Search results for: missing data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25438

Search results for: missing data

25318 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments

Authors: Rahul Paul, Peter Mctaggart, Luke Skinner

Abstract:

Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.

Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry

Procedia PDF Downloads 100
25317 The Impact of Recurring Events in Fake News Detection

Authors: Ali Raza, Shafiq Ur Rehman Khan, Raja Sher Afgun Usmani, Asif Raza, Basit Umair

Abstract:

Detection of Fake news and missing information is gaining popularity, especially after the advancement in social media and online news platforms. Social media platforms are the main and speediest source of fake news propagation, whereas online news websites contribute to fake news dissipation. In this study, we propose a framework to detect fake news using the temporal features of text and consider user feedback to identify whether the news is fake or not. In recent studies, the temporal features in text documents gain valuable consideration from Natural Language Processing and user feedback and only try to classify the textual data as fake or true. This research article indicates the impact of recurring and non-recurring events on fake and true news. We use two models BERT and Bi-LSTM to investigate, and it is concluded from BERT we get better results and 70% of true news are recurring and rest of 30% are non-recurring.

Keywords: natural language processing, fake news detection, machine learning, Bi-LSTM

Procedia PDF Downloads 25
25316 Wind Velocity Mitigation for Conceptual Design: A Spatial Decision (Support Framework)

Authors: Mohamed Khallaf, Hossein M Rizeei

Abstract:

Simulating wind pattern behavior over proposed urban features is critical in the early stage of the conceptual design of both architectural and urban disciplines. However, it is typically not possible for designers to explore the impact of wind flow profiles across new urban developments due to a lack of real data and inaccurate estimation of building parameters. Modeling the details of existing and proposed urban features and testing them against wind flows is the missing part of the conceptual design puzzle where architectural and urban discipline can focus. This research aims to develop a spatial decision-support design method utilizing LiDAR, GIS, and performance-based wind simulation technology to mitigate wind-related hazards on a design by simulating alternative design scenarios at the pedestrian level prior to its implementation in Sydney, Australia. The result of the experiment demonstrates the capability of the proposed framework to improve pedestrian comfort in relation to wind profile.

Keywords: spatial decision-support design, performance-based wind simulation, LiDAR, GIS

Procedia PDF Downloads 125
25315 Contribution Of Community-based House To House (H2h) Active Tuberculosis (Tb) Case Finding (Acf) To Increase In Tb Notification In Nigeria: Kano State Experience 2012 To 2022

Authors: Ibrahim Umar, S Chindo, A Rajab

Abstract:

Background: TB remains a disease of public health concern in Nigeria with an estimated incidence rate of 219/100,000. Kano has the second highest TB burden in Nigeria and is the leading state with the highest consistent yearly TB notification. House-to-house (H2H) active case search in the community was found to have major contribution to the total TB notification in the state. Aims and Objective: To showcase the impact of H2H community active TB case search (ACF) to yearly TB notification in Kano State, Northern Nigeria from 2012 to 2022. Methodology: This is a retrospective descriptive study based on the analysis of data collected during the routine quarterly and yearly TB data collected in the state. Data was analyzed using the Power BI with statistical alpha level of significance <0.05. Results: Between 2012 and 2013 there was no House-to-house active TB case search in Nigeria and Kano had zero contribution to TB notification from the community in those years. However, in 2014 with the introduction of H2H Active TB Case Search Kano notified 6,014 TB cases out of which 113 came from the community ACF that translated to 2% contribution to total TB notification. From 2014 to 2022 there was progressive increase in community contribution to TB case notification from 113 out of 6,014 total TB patients notified (2012) to 11,799 out of 26,371 TB patients notified (2022) in Kano State. This translated to 45% increase in community contribution to total TB case notification. Discussion: Remarkable increase in community contribution to total TB case notification in Kano State was achieved in 2022 with 11,799 TB cases notified from the community Active TB case search to the total of 26,731 TB cases notified in Kano State, Nigeria. Conclusion: in research has shown that Community-based H2H Active TB Case Search through Community TB Workers (CTWs) is an excellent strategy in finding the missing TB cases towards Ending TB in the world.

