very modern technique of non invasive radiotherapy mainly devoted to the treatment of tumours untreatable with surgery or conventional radiotherapy, because localised closely to organ at risk (OaR). Nowadays, PT is available in about 55 centres in the word and only the 20\% of them are able to treat with carbon ion beam. However, the efficiency of the ion-beam treatments is so impressive that many new centres are in construction. The interest in this powerful technology lies to the main characteristic of PT: the high irradiation precision and conformity of the dose released to the tumour with the simultaneous preservation of the adjacent healthy tissue. However, the beam interactions with the patient produce a large component of secondary particles whose additional dose has to be taken into account during the definition of the treatment planning. Despite, the largest fraction of the dose is released to the tumour volume, a non-negligible amount is deposed in other body regions, mainly due to the scattering and nuclear interactions of the neutrons within the patient body. One of the main concerns in PT treatments is the possible occurrence of secondary malignant neoplasm (SMN). While SMNs can be developed up to decades after the treatments, their incidence impacts directly life quality of the cancer survivors, in particular in pediatric patients. Dedicated Treatment Planning Systems (TPS) are used to predict the normal tissue toxicity including the risk of late complications induced by the additional dose released by secondary neutrons. However, no precise measurement of secondary neutrons flux is available, as well as their energy and angular distributions: an accurate characterization is needed in order to improve TPS and reduce safety margins. The project MONDO (MOnitor for Neutron Dose in hadrOntherapy) is devoted to the construction of a secondary neutron tracker tailored to the characterization of that secondary neutron component. The detector, based on the tracking of the recoil protons produced in double-elastic scattering interactions, is a matrix of thin scintillating fibres, arranged in layer x-y oriented. The final size of the object is 10 x 10 x 20 cm3 (squared 250µm scint. fibres, double cladding). The readout of the fibres is carried out with a dedicated SPAD Array Sensor (SBAM) realised in CMOS technology by FBK (Fondazione Bruno Kessler). The detector is under development as well as the SBAM sensor and it is expected to be fully constructed for the end of the year. MONDO will make data tacking campaigns at the TIFPA Proton Therapy Center of Trento, at the CNAO (Pavia) and at HIT (Heidelberg) with carbon ion in order to characterize the neutron component and predict the additional dose delivered on the patients with much more precision and to drastically reduce the actual safety margins. Preliminary measurements with charged particles beams and MonteCarlo FLUKA simulation will be presented.Keywords: secondary neutrons, particle therapy, tracking detector, elastic scattering
Procedia PDF Downloads 2231134 Balancing Resources and Demands in Activation Work with Young Adults: Exploring Potentials of the Job Demands-Resources Theory
Authors: Gurli Olsen, Ida Bruheim Jensen
Abstract:
Internationally, many young adults not in education, employment, or training (NEET) remain in temporary solutions such as labour market measures or other forms of welfare arrangements. These trends have been associated with ineffective labour market measures, an underfunded theoretical foundation for activation work, limited competence among social workers and labour market employees in using ordinary workplaces as job inclusion measures, and an overemphasis on young adults’ personal limitations such as health challenges and lack of motivation. Two competing models have been prominent in activation work: Place‐Then‐Train and Train‐Then‐Place. A traditional strategy for labour market measures has been to first motivate NEETs to sheltered work and training and then to the regular labour market (train then place). Measures such as Supported Employment (SE) and Individual Placement and Support (IPS) advocate for rapid entry into paid work at the regular labour market with close supervision and training from social workers, employees, and others (place then train). None of these models demonstrate unquestionable results. In this web of working life measures, young adults (NEETs) experience a lack of confidence in their own capabilities and coping strategies vis-á-vis labour market- and educational demands. Drawing on young adults’ own experiences, we argue that the Job Demands-Resources (JD-R) Theory can contribute to the theoretical and practical dimensions of activation work. This presentation will focus on what the JD-R theory entails and how it can be fruitful in activation work with NEETs (what and how). The overarching rationale of the JD-R theory is that an enduring balance between demands (e.g., deadlines, working hours) and resources (e.g., social support, enjoyable work tasks) is important for job performance for people in any job and potentially in other meaningful activities. Extensive research has demonstrated that a balance between demands and resources increases motivation and decreases stress. Nevertheless, we have not identified literature on the JD-R theory in activation work with young adults.Keywords: activation work, job demands-resources theory, social work, theory development
