Search results for: synthetic dataset
770 Enhancing Rupture Pressure Prediction for Corroded Pipes Through Finite Element Optimization
Authors: Benkouiten Imene, Chabli Ouerdia, Boutoutaou Hamid, Kadri Nesrine, Bouledroua Omar
Abstract:
Algeria is actively enhancing gas productivity by augmenting the supply flow. However, this effort has led to increased internal pressure, posing a potential risk to the pipeline's integrity, particularly in the presence of corrosion defects. Sonatrach relies on a vast network of pipelines spanning 24,000 kilometers for the transportation of gas and oil. The aging of these pipelines raises the likelihood of corrosion both internally and externally, heightening the risk of ruptures. To address this issue, a comprehensive inspection is imperative, utilizing specialized scraping tools. These advanced tools furnish a detailed assessment of all pipeline defects. It is essential to recalculate the pressure parameters to safeguard the corroded pipeline's integrity while ensuring the continuity of production. In this context, Sonatrach employs symbolic pressure limit calculations, such as ASME B31G (2009) and the modified ASME B31G (2012). The aim of this study is to perform a comparative analysis of various limit pressure calculation methods documented in the literature, namely DNV RP F-101, SHELL, P-CORRC, NETTO, and CSA Z662. This comparative assessment will be based on a dataset comprising 329 burst tests published in the literature. Ultimately, we intend to introduce a novel approach grounded in the finite element method, employing ANSYS software.Keywords: pipeline burst pressure, burst test, corrosion defect, corroded pipeline, finite element method
Procedia PDF Downloads 58769 Toxic Influence of Cypermethrin on Biochemical Changes in Fresh Water Fish, Cyprinus carpio
Authors: Gowri Balaji, Muthusamy Nachiyappan, Ramalingam Venugopal
Abstract:
Amongst the wide spectrum of pesticides, pyrethroids are preferably used rather than organochlorine, organophosphorous and carbamates pesticides due to their high effectiveness. Synthetic pyrethroids which are the chemicals used for the pest control in agriculture are now being excessively used in India. The aim of the present study was to evaluate the adverse effect of cypermethrin on the fresh water fish Cyprinus carpio, the common carp. The effect was assessed by comparing the biochemical parameters in the blood and liver tissues of control fishes with three experimental group of fishes exposed with cypermethrin for 7 days 1/15 Lc50 (E1) 1/10 Lc50 (E2) and 1/5 Lc50 values (E3). After 7 days of exposure, blood was collected and liver and gills was dissected out. The activities of acid phosphatase, alkaline phosphatase, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase were estimated by standard spectrophotometric techniques in the blood, liver and gills tissue homogenate. Lactate dehydrogenase was significantly decreased in E2 and E3 experimental groups. The activities of acid phosphatase, alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase were significantly altered in the experimental groups. All the biochemical parameters studied were adversely affected in the liver and gills of cypermethrin exposed fish. The results obtained from the present study of cypermethrin exposed fishes indicate a marked toxic effect of cypermethrin and also its dose dependent impact on different organs of the fish.Keywords: cypermethrin, Cyprinus carpio, ALT, AST, LDH, liver, gills
Procedia PDF Downloads 286768 Fake News Detection for Korean News Using Machine Learning Techniques
Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn
Abstract:
Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.Keywords: fake news detection, Korean news, machine learning, text mining
Procedia PDF Downloads 275767 H₆P₂W₁₈O₆₂.14H₂O Catalyzed Synthesis and X-Ray Study of α-Aminophosphonates
Authors: Sarra Boughaba
Abstract:
The α-aminophosphonates have received considerable attention in organic and medicinal chemistry because of their structural resemblance with α-amino acids. They are used as antitumor agents, anti-inflammatory and antibiotics. As a result, a number of procedures have been developed for their synthesis. However, many of these methods suffer from some disadvantages such as long reaction times, environmental pollution caused by utilization of organic solvents, and expensive catalyst. On the other hand, thiazole components, particularly 2-aminothiazole is an important class of heterocyclic compounds. They appear in the structure of natural products and biologically actives compounds, thiamine (vitamin-B), and some antibiotics drugs (penicillin, micrococcin). In the past few years, heteropolyacids have received great attention as environmentally benign catalysts for organic synthetic processes, they possess unique physicochemical properties, such as super-acidity, high thermal and chemical stability, ability to accept and release electrons and high proton mobility, and the possibility of varying their acidity and oxidizing potential. In this study, an efficient and eco-friendly process has been developed for the synthesis of α-aminophosphonates containing aminothiazole moiety via Kabachnik-Field reaction catalyzed by H₆P₂W₁₈O₆₂.14H₂O as reusable catalyst, by condensation of aromatic aldehydes, 2-aminothiazole and triethylphosphite under free conditions. The X-ray crystallographic data of obtained compounds were provided. The main advantages of our protocol include the absence of solvent in the reaction, easy work-up, short reaction time, atom-economy and reusability of catalyst without significant loss of its activity.Keywords: aminophosphonates, green synthesis, H₆P₂W₁₈O₆₂.14H₂O catalyst, x-ray study
Procedia PDF Downloads 113766 Surface Modified Quantum Dots for Nanophotonics, Stereolithography and Hybrid Systems for Biomedical Studies
Authors: Redouane Krini, Lutz Nuhn, Hicham El Mard Cheol Woo Ha, Yoondeok Han, Kwang-Sup Lee, Dong-Yol Yang, Jinsoo Joo, Rudolf Zentel
Abstract:
To use Quantum Dots (QDs) in the two photon initiated polymerization technique (TPIP) for 3D patternings, QDs were modified on the surface with photosensitive end groups which are able to undergo a photopolymerization. We were able to fabricate fluorescent 3D lattice structures using photopatternable QDs by TPIP for photonic devices such as photonic crystals and metamaterials. The QDs in different diameter have different emission colors and through mixing of RGB QDs white light fluorescent from the polymeric structures has been created. Metamaterials are capable for unique interaction with the electrical and magnetic components of the electromagnetic radiation and for manipulating light it is crucial to have a negative refractive index. In combination with QDs via TPIP technique polymeric structures can be designed with properties which cannot be found in nature. This makes these artificial materials gaining a huge importance for real-life applications in photonic and optoelectronic. Understanding of interactions between nanoparticles and biological systems is of a huge interest in the biomedical research field. We developed a synthetic strategy of polymer functionalized nanoparticles for biomedical studies to obtain hybrid systems of QDs and copolymers with a strong binding network in an inner shell and which can be modified in the end through their poly(ethylene glycol) functionalized outer shell. These hybrid systems can be used as models for investigation of cell penetration and drug delivery by using measurements combination between CryoTEM and fluorescence studies.Keywords: biomedical study models, lithography, photo induced polymerization, quantum dots
Procedia PDF Downloads 526765 Urban Land Use Type Analysis Based on Land Subsidence Areas Using X-Band Satellite Image of Jakarta Metropolitan City, Indonesia
Authors: Ratih Fitria Putri, Josaphat Tetuko Sri Sumantyo, Hiroaki Kuze
Abstract:
Jakarta Metropolitan City is located on the northwest coast of West Java province with geographical location between 106º33’ 00”-107º00’00”E longitude and 5º48’30”-6º24’00”S latitude. Jakarta urban area has been suffered from land subsidence in several land use type as trading, industry and settlement area. Land subsidence hazard is one of the consequences of urban development in Jakarta. This hazard is caused by intensive human activities in groundwater extraction and land use mismanagement. Geologically, the Jakarta urban area is mostly dominated by alluvium fan sediment. The objectives of this research are to make an analysis of Jakarta urban land use type on land subsidence zone areas. The process of producing safer land use and settlements of the land subsidence areas are very important. Spatial distributions of land subsidence detection are necessary tool for land use management planning. For this purpose, Differential Synthetic Aperture Radar Interferometry (DInSAR) method is used. The DInSAR is complementary to ground-based methods such as leveling and global positioning system (GPS) measurements, yielding information in a wide coverage area even when the area is inaccessible. The data were fine tuned by using X-Band image satellite data from 2010 to 2013 and land use mapping data. Our analysis of land use type that land subsidence movement occurred on the northern part Jakarta Metropolitan City varying from 7.5 to 17.5 cm/year as industry and settlement land use type areas.Keywords: land use analysis, land subsidence mapping, urban area, X-band satellite image
Procedia PDF Downloads 274764 A Study on the Effect of Cod to Sulphate Ratio on Performance of Lab Scale Upflow Anaerobic Sludge Blanket Reactor
Authors: Neeraj Sahu, Ahmad Saadiq
Abstract:
Anaerobic sulphate reduction has the potential for being effective and economically viable over conventional treatment methods for the treatment of sulphate-rich wastewater. However, a major challenge in anaerobic sulphate reduction is the diversion of a fraction of organic carbon towards methane production and some minor problem such as odour problems, corrosion, and increase of effluent chemical oxygen demand. A high-rate anaerobic technology has encouraged researchers to extend its application to the treatment of complex wastewaters with relatively low cost and energy consumption compared to physicochemical methods. Therefore, the aim of this study was to investigate the effects of COD/SO₄²⁻ ratio on the performance of lab scale UASB reactor. A lab-scale upflow anaerobic sludge blanket (UASB) reactor was operated for 170 days. In which first 60 days, for successful start-up with acclimation under methanogenesis and sulphidogenesis at COD/SO₄²⁻ of 18 and were operated at COD/SO₄²⁻ ratios of 12, 8, 4 and 1 to evaluate the effects of the presence of sulfate on the reactor performance. The reactor achieved maximum COD removal efficiency and biogas evolution at the end of acclimation (control). This phase lasted 53 days with 89.5% efficiency. The biogas was 0.6 L/d at (OLR) of 1.0 kg COD/m³d when it was treating synthetic wastewater with effective volume of reactor as 2.8 L. When COD/SO₄²⁻ ratio changed from 12 to 1, slight decrease in COD removal efficiencies (76.8–87.4%) was observed, biogas production decreased from 0.58 to 0.32 L/d, while the sulfate removal efficiency increased from 42.5% to 72.7%.Keywords: anaerobic, chemical oxygen demand, organic loading rate, sulphate, up-flow anaerobic sludge blanket reactor
Procedia PDF Downloads 218763 Biodegradation of Direct Red 23 by Bacterial Consortium Isolated from Dye Contaminated Soil Using Sequential Air-lift Bioreactor
Authors: Lata Kumari Dhanesh Tiwary, Pradeep Kumar Mishra
Abstract:
The effluent coming from various industries such as textile, carpet, food, pharmaceutical and many other industries is big challenge due to its recalcitrant and xenobiotiocs in nature. Recently, biodegradation of dye wastewater through biological means was widely used due to eco-friendly and cost effective with the higher percentage of removal of dye from wastewater. The present study deals with the biodegradation and decolourization of Direct Red 23 dye using indigenously isolated bacterial consortium. The bacterial consortium was isolated from soil sample from dye contaminated site near a cluster of Carpet industries of Bhadohi, Uttar Pradesh, India. The bacterial strain formed consortia were identified and characterized by morphological, biochemical and 16S rRNA gene sequence analysis. The bacterial strain mainly Staphylococcus saprophyticus strain BHUSS X3 (KJ439576), Microbacterium sp. BHUMSp X4 (KJ740222) and Staphylococcus saprophyticus strain BHUSS X5 (KJ439576) were used as consortia for further studies of dye decolorization. Experimental investigations were made in a Sequencing Air- lift bioreactor using the synthetic solution of Direct Red 23 dye by optimizing various parameters for efficient degradation of dye. The effect of several operating parameters such as flow rate, pH, temperature, initial dye concentration and inoculums size on removal of dye was investigated. The efficiency of isolated bacterial consortia from dye contaminated area in Sequencing Air- lift Bioreactor with different concentration of dye between 100-1200 mg/l at different hydraulic rate (HRTs) 26h and 10h. The maximum percentage of dye decolourization 98% was achieved when operated at HRT of 26h. The percentage of decolourization of dye was confirmed by using UV-Vis spectrophotometer and HPLC.Keywords: carpet industry, bacterial consortia, sequencing air-lift bioreactor