Keywords: tuberculosis(TB), active case search (ACF), house-to-house (H2H), community TB workers (CTWs)

Procedia PDF Downloads 96
25314 Pleomorphic Dermal Sarcoma: A Management Challenge

Authors: Mona Nada, Fahmy Fahmy

Abstract:

Background: Pleomorphic dermal sarcoma is a rare form of skin cancer affecting cutaneous layer and, in some cases associated with recurrence and metastasis, very commonly to seen in elderly patient affecting the area of head and neck. Pleomorphic dermal sarcoma rises in ultraviolet light exposed areas. The symptoms and severity of this kind of skin cancer varies according to histological factors. The differentiation of Pleomorphic dermal sarcoma needs extensive immunohistochemistry, as the diagnosis depends mainly on exclusion to rule out other malignancy like poorly differentiated squamous cell carcinoma, melanoma, angiosarcoma and leiomyosarcoma. Objective: assessing the management of Pleomorphic dermal sarcoma in our unit and compared to the updated guidelines. Design: Retrospective study Collection of patient data from medical records at countess of Chester plastic surgery unit of the last 5 years, all histologically confirmed Pleomorphic dermal sarcoma (2017-2023). Data were collected confirmed to be Pleomorphic dermal sarcoma were included in the study. The data collected: clinical description of the lesions at first presentation, operation time, multidisciplinary team discussion, plan, referral as well as second operation and investigation done. With comparison of histological examination, immunohistochemistry staining, the excision and rate of recurrence. Results: data collected N19 from (2017-2023) showed the disease predominantly affecting males and the lesion mainly in head and neck, the diagnosis needed extensive immunohistochemistry to differentiate between other malignancy. recurrence present in numbers of the cases which managed after multidisciplinary team discussion either by excision or radiotherapy. Conclusion: Pleomorphic dermal sarcoma is a rare malignancy which needs more understanding and avoid missing as it is aggressive form of skin cancer, there is a chance of metastasis and recurrence which makes it very important to understand the process of development of the cancer and frequent review of the management guidelines.

Keywords: pleomorphic dermal sarcoma, recurrence, radiotherapy, surgical

Procedia PDF Downloads 72
25313 Predicting Low Birth Weight Using Machine Learning: A Study on 53,637 Ethiopian Birth Data

Authors: Kehabtimer Shiferaw Kotiso, Getachew Hailemariam, Abiy Seifu Estifanos

Abstract:

Introduction: Despite the highest share of low birth weight (LBW) for neonatal mortality and morbidity, predicting births with LBW for better intervention preparation is challenging. This study aims to predict LBW using a dataset encompassing 53,637 birth cohorts collected from 36 primary hospitals across seven regions in Ethiopia from February 2022 to June 2024. Methods: We identified ten explanatory variables related to maternal and neonatal characteristics, including maternal education, age, residence, history of miscarriage or abortion, history of preterm birth, type of pregnancy, number of livebirths, number of stillbirths, antenatal care frequency, and sex of the fetus to predict LBW. Using WEKA 3.8.2, we developed and compared seven machine learning algorithms. Data preprocessing included handling missing values, outlier detection, and ensuring data integrity in birth weight records. Model performance was evaluated through metrics such as accuracy, precision, recall, F1-score, and area under the Receiver Operating Characteristic curve (ROC AUC) using 10-fold cross-validation. Results: The results demonstrated that the decision tree, J48, logistic regression, and gradient boosted trees model achieved the highest accuracy (94.5% to 94.6%) with a precision of 93.1% to 93.3%, F1-score of 92.7% to 93.1%, and ROC AUC of 71.8% to 76.6%. Conclusion: This study demonstrates the effectiveness of machine learning models in predicting LBW. The high accuracy and recall rates achieved indicate that these models can serve as valuable tools for healthcare policymakers and providers in identifying at-risk newborns and implementing timely interventions to achieve the sustainable developmental goal (SDG) related to neonatal mortality.

Keywords: low birth weight, machine learning, classification, neonatal mortality, Ethiopia

Procedia PDF Downloads 25
25312 Applications of Big Data in Education

Authors: Faisal Kalota

Abstract:

Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.

Keywords: big data, learning analytics, analytics, big data in education, Hadoop

Procedia PDF Downloads 427
25311 Open Fields' Dosimetric Verification for a Commercially-Used 3D Treatment Planning System

Authors: Nashaat A. Deiab, Aida Radwan, Mohamed Elnagdy, Mohamed S. Yahiya, Rasha Moustafa

Abstract:

This study is to evaluate and investigate the dosimetric performance of our institution's 3D treatment planning system, Elekta PrecisePLAN, for open 6MV fields including square, rectangular, variation in SSD, centrally blocked, missing tissue, square MLC and MLC shaped fields guided by the recommended QA tests prescribed in AAPM TG53, NCS report 15 test packages, IAEA TRS 430 and ESTRO booklet no.7. The study was performed for Elekta Precise linear accelerator designed for clinical range of 4, 6 and 15 MV photon beams with asymmetric jaws and fully integrated multileaf collimator that enables high conformance to target with sharp field edges. Seven different tests were done applied on solid water equivalent phantom along with 2D array dose detection system, the calculated doses using 3D treatment planning system PrecisePLAN, compared with measured doses to make sure that the dose calculations are accurate for open fields including square, rectangular, variation in SSD, centrally blocked, missing tissue, square MLC and MLC shaped fields. The QA results showed dosimetric accuracy of the TPS for open fields within the specified tolerance limits. However large square (25cm x 25cm) and rectangular fields (20cm x 5cm) some points were out of tolerance in penumbra region (11.38 % and 10.9 %, respectively). For the test of SSD variation, the large field resulted from SSD 125 cm for 10cm x 10cm filed the results recorded an error of 0.2% at the central axis and 1.01% in penumbra. The results yielded differences within the accepted tolerance level as recommended. Large fields showed variations in penumbra. These differences between dose values predicted by the TPS and the measured values at the same point may result from limitations of the dose calculation, uncertainties in the measurement procedure, or fluctuations in the output of the accelerator.

Keywords: quality assurance, dose calculation, 3D treatment planning system, photon beam

Procedia PDF Downloads 517
25310 Examining the Skills of Establishing Number and Space Relations of Science Students with the 'Integrative Perception Test'

Authors: Ni̇sa Yeni̇kalayci, Türkan Aybi̇ke Akarca

Abstract:

The ability of correlation the number and space relations, one of the basic scientific process skills, is being used in the transformation of a two-dimensional object into a three-dimensional image or in the expression of symmetry axes of the object. With this research, it is aimed to determine the ability of science students to establish number and space relations. The research was carried out with a total of 90 students studying in the first semester of the Science Education program of a state university located in the Turkey’s Black Sea Region in the fall semester of 2017-2018 academic year. An ‘Integrative Perception Test (IPT)’ was designed by the researchers to collect the data. Within the scope of IPT, the courses and workbooks specific to the field of science were scanned and the ones without symmetrical structure from the visual items belonging to the ‘Physics - Chemistry – Biology’ sub-fields were selected and listed. During the application, it was expected that students would imagine and draw images of the missing half of the visual items that were given incomplete in the first place. The data obtained from the test in which there are 30 images or pictures in total (f Physics = 10, f Chemistry = 10, f Biology = 10) were analyzed descriptively based on the drawings created by the students as ‘complete (2 points), incomplete/wrong (1 point), empty (0 point)’. For the teaching of new concepts in small aged groups, images or pictures showing symmetrical structures and similar applications can also be used.

Keywords: integrative perception, number and space relations, science education, scientific process skills

Procedia PDF Downloads 152
25309 Effect of Facilitation in a Problem-Based Environment on the Metacognition, Motivation and Self-Directed Learning in Nursing: A Quasi-Experimental Study among Nurse Students in Tanzania

Authors: Walter M. Millanzi, Stephen M. Kibusi

Abstract:

Background: Currently, there has been a progressive shortage not only to the number but also the quality of medical practitioners for the most of nursing. Despite that, those who are present exhibit unethical and illegal practices, under standard care and malpractices. The concern is raised in the ways they are prepared, or there might be something missing in nursing curricula or how it is delivered. There is a need for transforming or testing new teaching modalities to enhance competent health workforces. Objective: to investigate the Effect of Facilitation in a Problem-based Environment (FPBE) on metacognition, self-directed learning and learning motivation to undergraduate nurse student in Tanzanian higher learning institutions. Methods: quasi-experimental study (quantitative research approach). A purposive sampling technique was employed to select institutions and achieving a sample size of 401 participants (interventional = 134 and control = 267). Self-administered semi-structured questionnaire; was the main data collection methods and the Statistical Package for Service Solution (v. 20) software program was used for data entry, data analysis, and presentations. Results: The pre-post test results between groups indicated noticeably significant change on metacognition in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05). SDL in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05. Motivation to learn in an intervention (M = 62.67, SD = 14.14) and the control (n = 267, M = 57.75), t (399) = 2.907, p < 0.01). A FPBE teaching pedagogy, was observed to be effective on the metacognition (AOR = 1.603, p < 0.05), SDL (OR = 1.729, p < 0.05) and Intrinsic motivation in learning (AOR = 1.720, p < 0.05) against conventional teaching pedagogy. Needless, was less likely to enhance Extrinsic motivation (AOR = 0.676, p > 0.05) and Amotivation (AOR = 0.538, p > 0.05). Conclusion and recommendation: FPBE teaching pedagogy, can improve student’s metacognition, self-directed learning and intrinsic motivation to learn among nurse students. Nursing curricula developers should incorporate it to produce 21st century competent and qualified nurses.