Procedia PDF Downloads 791133 Removal of Heavy Metals by KOH Activated Diplotaxis harra Biomass: Experimental Design Optimization
Authors: H. Tounsadi, A. Khalidi, M. Abdennouri, N. Barka
Abstract:
The objective of this study was to produce high quality activated carbons from Diplotaxis harra biomass by potassium hydroxide activation and their application for heavy metals removal. To reduce the number of experiments, full factorial experimental design at two levels were carried out to occur optimal preparation conditions and better conditions for the removal of cadmium and cobalt ions from aqueous solutions. The influence of different variables during the activation process, such as carbonization temperature, activation temperature, activation time and impregnation ratio (g KOH/g carbon) have been investigated, and the best production conditions were determined. The experimental results showed that removal of cadmium and cobalt ions onto activated carbons was more sensitive to methylene blue index instead of iodine number. Although, the removal of cadmium and cobalt ions is more influenced by activation temperature with a negative effect followed by the impregnation ratio with a positive impact. Based on the statistical data, the best conditions for the removal of cadmium and cobalt by prepared activated carbons have been established. The maximum iodine number and methylene blue index obtained under these conditions and the greater sorption capacities for cadmium and cobalt were investigated. These sorption capacities were greater than those of a commercial activated carbon used in water treatment.Keywords: activated carbon, cadmium, cobalt, Diplotaxis harra, experimental design, potassium hydroxide
Procedia PDF Downloads 2001132 V0 Physics at LHCb. RIVET Analysis Module for Z Boson Decay to Di-Electron
Authors: A. E. Dumitriu
Abstract:
The LHCb experiment is situated at one of the four points around CERN’s Large Hadron Collider, being a single-arm forward spectrometer covering 10 mrad to 300 (250) mrad in the bending (non-bending) plane, designed primarily to study particles containing b and c quarks. Each one of LHCb’s sub-detectors specializes in measuring a different characteristic of the particles produced by colliding protons, its significant detection characteristics including a high precision tracking system and 2 ring-imaging Cherenkov detectors for particle identification. The major two topics that I am currently concerned in are: the RIVET project (Robust Independent Validation of Experiment and Theory) which is an efficient and portable tool kit of C++ class library useful for validation and tuning of Monte Carlo (MC) event generator models by providing a large collection of standard experimental analyses useful for High Energy Physics MC generator development, validation, tuning and regression testing and V0 analysis for 2013 LHCb NoBias type data (trigger on bunch + bunch crossing) at √s=2.76 TeV.Keywords: LHCb physics, RIVET plug-in, RIVET, CERN
Procedia PDF Downloads 4281131 Progress in Accuracy, Reliability and Safety in Firedamp Detection
Authors: José Luis Lorenzo Bayona, Ljiljana Medic-Pejic, Isabel Amez Arenillas, Blanca Castells Somoza
Abstract:
The communication presents the study results carried out by the Official Laboratory J. M. Madariaga (LOM) of the Polytechnic University of Madrid to analyze the reliability of methane detection systems used in underground mining. Poor firedamp control in work can cause from production stoppages to fatal accidents and since there is currently a great variety of equipment with different functional characteristics, a study is needed to indicate which measurement principles have the highest degree of confidence. For the development of the project, a series of fixed, transportable and portable methane detectors with different measurement principles have been selected to subject them to laboratory tests following the methods described in the applicable regulations. The test equipment has been the one usually used in the certification and calibration of these devices, subject to the LOM quality system, and the tests have been carried out on detectors accessible in the market. The conclusions establish the main advantages and disadvantages of the equipment according to the measurement principle used; catalytic combustion, interferometry and infrared absorption.Keywords: ATEX standards, gas detector, methane meter, mining safety
Procedia PDF Downloads 1371130 Test of Moisture Sensor Activation Speed
Authors: I. Parkova, A. Vališevskis, A. Viļumsone
Abstract:
Nocturnal enuresis or bed-wetting is intermittent incontinence during sleep of children after age 5 that may precipitate wide range of behavioural and developmental problems. One of the non-pharmacological treatment methods is the use of a bed-wetting alarm system. In order to improve comfort conditions of nocturnal enuresis alarm system, modular moisture sensor should be replaced by a textile sensor. In this study behaviour and moisture detection speed of woven and sewn sensors were compared by analysing change in electrical resistance after solution (salt water) was dripped on sensor samples. Material of samples has different structure and yarn location, which affects solution detection rate. Sensor system circuit was designed and two sensor tests were performed: system activation test and false alarm test to determine the sensitivity of the system and activation threshold. Sewn sensor had better result in system’s activation test – faster reaction, but woven sensor had better result in system’s false alarm test – it was less sensitive to perspiration simulation. After experiments it was found that the optimum switching threshold is 3V in case of 5V input voltage, which provides protection against false alarms, for example – during intensive sweating.Keywords: conductive yarns, moisture textile sensor, industry, material