Procedia PDF Downloads 337762 Personalized Social Resource Recommender Systems on Interest-Based Social Networks
Authors: C. L. Huang, J. J. Sia
Abstract:
The interest-based social networks, also known as social bookmark sharing systems, are useful platforms for people to conveniently read and collect internet resources. These platforms also providing function of social networks, and users can share and explore internet resources from the social networks. Providing personalized internet resources to users is an important issue on these platforms. This study uses two types of relationship on the social networks—following and follower and proposes a collaborative recommender system, consisting of two main steps. First, this study calculates the relationship strength between the target user and the target user's followings and followers to find top-N similar neighbors. Second, from the top-N similar neighbors, the articles (internet resources) that may interest the target user are recommended to the target user. In this system, users can efficiently obtain recent, related and diverse internet resources (knowledge) from the interest-based social network. This study collected the experimental dataset from Diigo, which is a famous bookmark sharing system. The experimental results show that the proposed recommendation model is more accurate than two traditional baseline recommendation models but slightly lower than the cosine model in accuracy. However, in the metrics of the diversity and executing time, our proposed model outperforms the cosine model.Keywords: recommender systems, social networks, tagging, bookmark sharing systems, collaborative recommender systems, knowledge management
Procedia PDF Downloads 172761 Composite Approach to Extremism and Terrorism Web Content Classification
Authors: Kolade Olawande Owoeye, George Weir
Abstract:
Terrorism and extremism activities on the internet are becoming the most significant threats to national security because of their potential dangers. In response to this challenge, law enforcement and security authorities are actively implementing comprehensive measures by countering the use of the internet for terrorism. To achieve the measures, there is need for intelligence gathering via the internet. This includes real-time monitoring of potential websites that are used for recruitment and information dissemination among other operations by extremist groups. However, with billions of active webpages, real-time monitoring of all webpages become almost impossible. To narrow down the search domain, there is a need for efficient webpage classification techniques. This research proposed a new approach tagged: SentiPosit-based method. SentiPosit-based method combines features of the Posit-based method and the Sentistrenght-based method for classification of terrorism and extremism webpages. The experiment was carried out on 7500 webpages obtained through TENE-webcrawler by International Cyber Crime Research Centre (ICCRC). The webpages were manually grouped into three classes which include the ‘pro-extremist’, ‘anti-extremist’ and ‘neutral’ with 2500 webpages in each category. A supervised learning algorithm is then applied on the classified dataset in order to build the model. Results obtained was compared with existing classification method using the prediction accuracy and runtime. It was observed that our proposed hybrid approach produced a better classification accuracy compared to existing approaches within a reasonable runtime.Keywords: sentiposit, classification, extremism, terrorism
Procedia PDF Downloads 278760 Biophysical Consideration in the Interaction of Biological Cell Membranes with Virus Nanofilaments
Authors: Samaneh Farokhirad, Fatemeh Ahmadpoor
Abstract:
Biological membranes are constantly in contact with various filamentous soft nanostructures that either reside on their surface or are being transported between the cell and its environment. In particular, viral infections are determined by the interaction of viruses (such as filovirus) with cell membranes, membrane protein organization (such as cytoskeletal proteins and actin filament bundles) has been proposed to influence the mechanical properties of lipid membranes, and the adhesion of filamentous nanoparticles influence their delivery yield into target cells or tissues. The goal of this research is to integrate the rapidly increasing but still fragmented experimental observations on the adhesion and self-assembly of nanofilaments (including filoviruses, actin filaments, as well as natural and synthetic nanofilaments) on cell membranes into a general, rigorous, and unified knowledge framework. The global outbreak of the coronavirus disease in 2020, which has persisted for over three years, highlights the crucial role that nanofilamentbased delivery systems play in human health. This work will unravel the role of a unique property of all cell membranes, namely flexoelectricity, and the significance of nanofilaments’ flexibility in the adhesion and self-assembly of nanofilaments on cell membranes. This will be achieved utilizing a set of continuum mechanics, statistical mechanics, and molecular dynamics and Monte Carlo simulations. The findings will help address the societal needs to understand biophysical principles that govern the attachment of filoviruses and flexible nanofilaments onto the living cells and provide guidance on the development of nanofilament-based vaccines for a range of diseases, including infectious diseases and cancer.Keywords: virus nanofilaments, cell mechanics, computational biophysics, statistical mechanics
Procedia PDF Downloads 93759 Determination of Alkali Treatment Conditions Effects That Influence the Variability of Kenaf Fiber Mean Cross-Sectional Area