Keywords: facilitation, metacognition, motivation, self-directed

Procedia PDF Downloads 189
25308 Hormone Replacement Therapy (HRT) and Its Impact on the All-Cause Mortality of UK Women: A Matched Cohort Study 1984-2017

Authors: Nurunnahar Akter, Elena Kulinskaya, Nicholas Steel, Ilyas Bakbergenuly

Abstract:

Although Hormone Replacement Therapy (HRT) is an effective treatment in ameliorating menopausal symptoms, it has mixed effects on different health outcomes, increasing, for instance, the risk of breast cancer. Because of this, many symptomatic women are left untreated. Untreated menopausal symptoms may result in other health issues, which eventually put an extra burden and costs to the health care system. All-cause mortality analysis may explain the net benefits and risks of the HRT therapy. However, it received far less attention in HRT studies. This study investigated the impact of HRT on all-cause mortality using electronically recorded primary care data from The Health Improvement Network (THIN) that broadly represents the female population in the United Kingdom (UK). The study entry date for this study was the record of the first HRT prescription from 1984, and patients were followed up until death or transfer to another GP practice or study end date, which was January 2017. 112,354 HRT users (cases) were matched with 245,320 non-users by age at HRT initiation and general practice (GP). The hazards of all-cause mortality associated with HRT were estimated by a parametric Weibull-Cox model adjusting for a wide range of important medical, lifestyle, and socio-demographic factors. The multilevel multiple imputation techniques were used to deal with missing data. This study found that during 32 years of follow-up, combined HRT reduced the hazard ratio (HR) of all-cause mortality by 9% (HR: 0.91; 95% Confidence Interval, 0.88-0.94) in women of age between 46 to 65 at first treatment compared to the non-users of the same age. Age-specific mortality analyses found that combined HRT decreased mortality by 13% (HR: 0.87; 95% CI, 0.82-0.92), 12% (HR: 0.88; 95% CI, 0.82-0.93), and 8% (HR: 0.92; 95% CI, 0.85-0.98), in 51 to 55, 56 to 60, and 61 to 65 age group at first treatment, respectively. There was no association between estrogen-only HRT and women’s all-cause mortality. The findings from this study may help to inform the choices of women at menopause and to further educate the clinicians and resource planners.

Keywords: hormone replacement therapy, multiple imputations, primary care data, the health improvement network (THIN)

Procedia PDF Downloads 170
25307 Mob Justice in Ghana: Implication for Peace

Authors: Ishaq Alhassan Meriga

Abstract:

This study examined the phenomenon of mob violence and its implication for peace in Ghana. The study used the archival study of media reports and content analysis of other secondary data as well as eyewitness accounts. The study examined trends and patterns of vigilante violence within the Ghanaian context. Results showed a considerable increase in the occurrence of mob violence within the last 10 years. Theft and robbery emerged as the most frequently suspected crimes for which victims were attacked, while the LGBT community is not left out. Cases of mob violence were most frequently reported in urban areas. This study has shown that the patterns, scope, nature, and implication of mob justice in Ghana are fairly and comparatively similar to those found in other parts of Africa and the globe. Mob violence is identified as undermining the rule of law and thereby infringing on the fundamental human rights of the victims. It is confirmed to have a cycle of effects that is an impediment to the peace of the country. The study underscores the implications of mob violence in terms of disdaining human life and dignity, revisiting our justice systems and punishment procedures, resourcing, and empowering law enforcers to fight the menace of vigilantism. First, the archival study had a limitation regarding missing data. The majority of the cases used for the study lack information mostly on perpetrators and the steps taken by public authorities and security agencies after reports of a mob attack have been lodged with them. The study recommends for further research to be undertaken on the perpetrators and survivors of mob actions in order to get a holistic understanding of the phenomenon. This will give a more comprehensive view of the issue of mob violence in Ghana. From the findings, it can be concluded that mob justice is a social canker in Ghanaian communities, which has a great impact on the peace of the country.

Keywords: LGBT, mob justice, peace, vigilantism

Procedia PDF Downloads 89
25306 Analysis of Big Data

Authors: Sandeep Sharma, Sarabjit Singh

Abstract:

As per the user demand and growth trends of large free data the storage solutions are now becoming more challenge-able to protect, store and to retrieve data. The days are not so far when the storage companies and organizations are start saying 'no' to store our valuable data or they will start charging a huge amount for its storage and protection. On the other hand as per the environmental conditions it becomes challenge-able to maintain and establish new data warehouses and data centers to protect global warming threats. A challenge of small data is over now, the challenges are big that how to manage the exponential growth of data. In this paper we have analyzed the growth trend of big data and its future implications. We have also focused on the impact of the unstructured data on various concerns and we have also suggested some possible remedies to streamline big data.