Procedia PDF Downloads 2461129 Radical Degradation of Acetaminophen with Peroxymonosulfate-Based Oxidation Processes
Authors: Chaoqun Tan, Naiyun Gao, Xiaoyan Xin
Abstract:
Perxymonosulfate (PMS)-based oxidation processes, as an alternative of hydrogen peroxide-based oxidation processes, are more and more popular because of reactive radical species (SO4-•, OH•) produced in systems. Magnetic nano-scaled particles Fe3O4 and ferrous anion (Fe2+) were studied for the activation of PMS for degradation of acetaminophen (APAP) in water. The Fe3O4 MNPs were found to effectively catalyze PMS for APAP and the reactions well followed a pseudo-first-order kinetics pattern (R2>0.95). While the degradation of APAP in PMS-Fe2+ system proceeds through two stages: a fast stage and a much slower stage. Within 5 min, approximately 7% and 18% of 10 ppm APAP was accomplished by 0.2 mM PMS in Fe3O4 (0.8g/L) and Fe2+ (0.1mM) activation process. However, as reaction proceed to 120 min, approximately 75% and 35% of APAP was removed in Fe3O4 activation process and Fe2+ activation process, respectively. Within 120 min, the mineralization of APAP was about 7.5% and 5.0% (initial APAP of 10 ppm and [PMS]0 of 0.2 mM) in Fe3O4-PMS and Fe2+-PMS system, while the mineralization could be greatly increased to about 31% and 40% as [PMS]0 increased to 2.0 mM in in Fe3O4-PMS and Fe2+-PMS system, respectively. At last, the production of reactive radical species were validated directly from Electron Paramagnetic Resonance (ESR) tests with 0.1 M 5,5-Dimethyl-1-pyrrolidine N-oxide (DMPO). Plausible mechanisms on the radical generation from Fe3O4 and Fe2+ activation of PMS are proposed on the results of radial identification tests. The results demonstrated that Fe3O4 MNPs activated PMS and Fe2+ anion activated PMS systems are promising technologies for water pollution caused by contaminants such as pharmaceutical. Fe3O4-PMS system is more suitable for slowly remediation, while Fe2+-PMS system is more suitable for fast remediation.Keywords: acetaminophen, peroxymonosulfate, radicals, Electron Paramagnetic Resonance (ESR)
Procedia PDF Downloads 3501128 Force Distribution and Muscles Activation for Ankle Instability Patients with Rigid and Kinesiotape while Standing
Authors: Norazlin Mohamad, Saiful Adli Bukry, Zarina Zahari, Haidzir Manaf, Hanafi Sawalludin
Abstract:
Background: Deficit in neuromuscular recruitment and decrease force distribution were the common problems among ankle instability patients due to altered joint kinematics that lead to recurrent ankle injuries. Rigid Tape and KT Tape had widely been used as therapeutic and performance enhancement tools in ankle stability. However the difference effect between this two tapes is still controversial. Objective: To investigate the different effect between Rigid Tape and KT Tape on force distribution and muscle activation among ankle instability patients while standing. Study design: Crossover trial. Participants: 27 patients, age between 18 to 30 years old participated in this study. All the subjects were applied with KT Tape & Rigid Tape on their affected ankle with 3 days of interval for each intervention. The subjects were tested with their barefoot (without tape) first to act as a baseline before proceeding with KT Tape, and then with Rigid Tape. Result: There were no significant difference on force distribution at forefoot and back-foot for both tapes while standing. However the mean data shows that Rigid Tape has the highest force distribution at back-foot rather than forefoot when compared with KT Tape that had more force distribution at forefoot while standing. Regarding muscle activation (Peroneus Longus), results showed significant difference between Rigid Tape and KT Tape (p= 0.048). However, there was no significant difference on Tibialis Anterior muscle activation between both tapes while standing. Conclusion: The results indicated that Peroneus longus muscle was more active when applied Rigid Tape rather than KT Tape in ankle instability patients while standing.Keywords: ankle instability, kinematic, muscle activation, force distribution, Rigid Tape, KT tape
Procedia PDF Downloads 4171127 The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel
Authors: S. N. Turkmen, A. S. Kipcak, N. Tugrul, E. M. Derun, S. Piskin
Abstract:
Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%.Keywords: activated carbon, adsorption, chemical activation, microwave, pomegranate peel
Procedia PDF Downloads 5471126 Error Probability of Multi-User Detection Techniques
Authors: Komal Babbar
Abstract:
Multiuser Detection is the intelligent estimation/demodulation of transmitted bits in the presence of Multiple Access Interference. The authors have presented the Bit-error rate (BER) achieved by linear multi-user detectors: Matched filter (which treats the MAI as AWGN), Decorrelating and MMSE. In this work, authors investigate the bit error probability analysis for Matched filter, decorrelating, and MMSE. This problem arises in several practical CDMA applications where the receiver may not have full knowledge of the number of active users and their signature sequences. In particular, the behavior of MAI at the output of the Multi-user detectors (MUD) is examined under various asymptotic conditions including large signal to noise ratio; large near-far ratios; and a large number of users. In the last section Authors also shows Matlab Simulation results for Multiuser detection techniques i.e., Matched filter, Decorrelating, MMSE for 2 users and 10 users.Keywords: code division multiple access, decorrelating, matched filter, minimum mean square detection (MMSE) detection, multiple access interference (MAI), multiuser detection (MUD)
Procedia PDF Downloads 5271125 Vertebrate Model to Examine the Biological Effectiveness of Different Radiation Qualities
Authors: Rita Emília Szabó, Róbert Polanek, Tünde Tőkés, Zoltán Szabó, Szabolcs Czifrus, Katalin Hideghéty
Abstract:
Purpose: Several feature of zebrafish are making them amenable for investigation on therapeutic approaches such as ionizing radiation. The establishment of zebrafish model for comprehensive radiobiological research stands in the focus of our investigation, comparing the radiation effect curves of neutron and photon irradiation. Our final aim is to develop an appropriate vertebrate model in order to investigate the relative biological effectiveness of laser driven ionizing radiation. Methods and Materials: After careful dosimetry series of viable zebrafish embryos were exposed to a single fraction whole-body neutron-irradiation (1,25; 1,875; 2; 2,5 Gy) at the research reactor of the Technical University of Budapest and to conventional 6 MeV photon beam at 24 hour post-fertilization (hpf). The survival and morphologic abnormalities (pericardial edema, spine curvature) of each embryo were assessed for each experiment at 24-hour intervals from the point of fertilization up to 168 hpf (defining the dose lethal for 50% (LD50)). Results: In the zebrafish embryo model LD50 at 20 Gy dose level was defined and the same lethality were found at 2 Gy dose from the reactor neutron beam resulting RBE of 10. Dose-dependent organ perturbations were detected on macroscopic (shortening of the body length, spine curvature, microcephaly, micro-ophthalmia, micrognathia, pericardial edema, and inhibition of yolk sac resorption) and microscopic (marked cellular changes in skin, cardiac, gastrointestinal system) with the same magnitude of dose difference. Conclusion: In our observations, we found that zebrafish embryo model can be used for investigating the effects of different type of ionizing radiation and this system proved to be highly efficient vertebrate model for preclinical examinations.Keywords: ionizing radiation, LD50, relative biological effectiveness, zebrafish embryo
Procedia PDF Downloads 3091124 Infrared Photodetectors Based on Nanowire Arrays: Towards Far Infrared Region
Authors: Mohammad Karimi, Magnus Heurlin, Lars Samuelson, Magnus Borgstrom, Hakan Pettersson
Abstract:
Nanowire semiconductors are promising candidates for optoelectronic applications such as solar cells, photodetectors and lasers due to their quasi-1D geometry and large surface to volume ratio. The functional wavelength range of NW-based detectors is typically limited to the visible/near-infrared region. In this work, we present electrical and optical properties of IR photodetectors based on large square millimeter ensembles (>1million) of vertically processed semiconductor heterostructure nanowires (NWs) grown on InP substrates which operate in longer wavelengths. InP NWs comprising single or multiple (20) InAs/InAsP QDics axially embedded in an n-i-n geometry, have been grown on InP substrates using metal organic vapor phase epitaxy (MOVPE). The NWs are contacted in vertical direction by atomic layer deposition (ALD) deposition of 50 nm SiO2 as an insulating layer followed by sputtering of indium tin oxide (ITO) and evaporation of Ti and Au as top contact layer. In order to extend the sensitivity range to the mid-wavelength and long-wavelength regions, the intersubband transition within conduction band of InAsP QDisc is suggested. We present first experimental indications of intersubband photocurrent in NW geometry and discuss important design parameters for realization of intersubband detectors. Key advantages with the proposed design include large degree of freedom in choice of materials compositions, possible enhanced optical resonance effects due to periodically ordered NW arrays and the compatibility with silicon substrates. We believe that the proposed detector design offers the route towards monolithic integration of compact and sensitive III-V NW long wavelength detectors with Si technology.Keywords: intersubband photodetector, infrared, nanowire, quantum disc
Procedia PDF Downloads 3861123 Carbon@NiCoFeS Nanoparticles for Photocatalytic Degradation of Organic Pollutants via Peroxymonosulfate Activation
Authors: Raqiqa Tur Rasool, Ghulam Abbas Ashraf
Abstract:
This study presents the synthesis and application of Carbon@NiCoFeS nanoparticles as a photocatalyst for the degradation of organic pollutants through peroxymonosulfate (PMS) activation. The Carbon@NiCoFeS nanoparticles, synthesized via a hydrothermal method, exhibit a highly crystalline and uniformly distributed nanostructure, as confirmed by XRD, SEM, TEM, and FTIR analyses. The photocatalytic performance was tested using ibuprofen (IBU) as a model pollutant under visible light, demonstrating remarkable efficiency across various conditions, including different concentrations of photocatalyst and PMS and a range of pH values. The enhanced activity is attributed to the synergistic effects of Ni, Co, and Fe, promoting effective electron-hole separation and reactive radical generation, primarily SO4•− and •OH. Quenching experiments highlighted sulfate radicals' predominant role in the degradation process. The Carbon@NiCoFeS photocatalyst also showed excellent reusability and stability over multiple cycles, and its versatility in degrading various organic pollutants underscores its potential for practical wastewater treatment applications. This research offers significant insights into multi-metal sulfide photocatalyst design, showcasing Carbon@NiCoFeS nanoparticles' promising role in environmental remediation via efficient PMS activation.Keywords: NiCoFeS nanoparticles, photocatalytic degradation, peroxymonosulfate activation, organic pollutant removal, wastewater treatment
Procedia PDF Downloads 471122 Rh(III)-Catalyzed Cross-Coupling Reaction of 8-Methylquinolines with Maleimides
Authors: Sangil Han, In Su Kim
Abstract:
Transition-metal-catalyzed C–H bond activation and its subsequent functionalization has been one of the most attractive topics in organic synthesis because of its remarkable potential for atom economy and environmental sustainability. In this addition, a variety of C(sp2)–H functionalization has been developed under metal catalysis in the past decade. Recently, much attention has been moved towards the C(sp3)–H functionalization events, which continue to be a challenging issue. In this area, directing group assisted sp3 C–H functionalization has been explored by use of amides, carboxylic acids, oximes, N-heterocycles, and etc. In particular, 8-methylquinolines have been found as good substrates for sp3 C–H functionalization due to its ability to form cyclometalated complexes. Succinimides have been recognized as privileged structural cores found in a number of bioactive natural products, pharmaceuticals, and functional materials. Furthermore, the reduced derivatives such as pyrrolidines and γ-lactams have been also found in a large number of pharmaceutical relevant molecules, thus making them one of the most important and promising compounds. We herein describe the first C(sp3)–H activation of 8-methylquinolines and subsequent functionalization with maleimides to afford various succinimide derivatives.Keywords: C(sp3)–H activation, 8-methylquinolines, maleimides, succinimides
Procedia PDF Downloads 2211121 Determination of Natural Logarithm of Diffusion Coefficient and Activation Energy of Thin Layer Drying Process of Ginger Rhizome Slices
Authors: Austin Ikechukwu Gbasouzor, Sam Nna Omenyi, Sabuj Malli
Abstract:
This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhizome. Drying of ginger was modeled, and then the effective diffusion coefficient and activation energy where determined. For this purpose, the experiments were done at six levels of varied temperature ranging from (10, 20, 30, 40, 50, 60°C). The average effective diffusion coefficient for their studies samples for temperature range of 40°C to 70°C was 4.48 x10-10m²/s, 4.96 x10-10m²/s, and 5.31 x10-10m²/s for 0.8, 1.5 and 3m/s drying air velocity respectively. These values closely agreed with the values of effective diffusion coefficients obtained in these studies for the variously treated ginger rhizomes and test conducted.Keywords: activation energy, diffusion coefficients, drying model, drying time, ginger rhizomes, moisture ratio, thin layer
Procedia PDF Downloads 1661120 Activation of Caspase 3 by Terpenoids and Flavonoids in Cancer Cell Lines
Authors: Nusrat Masood, Vijaya Dubey, Suaib Luqman
Abstract:
Caspase 3, a member of cysteine-aspartic acid protease family, is an imperative indicator for cell death particularly when substantiating apoptosis. Thus, caspase 3 is an interesting target for the discovery and development of anticancer agent. We adopted a four level assessment of both terpenoids and flavonoids and thus experimentally performed the enzymatic assay in cell free system as well as in cancer cell line which was validated through real time expression and molecular interaction studies. A significant difference was observed with both the class of natural products indicating terpenoids as better activators of caspase 3 compared to flavonoids both in the cell free system as well as in cell lines. The expression analysis, activation constant and binding energy also correlate well with the enzyme activity. Overall, terpenoids had an unswerving effect on caspase 3 in all the tested system while flavonoids indirectly affect enzyme activity.Keywords: Caspase 3, terpenoids, flavonoids, activation constant, binding energy
Procedia PDF Downloads 2381119 Periodical System of Isotopes
Authors: Andriy Magula
Abstract:
With the help of a special algorithm being the principle of multilevel periodicity, the periodic change of properties at the nuclear level of chemical elements was discovered and the variant for the periodic system of isotopes was presented. The periodic change in the properties of isotopes, as well as the vertical symmetry of subgroups, was checked for consistency in accordance with the following ten types of experimental data: mass ratio of fission fragments; quadrupole moment values; magnetic moment; lifetime of radioactive isotopes; neutron scattering; thermal neutron radiative capture cross-sections (n, γ); α-particle yield cross-sections (n, α); isotope abundance on Earth, in the Solar system and other stellar systems; features of ore formation and stellar evolution. For all ten cases, the correspondences for the proposed periodic structure of the nucleus were obtained. The system was formed in the usual 2D table, similar to the periodic system of elements, and the mass series of isotopes was divided into 8 periods and 4 types of ‘nuclear’ orbitals: sn, dn, pn, fn. The origin of ‘magic’ numbers as a set of filled charge shells of the nucleus was explained. Due to the isotope system, the periodic structure is shown at a new level of the universe, and the prospects of its practical use are opened up.Keywords: periodic system, isotope, period, subgroup, “nuclear” orbital, nuclear reaction
Procedia PDF Downloads 171118 Time Temperature Indicator for Monitoring Freshness of Packed Pasteurized Milk
Authors: Rajeshwar S. Matche, Subhash V. Pawde, Suraj P, Sachin R. Chaudhari
Abstract:
Time Temperature Indicator’s (TTI) are trending approach in a food packaging that will be insightful to have safe and hygienic food products. Currently, available TTI in the market are mostly a product specific and sometime even difficult to handle especially in supply chain as these are pre-activated and require specific storage conditions. In the present study, research focus is on the development of a cost-effective lactic acid based TTI that can work over a wide range of temperature and can be activated at time of packaging or on demand. The correlation between activation energies of colour change of the developed indicator and packed pasteurized milk spoilage with respect to time and temperature was established. Developed lactic acid based TTI strips have range of activation energy from 10.13 to 24.20 KJ/mol. We found that the developed TTI strip’s with activation energy 12.42, and 14.41KJ/mol can be correlated with spoilage activation energy of packed pasteurized milk which was 25.71 KJ/mol with factor of 2 at storage temperature 4°C. The implementation of these TTI on packed pasteurized milk allow us see visual colour change during the storage and can be fruitful to monitoring quality of the milk and understand its freshness especially in a cold supply chain, viz distributor and road vendor etc.Keywords: pasteurised packed milk, time temperature indicator, spoilage, freshness
Procedia PDF Downloads 1101117 Directional Search for Dark Matter Using Nuclear Emulsion
Authors: Ali Murat Guler
Abstract:
A variety of experiments have been developed over the past decades, aiming at the detection of Weakly Interactive Massive Particles (WIMPs) via their scattering in an instrumented medium. The sensitivity of these experiments has improved with a tremendous speed, thanks to a constant development of detectors and analysis methods. Detectors capable of reconstructing the direction of the nuclear recoil induced by the WIMP scattering are opening a new frontier to possibly extend Dark Matter searches beyond the neutrino background. Measurement of WIMP’s direction will allow us to detect the galactic origin of dark matter and, therefore to have a clear signal-background separation. The NEWSdm experiment, based on nuclear emulsions, is intended to measure the direction of WIMP-induced nuclear coils with a solid-state detector, thus with high sensitivity. We discuss the discovery potential of a directional experiment based on the use of a solid target made of newly developed nuclear emulsions and novel read-out systems achieving nanometric resolution. We also report results of a technical test conducted in Gran Sasso.Keywords: dark matter, direct detection, nuclear emulsion, WIMPS
Procedia PDF Downloads 2721116 Synthesis of Biologically Active Heterocyclic Compounds via C-H Bond Activation
Authors: Neeraj Kumar Mishra, In Su Kim
Abstract:
The isoindoline, indazole and indole heterocycles are ubiquitous structural motif found in heterocyclic compounds as they exhibit biological and medicinal applications. For example, isoindoline motif is present in molecules that act as endothelin-A receptor antagonists and dipeptidyl peptidase inhibitors. Moreover, isoindoline derivatives are very crucial constituents in the field of materials science as attractive candidates for organic light-emitting devices. However, compounds containing the indazole motif are known to exhibit to a variety of biological activities, such as estrogen receptor, HIV protease inhibition and anti-tumor activity. The prevalence of indazoles and indoles has led to the development of many useful methods for their preparation. Thus, isoindoline, indazole and indole heterocycles can be new candidates for the next generation of pharmaceuticals. Therefore, the development of highly efficient strategies for the formation of these heterocyclic architectures is an area of great interest in organic synthesis. The past years, transition-metal-catalyzed C−H activation followed by annulation reaction has been frequently used as a powerful tool to construct various heterocycles. Herein, we describe our recent achievements about the transition-metal-catalyzed tandem cyclization reactions of N-benzyltriflamides, 1,2-disubstituted arylhydrazines, acetanilides, etc. via C−H bond activation to access the corresponding bioactive heterocylic scaffolds.Keywords: biologically active, C-H activation, heterocyclic compounds, transition-metal catalysts