Authors: Mohd Yussni Hashim, Mohd Nazrul Roslan, Shahruddin Mahzan Mohd Zin, Saparudin Ariffin
Abstract:
Fiber cross-sectional area value is a crucial factor in determining the strength properties of natural fiber. Furthermore, unlike synthetic fiber, a diameter and cross-sectional area of natural fiber has a large variation along and between the fibers. This study aims to determine the main and interaction effects of alkali treatment conditions that influence kenaf bast fiber mean cross-sectional area. Three alkali treatment conditions at two different levels were selected. The conditions setting were alkali concentrations at two and ten w/v %; fiber immersed temperature at room temperature and 1000C; and fiber immersed duration for 30 and 480 minute. Untreated kenaf fiber was used as a control unit. Kenaf bast fiber bundle mounting tab was prepared according to ASTM C1557-03. The cross-sectional area was measured using a Leica video analyzer. The study result showed that kenaf fiber bundle mean cross-sectional area was reduced 6.77% to 29.88% after alkali treatment. From the analysis of variance, it shows that the interaction of alkali concentration and immersed time has a higher magnitude at 0.1619 compared to alkali concentration and immersed temperature interaction that was 0.0896. For the main effect, alkali concentration factor contributes to the higher magnitude at 0.1372 which indicated the decrease pattern of variability when the level changed from lower to the higher level. Then, it was followed by immersed temperature at 0.1261 and immersed time at 0.0696 magnitudes.Keywords: natural fiber, kenaf bast fiber bundles, alkali treatment, cross-sectional area
Procedia PDF Downloads 426758 Fed-Batch Mixotrophic Cultivation of Microalgae Scenedesmus sp., Using Airlift Photobioreactor
Authors: Lakshmidevi Rajendran, Bharathidasan Kanniappan, Gopi Raja, Muthukumar Karuppan
Abstract:
This study investigates the feasibility of fed-batch mixotrophic cultivation of microalgae Scenedesmus sp. in a 3-litre airlift photobioreactor under standard operating conditions. The results of this study suggest the algae species may serve as an excellent feed for aquatic species using organic byproducts. Microalgae Scenedesmus sp., was cultured using a synthetic wastewater by stepwise addition of crude glycerol concentration ranging from 2-10g/l under fed-batch mixotrophic mode for a period of 15 days. The attempts were made with the stepwise addition of crude glycerol as a carbon source in the initial growth phase to evade the inhibitory nature of high glycerol concentration on the growth of Scenedesmus sp. Crude glycerol was chosen since it is readily accessible as byproduct from biodiesel production sectors. Highest biomass concentration was achieved to be 2.43 g/l at the crude glycerol concentration of 6g/l after 10 days which is 3 fold times the increase in the biomass concentration compared with the control medium without the addition of glycerol. Biomass growth data obtained for the microalgae Scenedesmus sp. was fitted well with the modified Logistic equation. Substrate utilization kinetics was also employed to model the biomass productivity with respect to the various crude glycerol concentration. The results indicated that the supplement of crude glycerol to the mixotrophic culture of Scenedesmus sp., enhances the biomass concentration, chlorophyll and lutein productivity. Thus the application of fed-batch mixotrophic cultivation with stepwise addition of crude glycerol to Scenedesmus sp., provides a subtle way to reduce the production cost and improvisation in the large-scale cultivation along with biochemical compound synthesis.Keywords: airlift photobioreactor, crude glycerol, microalgae Scenedesmus sp., mixotrophic cultivation, lutein production
Procedia PDF Downloads 187757 Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform
Authors: S. Hutasavi, D. Chen
Abstract:
The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.Keywords: built-up area extraction, google earth engine, adaptive thresholding method, rapid mapping
Procedia PDF Downloads 125756 Automatic Reporting System for Transcriptome Indel Identification and Annotation Based on Snapshot of Next-Generation Sequencing Reads Alignment
Authors: Shuo Mu, Guangzhi Jiang, Jinsa Chen
Abstract:
The analysis of Indel for RNA sequencing of clinical samples is easily affected by sequencing experiment errors and software selection. In order to improve the efficiency and accuracy of analysis, we developed an automatic reporting system for Indel recognition and annotation based on image snapshot of transcriptome reads alignment. This system includes sequence local-assembly and realignment, target point snapshot, and image-based recognition processes. We integrated high-confidence Indel dataset from several known databases as a training set to improve the accuracy of image processing and added a bioinformatical processing module to annotate and filter Indel artifacts. Subsequently, the system will automatically generate data, including data quality levels and images results report. Sanger sequencing verification of the reference Indel mutation of cell line NA12878 showed that the process can achieve 83% sensitivity and 96% specificity. Analysis of the collected clinical samples showed that the interpretation accuracy of the process was equivalent to that of manual inspection, and the processing efficiency showed a significant improvement. This work shows the feasibility of accurate Indel analysis of clinical next-generation sequencing (NGS) transcriptome. This result may be useful for RNA study for clinical samples with microsatellite instability in immunotherapy in the future.Keywords: automatic reporting, indel, next-generation sequencing, NGS, transcriptome
Procedia PDF Downloads 191755 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building
Authors: Aaditya U. Jhamb
Abstract:
Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.Keywords: energy efficient buildings, heating load, cooling load, machine learning models
Procedia PDF Downloads 95754 Mapping Thermal Properties Using Resistivity, Lithology and Thermal Conductivity Measurements
Authors: Riccardo Pasquali, Keith Harlin, Mark Muller
Abstract:
The ShallowTherm project is focussed on developing and applying a methodology for extrapolating relatively sparsely sampled thermal conductivity measurements across Ireland using mapped Litho-Electrical (LE) units. The primary data used consist of electrical resistivities derived from the Geological Survey Ireland Tellus airborne electromagnetic dataset, GIS-based maps of Irish geology, and rock thermal conductivities derived from both the current Irish Ground Thermal Properties (IGTP) database and a new programme of sampling and laboratory measurement. The workflow has been developed across three case-study areas that sample a range of different calcareous, arenaceous, argillaceous, and volcanic lithologies. Statistical analysis of resistivity data from individual geological formations has been assessed and integrated with detailed lithological descriptions to define distinct LE units. Thermal conductivity measurements from core and hand samples have been acquired for every geological formation within each study area. The variability and consistency of thermal conductivity measurements within each LE unit is examined with the aim of defining a characteristic thermal conductivity (or range of thermal conductivities) for each LE unit. Mapping of LE units, coupled with characteristic thermal conductivities, provides a method of defining thermal conductivity properties at a regional scale and facilitating the design of ground source heat pump closed-loop collectors.Keywords: thermal conductivity, ground source heat pumps, resistivity, heat exchange, shallow geothermal, Ireland
Procedia PDF Downloads 181753 A Review of Effective Gene Selection Methods for Cancer Classification Using Microarray Gene Expression Profile
Authors: Hala Alshamlan, Ghada Badr, Yousef Alohali
Abstract:
Cancer is one of the dreadful diseases, which causes considerable death rate in humans. DNA microarray-based gene expression profiling has been emerged as an efficient technique for cancer classification, as well as for diagnosis, prognosis, and treatment purposes. In recent years, a DNA microarray technique has gained more attraction in both scientific and in industrial fields. It is important to determine the informative genes that cause cancer to improve early cancer diagnosis and to give effective chemotherapy treatment. In order to gain deep insight into the cancer classification problem, it is necessary to take a closer look at the proposed gene selection methods. We believe that they should be an integral preprocessing step for cancer classification. Furthermore, finding an accurate gene selection method is a very significant issue in a cancer classification area because it reduces the dimensionality of microarray dataset and selects informative genes. In this paper, we classify and review the state-of-art gene selection methods. We proceed by evaluating the performance of each gene selection approach based on their classification accuracy and number of informative genes. In our evaluation, we will use four benchmark microarray datasets for the cancer diagnosis (leukemia, colon, lung, and prostate). In addition, we compare the performance of gene selection method to investigate the effective gene selection method that has the ability to identify a small set of marker genes, and ensure high cancer classification accuracy. To the best of our knowledge, this is the first attempt to compare gene selection approaches for cancer classification using microarray gene expression profile.Keywords: gene selection, feature selection, cancer classification, microarray, gene expression profile
Procedia PDF Downloads 454752 Microwave Synthesis and Molecular Docking Studies of Azetidinone Analogous Bearing Diphenyl Ether Nucleus as a Potent Antimycobacterial and Antiprotozoal Agent
Authors: Vatsal M. Patel, Navin B. Patel
Abstract:
The present studies deal with the developing a series bearing a diphenyl ethers nucleus using structure-based drug design concept. A newer series of diphenyl ether based azetidinone namely N-(3-chloro-2-oxo-4-(3-phenoxyphenyl)azetidin-1-yl)-2-(substituted amino)acetamide (2a-j) have been synthesized by condensation of m-phenoxybenzaldehyde with 2-(substituted-phenylamino)acetohydrazide followed by the cyclisation of resulting Schiff base (1a-j) by conventional method as well as microwave heating approach as a part of an environmentally benign synthetic protocol. All the synthesized compounds were characterized by spectral analysis and were screened for in vitro antimicrobial, antitubercular and antiprotozoal activity. The compound 2f was found to be most active M. tuberculosis (6.25 µM) MIC value in the primary screening as well as this same derivative has been found potency against L. mexicana and T. cruzi with MIC value 2.09 and 6.69 µM comparable to the reference drug Miltefosina and Nifurtimox. To provide understandable evidence to predict binding mode and approximate binding energy of a compound to a target in the terms of ligand-protein interaction, all synthesized compounds were docked against an enoyl-[acyl-carrier-protein] reductase of M. tuberculosis (PDB ID: 4u0j). The computational studies revealed that azetidinone derivatives have a high affinity for the active site of enzyme which provides a strong platform for new structure-based design efforts. The Lipinski’s parameters showed good drug-like properties and can be developed as an oral drug candidate.Keywords: antimycobacterial, antiprotozoal, azetidinone, diphenylether, docking, microwave
Procedia PDF Downloads 161751 Sound Absorbing and Thermal Insulating Properties of Natural Fibers (Coir/Jute) Hybrid Composite Materials for Automotive Textiles
Authors: Robel Legese Meko
Abstract:
Natural fibers have been used as end-of-life textiles and made into textile products which have become a well-proven and effective way of processing. Nowadays, resources to make primary synthetic fibers are becoming less and less as the world population is rising. Hence it is necessary to develop processes to fabricate textiles that are easily converted to composite materials. Acoustic comfort is closely related to the concept of sound absorption and includes protection against noise. This research paper presents an experimental study on sound absorption coefficients, for natural fiber composite materials: a natural fiber (Coir/Jute) with different blend proportions of raw materials mixed with rigid polyurethane foam as a binder. The natural fiber composite materials were characterized both acoustically (sound absorption coefficient SAC) and also in terms of heat transfer (thermal conductivity). The acoustic absorption coefficient was determined using the impedance tube method according to the ASTM Standard (ASTM E 1050). The influence of the structure of these materials on the sound-absorbing properties was analyzed. The experimental results signify that the porous natural coir/jute composites possess excellent performance in the absorption of high-frequency sound waves, especially above 2000 Hz, and didn’t induce a significant change in the thermal conductivity of the composites. Thus, the sound absorption performances of natural fiber composites based on coir/jute fiber materials promote environmentally friendly solutions.Keywords: coir/jute fiber, sound absorption coefficients, compression molding, impedance tube, thermal insulating properties, SEM analysis
Procedia PDF Downloads 109750 Removal of Metal Ions (II) Using a Synthetic Bis(2-Pyridylmethyl)Amino-Chloroacetyl Chloride- Ethylenediamine-Grafted Graphene Oxide Sheets
Authors: Laroussi Chaabane, Emmanuel Beyou, Amel El Ghali, Mohammed Hassen V. Baouab
Abstract:
The functionalization of graphene oxide sheets by ethylenediamine (EDA) was accomplished followed by the grafting of bis(2-pyridylmethyl)amino group (BPED) onto the activated graphene oxide sheets in the presence of chloroacetylchloride (CAC) produced the martial [(Go-EDA-CAC)-BPED]. The physic-chemical properties of [(Go-EDA-CAC)-BPED] composites were investigated by Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPs), Scanning electron microscopy (SEM) and Thermogravimetric analysis (TGA). Moreover, [(Go-EDA-CAC)-BPED] was used for removing M(II) (where M=Cu, Ni and Co) ions from aqueous solutions using a batch process. The effect of pH, contact time and temperature were investigated. More importantly, the [(Go-EDA-CAC)-BPED] adsorbent exhibited remarkable performance in capturing heavy metal ions from water. The maximum adsorption capacity values of Cu(II), Ni(II) and Co(II) on the [(GO-EDA-CAC)-BPED] at the pH of 7 is 3.05 mmol.g⁻¹, 3.25 mmol.g⁻¹ and 3.05 mmol.g⁻¹ respectively. To examine the underlying mechanism of the adsorption process, pseudo-first, pseudo-second-order, and intraparticle diffusion models were fitted to experimental kinetic data. Results showed that the pseudo-second-order equation was appropriate to describe the three metal ions adsorption by [(Go-EDA-CAC)-BPED]. Adsorption data were further analyzed by the Langmuir, Freundlich, and Jossensadsorption approaches. Additionally, the adsorption properties of the [(Go-EDA-CAC)-BPED], their reusability (more than 10 cycles) and durability in the aqueous solutions open the path to removal of metal ions (Cu(II), Ni(II) and Co(II) from water solution. Based on the results obtained, we conclude that [(Go-EDA-CAC)-BPED] can be an effective and potential adsorbent for removing metal ions from an aqueous solution.Keywords: graphene oxide, bis(2-pyridylmethyl)amino, adsorption kinetics, isotherms
Procedia PDF Downloads 134749 Effect of Synchronization Protocols on Serum Concentrations of Estrogen and Progesterone in Holstein Dairy Heifers
Authors: K. Shafiei, A. Pirestani, G. Ghalamkari, S. Safavipour
Abstract:
Use of GnRH or its agonists to increase conception rates should be based on an understanding of GnRH-induced biological effects on the reproductive-endocrine system. This effect may occur through GnRH-stimulated LH surge stimulating production of progesterone by corpus luteum.the aim of this study was to compare the effects on reproductive efficiency of a luteolytic dose of a synthetic prostaglandin Cloprostenol Sodium versus ainjectable progesterone and Luliberin- A on Follicle estrogen and progesterone levels.In this study, we used45 head of holstein dairy heifersin the three treatments, with 15 replicates per treatment were performed in random groups. all the heifers before the projects is began in two steps injection 3 mL CloprostenolSodium with an interval of 11 days been synchronized and 10 days later, second injection of prostaglandin was conducted after that we started below protocol:Control group (daily sodium chloride serum injection 1 cc), Group B: Day Zero, intramuscular injection of 15 mg Luliberin- A + every other day injection of 3 cc progesterone + day 7, injection of Cloprostenol Sodium+ day 9, injection of 15 mg Luliberin- A.Group C: similar to Grop B + daily injection of progesterone after that blood samples was collected and centrifuged.plasma were analysed by ELISA.the analysis of this study uses SPSS data software package and compared between the mean and LS Means LSD test at 5% significance level was used.The results of this study shows that maximum of progesterone plasma levels were in the control gruop (P ≥ 0.05).Therefore, daily injection of progesterone inhibit the growth CL. the most estrogen levels in plasma were in Group C (P ≥ 0.05) thus it can be concluded, rise in endogenous estrogen concentrations normally stimulates the preovulatory LH release in heifers.Keywords: Luliberin- A, Cloprostenol Sodium, estrogen, progesterone, dairy heifers
Procedia PDF Downloads 541748 Landslide Vulnerability Assessment in Context with Indian Himalayan
Authors: Neha Gupta
Abstract:
Landslide vulnerability is considered as the crucial parameter for the assessment of landslide risk. The term vulnerability defined as the damage or degree of elements at risk of different dimensions, i.e., physical, social, economic, and environmental dimensions. Himalaya region is very prone to multi-hazard such as floods, forest fires, earthquakes, and landslides. With the increases in fatalities rates, loss of infrastructure, and economy due to landslide in the Himalaya region, leads to the assessment of vulnerability. In this study, a methodology to measure the combination of vulnerability dimension, i.e., social vulnerability, physical vulnerability, and environmental vulnerability in one framework. A combined result of these vulnerabilities has rarely been carried out. But no such approach was applied in the Indian Scenario. The methodology was applied in an area of east Sikkim Himalaya, India. The physical vulnerability comprises of building footprint layer extracted from remote sensing data and Google Earth imaginary. The social vulnerability was assessed by using population density based on land use. The land use map was derived from a high-resolution satellite image, and for environment vulnerability assessment NDVI, forest, agriculture land, distance from the river were assessed from remote sensing and DEM. The classes of social vulnerability, physical vulnerability, and environment vulnerability were normalized at the scale of 0 (no loss) to 1 (loss) to get the homogenous dataset. Then the Multi-Criteria Analysis (MCA) was used to assign individual weights to each dimension and then integrate it into one frame. The final vulnerability was further classified into four classes from very low to very high.Keywords: landslide, multi-criteria analysis, MCA, physical vulnerability, social vulnerability