Keywords: big data, unstructured data, volume, variety, velocity

Procedia PDF Downloads 548
25305 Recognition of Tifinagh Characters with Missing Parts Using Neural Network

Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui

Abstract:

In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.

Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN

Procedia PDF Downloads 335
25304 Artificial Intelligence and Development: The Missing Link

Authors: Driss Kettani

Abstract:

ICT4D actors are naturally attempted to include AI in the range of enabling technologies and tools that could support and boost the Development process, and to refer to these as AI4D. But, doing so, assumes that AI complies with the very specific features of ICT4D context, including, among others, affordability, relevance, openness, and ownership. Clearly, none of these is fulfilled, and the enthusiastic posture that AI4D is a natural part of ICT4D is not grounded and, to certain extent, does not serve the purpose of Technology for Development at all. In the context of Development, it is important to emphasize and prioritize ICT4D, in the national digital transformation strategies, instead of borrowing "trendy" waves of the IT Industry that are motivated by business considerations, with no specific care/consideration to Development.

Keywords: AI, ICT4D, technology for development, position paper

Procedia PDF Downloads 92
25303 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients

Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi

Abstract:

Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.

Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection

Procedia PDF Downloads 146
25302 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever

Authors: Sudha T., Naveen C.

Abstract:

Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.

Keywords: deep learning model, dengue fever, prediction, optimization

Procedia PDF Downloads 66
25301 Research of Data Cleaning Methods Based on Dependency Rules

Authors: Yang Bao, Shi Wei Deng, WangQun Lin

Abstract:

This paper introduces the concept and principle of data cleaning, analyzes the types and causes of dirty data, and proposes several key steps of typical cleaning process, puts forward a well scalability and versatility data cleaning framework, in view of data with attribute dependency relation, designs several of violation data discovery algorithms by formal formula, which can obtain inconsistent data to all target columns with condition attribute dependent no matter data is structured (SQL) or unstructured (NoSQL), and gives 6 data cleaning methods based on these algorithms.

Keywords: data cleaning, dependency rules, violation data discovery, data repair

Procedia PDF Downloads 564
25300 A Partially Accelerated Life Test Planning with Competing Risks and Linear Degradation Path under Tampered Failure Rate Model

Authors: Fariba Azizi, Firoozeh Haghighi, Viliam Makis

Abstract:

In this paper, we propose a method to model the relationship between failure time and degradation for a simple step stress test where underlying degradation path is linear and different causes of failure are possible. It is assumed that the intensity function depends only on the degradation value. No assumptions are made about the distribution of the failure times. A simple step-stress test is used to shorten failure time of products and a tampered failure rate (TFR) model is proposed to describe the effect of the changing stress on the intensities. We assume that some of the products that fail during the test have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the maximum likelihood estimates (MLEs) of the model parameters are obtained through an expectation-maximization (EM) algorithm by treating the causes of failure as missing values. The effect of incomplete information on the estimation of parameters is studied through a Monte-Carlo simulation. Finally, a real example is analyzed to illustrate the application of the proposed methods.

Keywords: cause of failure, linear degradation path, reliability function, expectation-maximization algorithm, intensity, masked data

Procedia PDF Downloads 334
25299 Investigating Physician-Induced Demand among Mental Patients in East Azerbaijan, Iran: A Multilevel Approach of Hierarchical Linear Modeling

Authors: Hossein Panahi, Firouz Fallahi, Sima Nasibparast

Abstract:

Background & Aim: Unnecessary growth in health expenditures of developing countries in recent decades, and also the importance of physicians’ behavior in health market, have made the theory of physician-induced demand (PID) as one of the most important issues in health economics. Therefore, the main objective of this study is to investigate the hypothesis of induced demand among mental patients who receive services from either psychologists or psychiatrists in East Azerbaijan province. Methods: Using data from questionnaires in 2020 and employing the theoretical model of Jaegher and Jegers (2000) and hierarchical linear modeling (HLM), this study examines the PID hypothesis of selected psychologists and psychiatrists. The sample size of the study, after removing the questionnaires with missing data, is 45 psychologists and 203 people of their patients, as well as 30 psychiatrists and 160 people of their patients. Results: The results show that, although psychiatrists are ‘profit-oriented physicians’, there is no evidence of inducing unnecessary demand by them (PID), and the difference between the behavior of employers and employee doctors is due to differences in practice style. However, with regard to psychologists, the results indicate that they are ‘profit-oriented’, and there is a PID effect in this sector. Conclusion: According to the results, it is suggested that in order to reduce competition and eliminate the PID effect, the admission of students in the field of psychology should be reduced, patient information on mental illness should be increased, and government monitoring and control over the national health system must be increased.