Procedia PDF Downloads 3091115 Study Case of Spacecraft Instruments in Structural Modelling with Nastran-Patran
Authors: Francisco Borja de Lara, Ali Ravanbakhsh, Robert F. Wimmer-Schweingruber, Lars Seimetz, Fermín Navarro
Abstract:
The intense structural loads during the launch of a spacecraft represent a challenge for the space structure designers because enough resistance has to be achieved while maintaining at the same time the mass and volume within the allowable margins of the mission requirements and inside the limits of the budget project. In this conference, we present the structural analysis of the Lunar Lander Neutron Dosimetry (LND) experiment on the Chang'E4 mission, the first probe to land on the moon’s far side included in the Chinese’ Moon Exploration Program by the Chinese National Space Administration. To this target, the software Nastran/Patran has been used: a structural model in Patran and a structural analysis through Nastran have been realized. Next, the results obtained are used both for the optimization process of the spacecraft structure, and as input parameters for the model structural test campaign. In this way, the feasibility of the lunar instrument structure is demonstrated in terms of the modal modes, stresses, and random vibration and a better understanding of the structural tests design is provided by our results.Keywords: Chang’E4, Chinese national space administration, lunar lander neutron dosimetry, nastran-patran, structural analysis
Procedia PDF Downloads 5291114 Training of Future Computer Science Teachers Based on Machine Learning Methods
Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova
Abstract:
The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.Keywords: algorithm, artificial intelligence, education, machine learning
Procedia PDF Downloads 731113 Advanced Electron Microscopy Study of Fission Products in a TRISO Coated Particle Neutron Irradiated to 3.6 X 1021 N/cm² Fast Fluence at 1040 ⁰C
Authors: Haiming Wen, Isabella J. Van Rooyen
Abstract:
Tristructural isotropic (TRISO)-coated fuel particles are designed as nuclear fuel for high-temperature gas reactors. TRISO coating consists of layers of carbon buffer, inner pyrolytic carbon (IPyC), SiC, and outer pyrolytic carbon. The TRISO coating, especially the SiC layer, acts as a containment system for fission products produced in the kernel. However, release of certain metallic fission products across intact TRISO coatings has been observed for decades. Despite numerous studies, mechanisms by which fission products migrate across the coating layers remain poorly understood. In this study, scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) were used to examine the distribution, composition and structure of fission products in a TRISO coated particle neutron irradiated to 3.6 x 1021 n/cm² fast fluence at 1040 ⁰C. Precession electron diffraction was used to investigate characters of grain boundaries where specific fission product precipitates are located. The retention fraction of 110mAg in the investigated TRISO particle was estimated to be 0.19. A high density of nanoscale fission product precipitates was observed in the SiC layer close to the SiC-IPyC interface, most of which are rich in Pd, while Ag was not identified. Some Pd-rich precipitates contain U. Precipitates tend to have complex structure and composition. Although a precipitate appears to have uniform contrast in STEM, EDS indicated that there may be composition variations throughout the precipitate, and HRTEM suggested that the precipitate may have several parts different in crystal structure or orientation. Attempts were made to measure charge states of precipitates using EELS and study their possible effect on precipitate transport.Keywords: TRISO particle, fission product, nuclear fuel, electron microscopy, neutron irradiation
Procedia PDF Downloads 2651112 Mixture of Polymers and Coating Fullerene Soft Nanoparticles
Authors: L. Bouzina, A. Bensafi, M. Duval, C. Mathis, M. Rawiso
Abstract:
We study the stability and structural properties of mixtures of model nanoparticles and non-adsorbing polymers in the 'protein limit', where the size of polymers exceeds the particle size substantially. We have synthesized in institute (Charles Sadron Strasbourg) model nanoparticles by coating fullerene C60 molecules with low molecular weight polystyrene (PS) chains (6 PS chains with a degree of polymerization close to 25 and 50 are grafted on each fullerene C60 molecule. We will present a Small Angle Neutron scattering (SANS) study of Tetrahydrofuran (THF) solutions involving long polystyrene (PS) chains and fullerene (C60) nanoparticles. Long PS chains and C60 nanoparticles with different arm lengths were synthesized either hydrogenated or deuteriated. They were characterized through Size Exclusion Chromatography (SEC) and Quasielastic Light Scattering (QLS). In this way, the solubility of the C60 nanoparticles in the usual good solvents of PS was controlled. SANS experiments were performed by use of the contrast variation method in order to measure the partial scattering functions related to both components. They allow us to obtain information about the dispersion state of the C60 nanoparticles as well as the average conformation of the long PS chains. Specifically, they show that the addition of long polymer chains leads to the existence of an additional attractive interaction in between soft nanoparticles.Keywords: fulleren nanoparticles, polymer, small angle neutron scattering, solubility