Procedia PDF Downloads 301747 Seismic Loss Assessment for Peruvian University Buildings with Simulated Fragility Functions
Authors: Jose Ruiz, Jose Velasquez, Holger Lovon
Abstract:
Peruvian university buildings are critical structures for which very little research about its seismic vulnerability is available. This paper develops a probabilistic methodology that predicts seismic loss for university buildings with simulated fragility functions. Two university buildings located in the city of Cusco were analyzed. Fragility functions were developed considering seismic and structural parameters uncertainty. The fragility functions were generated with the Latin Hypercube technique, an improved Montecarlo-based method, which optimizes the sampling of structural parameters and provides at least 100 reliable samples for every level of seismic demand. Concrete compressive strength, maximum concrete strain and yield stress of the reinforcing steel were considered as the key structural parameters. The seismic demand is defined by synthetic records which are compatible with the elastic Peruvian design spectrum. Acceleration records are scaled based on the peak ground acceleration on rigid soil (PGA) which goes from 0.05g to 1.00g. A total of 2000 structural models were considered to account for both structural and seismic variability. These functions represent the overall building behavior because they give rational information regarding damage ratios for defined levels of seismic demand. The university buildings show an expected Mean Damage Factor of 8.80% and 19.05%, respectively, for the 0.22g-PGA scenario, which was amplified by the soil type coefficient and resulted in 0.26g-PGA. These ratios were computed considering a seismic demand related to 10% of probability of exceedance in 50 years which is a requirement in the Peruvian seismic code. These results show an acceptable seismic performance for both buildings.Keywords: fragility functions, university buildings, loss assessment, Montecarlo simulation, latin hypercube
Procedia PDF Downloads 144746 Low Impact Development Strategies Applied in the Water System Planning in the Coastal Eco-Green Campus
Authors: Ying Li, Zaisheng Hong, Weihong Wang
Abstract:
With the rapid enlargement of the size of Chinese universities, newly built campuses are springing up everywhere in recent years. It is urged to build eco-green campus because the role of higher education institutions in the transition to a more sustainable society has been highlighted for almost three decades. On condition that a new campus is usually built on an undeveloped site, where the basic infrastructure is not completed, finding proper strategies in planning and design of the campus becomes a primary concern. Low Impact Development (LID) options have been proposed as an alternative approach to make better use of rainwater in planning and design of an undeveloped site. On the basis of analyzing the natural circumstance, geographic condition, and other relative information, four main LID approaches are coordinated in this study of Hebei Union University, which are ‘Storage’, ‘Retaining’, ‘Infiltration’ and ‘Purification’. ‘Storage’ refers to a big central lake in the campus for rainwater harvesting. ‘Retaining’ means rainwater gardens scattered in the campus, also being known as bioretention areas which mimic the naturally created pools of water, to decrease surface flow runoff. ‘Infiltration’ is designed of grassed swales, which also play a part of floodway channel. ‘Purification’ is known as either natural or artificial wetland to reduce pollutants such as nitrogen and phosphorous in the waterbody. With above mentioned measures dealing with the synthetic use of rainwater in the acid & alkali area in the coastal district, an eco-green campus construction and an ecological sustainability will be realized, which will give us more enlightenment and reference.Keywords: newly built campus, low impact development, planning design, rainwater reuse
Procedia PDF Downloads 248745 Polymer Nanostructures Based Catalytic Materials for Energy and Environmental Applications
Authors: S. Ghosh, L. Ramos, A. N. Kouamé, A.-L. Teillout, H. Remita
Abstract:
Catalytic materials have attracted continuous attention due to their promising applications in a variety of energy and environmental applications including clean energy, energy conversion and storage, purification and separation, degradation of pollutants and electrochemical reactions etc. With the advanced synthetic technologies, polymer nanostructures and nanocomposites can be directly synthesized through soft template mediated approach using swollen hexagonal mesophases and modulate the size, morphology, and structure of polymer nanostructures. As an alternative to conventional catalytic materials, one-dimensional PDPB polymer nanostructures shows high photocatalytic activity under visible light for the degradation of pollutants. These photocatalysts are very stable with cycling. Transmission electron microscopy (TEM), and AFM-IR characterizations reveal that the morphology and structure of the polymer nanostructures do not change after photocatalysis. These stable and cheap polymer nanofibers and metal polymer nanocomposites are easy to process and can be reused without appreciable loss of activity. The polymer nanocomposites formed via one pot chemical redox reaction with 3.4 nm Pd nanoparticles on poly(diphenylbutadiyne) (PDPB) nanofibers (30 nm). The reduction of Pd (II) ions is accompanied by oxidative polymerization leading to composites materials. Hybrid Pd/PDPB nanocomposites used as electrode materials for the electrocatalytic oxidation of ethanol without using support of proton exchange Nafion membrane. Hence, these conducting polymer nanofibers and nanocomposites offer the perspective of developing a new generation of efficient photocatalysts for environmental protection and in electrocatalysis for fuel cell applications.Keywords: conducting polymer, swollen hexagonal mesophases, solar photocatalysis, electrocatalysis, water depollution