Keywords: physician-induced demand, national health system, hierarchical linear modeling methods, multilevel modela

Procedia PDF Downloads 137
25298 Designing Creative Events with Deconstructivism Approach

Authors: Maryam Memarian, Mahmood Naghizadeh

Abstract:

Deconstruction is an approach that is entirely incompatible with the traditional prevalent architecture. Considering the fact that this approach attempts to put architecture in sharp contrast with its opposite events and transpires with attending to the neglected and missing aspects of architecture and deconstructing its stable structures. It also recklessly proceeds beyond the existing frameworks and intends to create a different and more efficient prospect for space. The aim of deconstruction architecture is to satisfy both the prospective and retrospective visions as well as takes into account all tastes of the present in order to transcend time. Likewise, it ventures to fragment the facts and symbols of the past and extract new concepts from within their heart, which coincide with today’s circumstances. Since this approach is an attempt to surpass the limits of the prevalent architecture, it can be employed to design places in which creative events occur and imagination and ambition flourish. Thought-provoking artistic events can grow and mature in such places and be represented in the best way possible to all people. The concept of event proposed in the plan grows out of the interaction between space and creation. In addition to triggering surprise and high impressions, it is also considered as a bold journey into the suspended realms of the traditional conflicts in architecture such as architecture-landscape, interior-exterior, center-margin, product-process, and stability-instability. In this project, at first, through interpretive-historical research method and examining the inputs and data collection, recognition and organizing takes place. After evaluating the obtained data using deductive reasoning, the data is eventually interpreted. Given the fact that the research topic is in its infancy and there is not a similar case in Iran with limited number of corresponding instances across the world, the selected topic helps to shed lights on the unrevealed and neglected parts in architecture. Similarly, criticizing, investigating and comparing specific and highly prized cases in other countries with the project under study can serve as an introduction into this architecture style.

Keywords: anti-architecture, creativity, deconstruction, event

Procedia PDF Downloads 322
25297 The Critical Relevance of Credit and Debt Data in Household Food Security Analysis: The Risks of Ineffective Response Actions

Authors: Siddharth Krishnaswamy

Abstract:

Problem Statement: Currently, when analyzing household food security, the most commonly studied food access indicators are household income and expenditure. Larger studies do take into account other indices such as credit and employment. But these are baselines studies and by definition are conducted infrequently. Food security analysis for access is usually dedicated to analyzing income and expenditure indicators. And both these indicators are notoriously inconsistent. Yet this data can very often end up being the basis on which household food access is calculated; and by extension, be used for decision making. Objectives: This paper argues that along with income and expenditure, credit and debit information should be collected so that an accurate analysis of household food security (and in particular) food access can be determined. The lack of collection and analysis of this information routinely means that there is often a “masking” of the actual situation; a household’s food access and food availability patterns may be adequate mainly as a result of borrowing and may even be due to a long- term dependency (a debt cycle). In other words, such a household is, in reality, worse off than it appears a factor masked by its performance on basic access indicators. Procedures/methodologies/approaches: Existing food security data sets collected in 2005 in Azerbaijan, 2010 across Myanmar and 2014-15 across Uganda were used to support the theory that analyzing income and expenditure of a HHs and analyzing the same in addition to data on credit & borrowing patterns will result in an entirely different scenario of food access of the household. Furthermore, the data analyzed depicts food consumption patterns across groups of households and then relates this to the extent of dependency on credit, i.e. households borrowing money in order to meet food needs. Finally, response options that were based on analyzing only income and expenditure; and response options based on income, expenditure, credit, and borrowing – from the same geographical area of operation are studied and discussed. Results: The purpose of this work was to see if existing methods of household food security analysis could be improved. It is hoped that food security analysts will collect household level information on credit and debit and analyze them against income, expenditure and consumption patterns. This will help determine if a household’s food access and availability are dependent on unsustainable strategies such as borrowing money for food or undertaking sustained debts. Conclusions: The results clearly show the amount of relevant information that is missing in Food Access analysis if debit and borrowing of the household is not analyzed along with the typical Food Access indicators that are usually analyzed. And the serious repercussions this has on Programmatic response and interventions.