Procedia PDF Downloads 3751111 Study of the Phenomenon Nature of Order and Disorder in BaMn(Fe/V)F7 Fluoride Glass by the Hybrid Reverse Monte Carlo Method
Authors: Sidi Mohamed Mesli, Mohamed Habchi, Mohamed Kotbi, Rafik Benallal, Abdelali Derouiche
Abstract:
Fluoride glasses with a nominal composition of BaMnMF7 (M = FeV assuming isomorphous replacement) have been structurally modelled through the simultaneous simulation of their neutron diffraction patterns by a reverse Monte Carlo (RMC) model and by a Rietveld for disordered materials (RDM) method. Model is consistent with an expected network of interconnected [MF6] polyhedra. The RMC results are accompanied by artificial satellite peaks. To remedy this problem, we use an extension of the RMC algorithm, which introduces an energy penalty term in acceptance criteria. This method is called the Hybrid Reverse Monte Carlo (HRMC) method. The idea of this paper is to apply the (HRMC) method to the title glasses, in order to make a study of the phenomenon nature of order and disorder by displaying and discussing the partial pair distribution functions (PDFs) g(r). We suggest that this method can be used to describe average correlations between components of fluoride glass or similar system.Keywords: fluoride glasses, RMC simulation, neutron scattering, hybrid RMC simulation, Lennard-Jones potential, partial pair distribution functions
Procedia PDF Downloads 5341110 The Role of P2X7 Cytoplasmic Anchor in Inflammation
Authors: Federico Cevoli
Abstract:
Purinergic P2X7 receptors (P2X7R) are ligand-gated non-selective cation channels involved in several physiological and pathological processes. They are particularly promising pharmacological targets as they are present in an increasing number of different cells types. P2X7R activation is triggered following elevated concentrations of extracellular ATP, similarly to those observed in tissues injury, chronic inflammation and T-cell activation, as well as in the scrambling of phospholipids leading to membrane blebbing and apoptosis. Another hallmark of P2X7 is cell permeabilization, commonly known as “macropore” formation allowing the passage of nanometer-sized molecules up to 900Da. Recently, full-length P2X7 Cryo-EM structures revealed unique functional sites, including two cytoplasmic domains - the cytoplasmic "anchor" and "ballast". To date, the molecular units/complex by which P2X7R exerts its pathophysiological functions are unknown. Using custom-made cell-penetrating HIV-1 TAT peptides, we show for the first-time potential implications of P2X7 cytoplasmic anchor in the regulation of caspase3/7 activation as well as TNFα regulation.Keywords: P2X7R, immunology, TAT-peptide, cell death
Procedia PDF Downloads 1361109 Calpain-Mediated, Cisplain-Induced Apoptosis in Breast Cancer Cells
Authors: Shadia Al-Bahlani, Khadija Al-Bulushi, Zuweina Al-Hadidi, Buthaina Al-Dhahl, Nadia Al-Abri
Abstract:
Breast cancer is the most common cancer in women worldwide. Triple-Negative Breast Cancer (TNBC) is an aggressive type of breast cancer, which is defined by the absence of Estrogen (ER), Progesterone (PR) and human epidermal growth factor (Her-2) receptors. The calpain system plays an important role in many cellular processes including apoptosis, necrosis, cell signaling and proliferation. However, the role of calpain in cisplatin (CDDP)-induced apoptosis in TNBC cells is not fully understood. Here, TNBC (MDA-MB231) cells were treated with different concentration of CDDP (0, 20 & 40 µM) and calpain activation and apoptosis were measured by western blot and Hoechst Stain respectively. In addition, calpain modulation by either activation and/or inhibition and its effect on CDDP-induced apoptosis were assessed by the same above approaches. Our findings showed that CDDP induced endoplasmic reticulum stress and thus Calcium release and subsequently activate calpain α-fodrin cleavage indicated by the increase in GRP78 and Calmodulin protein expression and respectively in MDA-MB231 cells. It also induced apoptosis as measured by Hoechst stain and caspase-12 cleavage. Calpain activation by both Cyclopiazonic acid and Thapsigargin showed similar effect and enhanced the sensitivity of these cells to CDDP treatment. On the other hand, calpain inhibition by either specific siRNA and/or exogenous inhibitor (Calpeptin) had an adverse effect where it attenuated calpain activation and thus CDDP- induced apoptosis in these cells. Altogether, these findings suggested that calpain activation play an essential role in sensitizing the TNBC cells to CDDP-induced apoptosis. This might lead to the discovery of novel treatment to over this aggressive type of breast cancer.Keywords: calpain, cisplatin, apoptosis, breast cancer
Procedia PDF Downloads 345