Procedia PDF Downloads 384744 Rural Water Supply Services in India: Developing a Composite Summary Score
Authors: Mimi Roy, Sriroop Chaudhuri
Abstract:
Sustainable water supply is among the basic needs for human development, especially in the rural areas of the developing nations where safe water supply and basic sanitation infrastructure is direly needed. In light of the above, we propose a simple methodology to develop a composite water sustainability index (WSI) to assess the collective performance of the existing rural water supply services (RWSS) in India over time. The WSI will be computed by summarizing the details of all the different varieties of water supply schemes presently available in India comprising of 40 liters per capita per day (lpcd), 55 lpcd, and piped water supply (PWS) per household. The WSI will be computed annually, between 2010 and 2016, to elucidate changes in holistic RWSS performances. Results will be integrated within a robust geospatial framework to identify the ‘hotspots’ (states/districts) which have persistent issues over adequate RWSS coverage and warrant spatially-optimized policy reforms in future to address sustainable human development. Dataset will be obtained from the National Rural Drinking Water Program (NRDWP), operating under the aegis of the Ministry of Drinking Water and Sanitation (MoDWS), at state/district/block levels to offer the authorities a cross-sectional view of RWSS at different levels of administrative hierarchy. Due to simplistic design, complemented by spatio-temporal cartograms, similar approaches can also be adopted in other parts of the world where RWSS need a thorough appraisal.Keywords: rural water supply services, piped water supply, sustainability, composite index, spatial, drinking water
Procedia PDF Downloads 299743 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records
Authors: Sara ElElimy, Samir Moustafa
Abstract:
Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).Keywords: big data analytics, machine learning, CDRs, 5G
Procedia PDF Downloads 139742 A Relative Entropy Regularization Approach for Fuzzy C-Means Clustering Problem
Authors: Ouafa Amira, Jiangshe Zhang
Abstract:
Clustering is an unsupervised machine learning technique; its aim is to extract the data structures, in which similar data objects are grouped in the same cluster, whereas dissimilar objects are grouped in different clusters. Clustering methods are widely utilized in different fields, such as: image processing, computer vision , and pattern recognition, etc. Fuzzy c-means clustering (fcm) is one of the most well known fuzzy clustering methods. It is based on solving an optimization problem, in which a minimization of a given cost function has been studied. This minimization aims to decrease the dissimilarity inside clusters, where the dissimilarity here is measured by the distances between data objects and cluster centers. The degree of belonging of a data point in a cluster is measured by a membership function which is included in the interval [0, 1]. In fcm clustering, the membership degree is constrained with the condition that the sum of a data object’s memberships in all clusters must be equal to one. This constraint can cause several problems, specially when our data objects are included in a noisy space. Regularization approach took a part in fuzzy c-means clustering technique. This process introduces an additional information in order to solve an ill-posed optimization problem. In this study, we focus on regularization by relative entropy approach, where in our optimization problem we aim to minimize the dissimilarity inside clusters. Finding an appropriate membership degree to each data object is our objective, because an appropriate membership degree leads to an accurate clustering result. Our clustering results in synthetic data sets, gaussian based data sets, and real world data sets show that our proposed model achieves a good accuracy.Keywords: clustering, fuzzy c-means, regularization, relative entropy
Procedia PDF Downloads 259741 Quince Seed Mucilage (QSD)/ Multiwall Carbonano Tube Hybrid Hydrogels as Novel Controlled Drug Delivery Systems
Authors: Raouf Alizadeh, Kadijeh Hemmati
Abstract:
The aim of this study is to synthesize several series of hydrogels from combination of a natural based polymer (Quince seed mucilage QSD), a synthetic copolymer contained methoxy poly ethylene glycol -polycaprolactone (mPEG-PCL) in the presence of different amount of multi-walled carbon nanotube (f-MWNT). Mono epoxide functionalized mPEG (mP EG-EP) was synthesized and reacted with sodium azide in the presence of NH4Cl to afford mPEG- N3(-OH). Then ring opening polymerization (ROP) of ε–caprolactone (CL) in the presence of mPEG- N3(-OH) as initiator and Sn(Oct)2 as catalyst led to preparation of mPEG-PCL- N3(-OH ) which was grafted onto propagylated f-MWNT by the click reaction to obtain mPEG-PCL- f-MWNT (-OH ). In the presence of mPEG- N3(-Br) and mixture of NHS/DCC/ QSD, hybrid hydrogels were successfully synthesized. The copolymers and hydrogels were characterized using different techniques such as, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The gel content of hydrogels showed dependence on the weight ratio of QSD:mPEG-PCL:f-MWNT. The swelling behavior of the prepared hydrogels was also studied under variation of pH, immersion time, and temperature. According to the results, the swelling behavior of the prepared hydrogels showed significant dependence in the gel content, pH, immersion time and temperature. The highest swelling was observed at room temperature, in 60 min and at pH 8. The loading and in-vitro release of quercetin as a model drug were investigated at pH of 2.2 and 7.4, and the results showed that release rate at pH 7.4 was faster than that at pH 2.2. The total loading and release showed dependence on the network structure of hydrogels and were in the range of 65- 91%. In addition, the cytotoxicity and release kinetics of the prepared hydrogels were also investigated.Keywords: antioxidant, drug delivery, Quince Seed Mucilage(QSD), swelling behavior
Procedia PDF Downloads 320