Keywords: analysis, food security indicators, response, resilience analysis

Procedia PDF Downloads 332
25296 Practicing Inclusion for Hard of Hearing and Deaf Students in Regular Schools in Ethiopia

Authors: Mesfin Abebe Molla

Abstract:

This research aims to examine the practices of inclusion of the hard of hearing and deaf students in regular schools. It also focuses on exploring strategies for optimal benefits of students with Hard of Hearing and Deaf (HH-D) from inclusion. Concurrent mixed methods research design was used to collect quantitative and qualitative data. The instruments used to gather data for this study were questionnaire, semi- structured interview, and observations. A total of 102 HH-D students and 42 primary and High School teachers were selected using simple random sampling technique and used as participants to collect quantitative data. Non-probability sampling technique was also employed to select 14 participants (4-school principals, 6-teachers and 4-parents of HH-D students) and they were interviewed to collect qualitative data. Descriptive and inferential statistical techniques (independent sample t-test, one way ANOVA and Multiple regressions) were employed to analyze quantitative data. Qualitative data were also analyzed qualitatively by theme analysis. The findings reported that there were individual principals’, teachers’ and parents’ strong commitment and efforts for practicing inclusion of HH-D students effectively; however, most of the core values of inclusion were missing in both schools. Most of the teachers (78.6 %) and HH-D students (75.5%) had negative attitude and considerable reservations about the feasibility of inclusion of HH-D students in both schools. Furthermore, there was a statistically significant difference of attitude toward to inclusion between the two school’s teachers and the teachers’ who had taken and had not taken additional training on IE and sign language. The study also indicated that there was a statistically significant difference of attitude toward to inclusion between hard of hearing and deaf students. However, the overall contribution of the demographic variables of teachers and HH-D students on their attitude toward inclusion is not statistically significant. The finding also showed that HH-D students did not have access to modified curriculum which would maximize their abilities and help them to learn together with their hearing peers. In addition, there is no clear and adequate direction for the medium of instruction. Poor school organization and management, lack of commitment, financial resources, collaboration and teachers’ inadequate training on Inclusive Education (IE) and sign language, large class size, inappropriate assessment procedure, lack of trained deaf adult personnel who can serve as role model for HH-D students and lack of parents and community members’ involvement were some of the major factors that affect the practicing inclusion of students HH-D. Finally, recommendations are made to improve the practices of inclusion of HH-D students and to make inclusion of HH-D students an integrated part of Ethiopian education based on the findings of the study.

Keywords: deaf, hard of hearing, inclusion, regular schools

Procedia PDF Downloads 344
25295 An Integrated Label Propagation Network for Structural Condition Assessment

Authors: Qingsong Xiong, Cheng Yuan, Qingzhao Kong, Haibei Xiong

Abstract:

Deep-learning-driven approaches based on vibration responses have attracted larger attention in rapid structural condition assessment while obtaining sufficient measured training data with corresponding labels is relevantly costly and even inaccessible in practical engineering. This study proposes an integrated label propagation network for structural condition assessment, which is able to diffuse the labels from continuously-generating measurements by intact structure to those of missing labels of damage scenarios. The integrated network is embedded with damage-sensitive features extraction by deep autoencoder and pseudo-labels propagation by optimized fuzzy clustering, the architecture and mechanism which are elaborated. With a sophisticated network design and specified strategies for improving performance, the present network achieves to extends the superiority of self-supervised representation learning, unsupervised fuzzy clustering and supervised classification algorithms into an integration aiming at assessing damage conditions. Both numerical simulations and full-scale laboratory shaking table tests of a two-story building structure were conducted to validate its capability of detecting post-earthquake damage. The identifying accuracy of a present network was 0.95 in numerical validations and an average 0.86 in laboratory case studies, respectively. It should be noted that the whole training procedure of all involved models in the network stringently doesn’t rely upon any labeled data of damage scenarios but only several samples of intact structure, which indicates a significant superiority in model adaptability and feasible applicability in practice.

Keywords: autoencoder, condition assessment, fuzzy clustering, label propagation

Procedia PDF Downloads 97
25294 Inverse Heat Conduction Analysis of Cooling on Run-Out Tables

Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi

Abstract:

In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.

Keywords: inverse analysis, function specification, neural net works, particle swarm, run-out table

Procedia PDF Downloads 241
25293 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity

Authors: Hoda A. Abdel Hafez

Abstract:

Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.

Keywords: mining big data, big data, machine learning, telecommunication

Procedia PDF Downloads 410
25292 Statistical Model to Examine the Impact of the Inflation Rate and Real Interest Rate on the Bahrain Economy

Authors: Ghada Abo-Zaid

Abstract:

Introduction: Oil is one of the most income source in Bahrain. Low oil price influence on the economy growth and the investment rate in Bahrain. For example, the economic growth was 3.7% in 2012, and it reduced to 2.9% in 2015. Investment rate was 9.8% in 2012, and it is reduced to be 5.9% and -12.1% in 2014 and 2015, respectively. The inflation rate is increased to the peak point in 2013 with 3.3 %. Objectives: The objectives here are to build statistical models to examine the effect of the interest rate inflation rate on the growth economy in Bahrain from 2000 to 2018. Methods: This study based on 18 years, and the multiple regression model is used for the analysis. All of the missing data are omitted from the analysis. Results: Regression model is used to examine the association between the Growth national product (GNP), the inflation rate, and real interest rate. We found that (i) Increase the real interest rate decrease the GNP. (ii) Increase the inflation rate does not effect on the growth economy in Bahrain since the average of the inflation rate was almost 2%, and this is considered as a low percentage. Conclusion: There is a positive impact of the real interest rate on the GNP in Bahrain. While the inflation rate does not show any negative influence on the GNP as the inflation rate was not large enough to effect negatively on the economy growth rate in Bahrain.

Keywords: growth national product, egypt, regression model, interest rate

Procedia PDF Downloads 167
25291 Concept for Planning Sustainable Factories

Authors: T. Mersmann, P. Nyhuis

Abstract:

In the current economic climate, for many businesses it is generally no longer sufficient to pursue exclusively economic interests. Instead, integrating ecological and social goals into the corporate targets is becoming ever more important. However, the holistic integration of these new goals is missing from current factory planning approaches. This article describes the conceptual framework for a planning methodology for sustainable factories. To this end, the description of the key areas for action is followed by a description of the principal components for the systematization of sustainability for factories and their stakeholders. Finally, a conceptual framework is presented which integrates the components formulated into an established factory planning procedure.

Keywords: factory planning, stakeholder, systematization, sustainability

Procedia PDF Downloads 455
25290 The Role Of Digital Technology In Crime Prevention

Authors: Muhammad Ashfaq

Abstract:

Main theme: This prime focus of this study is on the role of digital technology in crime prevention, with special focus on Cellular Forensic Unit, Capital City Police Peshawar-Khyber Pakhtunkhwa-Pakistan. Objective(s) of the study: The prime objective of this study is to provide statistics, strategies and pattern of analysis used for crime prevention in Cellular Forensic Unit of Capital City Police Peshawar, Khyber Pakhtunkhwa-Pakistan. Research Method and Procedure: Qualitative method of research has been used in the study for obtaining secondary data from research wing and Information Technology (IT) section of Peshawar police. Content analysis was the method used for the conduction of the study. This study is delimited to Capital City Police and Cellular Forensic Unit Peshawar-KP, Pakistan. information technologies. Major finding(s): It is evident that the old traditional approach will never provide solutions for better management in controlling crimes. The best way to control crimes and promotion of proactive policing is to adopt new technologies. The study reveals that technology have transformed police more effective and vigilant as compared to traditional policing. The heinous crimes like abduction, missing of an individual, snatching, burglaries and blind murder cases are now traceable with the help of technology. Recommendation(s): From the analysis of the data, it is reflected that Information Technology (IT) expert should be recruited along with research analyst to timely assist and facilitate operational as well as investigation units of police.A mobile locator should be Provided to Cellular Forensic Unit to timely apprehend the criminals .Latest digital analysis software should be provided to equip the Cellular Forensic Unit.

Keywords: crime prevention, digital technology, pakistan, police

Procedia PDF Downloads 65
25289 Kindergarten Children’s Reactions to the COVID-19 Pandemic: Creating a Sense of Coherence

Authors: Bilha Paryente, Roni Gez Langerman

Abstract:

Background and Objectives: The current study focused on how kindergarten children have experienced the COVID-19 pandemic. The main goals were understanding children’s emotions, coping strategies, and thoughts regarding the presence of the COVID-19 virus in their daily lives, using the salute genic approach to study their sense of coherence, and to promote relevant professional instruction. Design and Method: Semistructured in-depth interviews were held with 130 five- to six-year-old children, with an equal number of boys and girls. All of the children were recruited from kindergartens affiliated with the state's secular education system. Results: Data were structured into three themes: 1) the child’s pandemic perception as manageable through meaningful accompanying and missing figures; 2) the child’s comprehension of the virus as dangerous, age differentiating, and contagious. 3) the child’s emotional processing of the pandemic as arousing fear of death and, through images, as thorny and as a monster. Conclusions: Results demonstrate the young children’s sense of coherence, characterized as extrapersonal perception, interpersonal coping, and intrapersonal emotional processing, and the need for greater acknowledgement of child-parent educators' informed interventions that could give children a partial feeling of the adult’s awareness of their needs.

Keywords: kindergarten children, continuous stress, COVID-19, salutogenic approach

Procedia PDF Downloads 177