Search results for: opposition based learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32266

Search results for: opposition based learning

30826 Renovating Language Laboratories for Pedagogical and Technological Advancements in the New Era

Authors: Paul Lam, Chi Him Chan, Alan Tse

Abstract:

Language laboratories have been widely used in language learning, starting in the middle of the last century as one of the earliest forms of educational technology. They are designed to assist students’ language learning with technological innovations. Traditional language laboratories provide individual workstations that allow students to access multimedia language resources. In this type of facility, students can train their listening and speaking abilities, and teachers can also assess the performance of an individual student. Although such a setting promotes a student-centered pedagogy by encouraging students to work at their own pace and according to their own needs, it still favours a traditional, behaviourist language learning pedagogy which focuses on repetitive drilling. The change of pedagogies poses challenges to both the teachers and the facilities. The peer-learning pedagogy advocates that language learning should focus on the social aspect, which emphasizes the importance of everyday communication in language learning. The self-access, individual workstation language laboratories may not be able to provide the flexibility for interaction in the new pedagogies. Modern advancement in technology is another factor that drove our language laboratory renovation. In particular, mobile and wireless technology enabled the use of smaller and more flexible devices, making possible much clever use of space. The Chinese University of Hong Kong (CUHK) renovated nine existing language laboratories to provide lighter and more advanced equipment, movable tables, and round desks. These facilities allow more flexibility and encourage students’ interaction. It is believed that the renovated language laboratories can serve different peer learning activities and thus support peer-learning pedagogies in language teaching and learning. A survey has been conducted to collect comments from the teachers who have used the renovated language laboratories and received forty-four response. The teachers’ comments reveal that they experienced different challenges in using the renovated language laboratories, and there is a need to provide guidance to teachers during the technological and pedagogical transition. For example, teachers need instruction on using the newly installed devices such as touch-monitor and visualizer. They also need advice on planning new teaching and learning activities. Nevertheless, teachers appreciated that the renovated language laboratories are flexible and provide more spaces for different learning activities.

Keywords: language laboratories, language learning, peer-learning, student interaction

Procedia PDF Downloads 107
30825 Code-Switching among Local UCSI Stem and N-Stem Undergraduates during Knowledge Sharing

Authors: Adeela Abu Bakar, Minder Kaur, Parthaman Singh

Abstract:

In the Malaysian education system, a formal setting of English language learning takes place in a content-based classroom (CBC). Until recently, there is less study in Malaysia, which researched the effects of code-switching (CS) behaviour towards the students’ knowledge sharing (KS) with their peers. The aim of this study is to investigate the frequency, reasons, and effect that CS, from the English language to Bahasa Melayu, has among local STEM and N-STEM undergraduates towards KS in a content-based classroom. The study implies a mixed-method research design with questionnaire and interviews as the instruments. The data is collected through distribution of questionnaires and interviews with the undergraduates. The quantitative data is analysed using SPSS in simple frequencies and percentages, whereas qualitative data involves organizing the data into themes, followed by analysis. Findings found that N-STEM undergraduates code-switch more as compared to STEM undergraduates. In addition to that, both the STEM and N-STEM undergraduates agree that CS acts as a catalyst towards KS in a content-based classroom. However, they also acknowledge that excess use of CS can be a hindrance towards KS. The findings of the study can benefit STEM and N-STEM undergraduates, education policymakers, language teachers, university educators, and students with significant insights into the role of CS towards KS in a content-based classroom. Some of the recommendations that can be applied for future studies are that the number of participants can be increased, an observation to be included for the data collection.

Keywords: switching, content-based classroom, content and language integrated learning, knowledge sharing, STEM and N-STEM undergraduates

Procedia PDF Downloads 135
30824 CyberSteer: Cyber-Human Approach for Safely Shaping Autonomous Robotic Behavior to Comply with Human Intention

Authors: Vinicius G. Goecks, Gregory M. Gremillion, William D. Nothwang

Abstract:

Modern approaches to train intelligent agents rely on prolonged training sessions, high amounts of input data, and multiple interactions with the environment. This restricts the application of these learning algorithms in robotics and real-world applications, in which there is low tolerance to inadequate actions, interactions are expensive, and real-time processing and action are required. This paper addresses this issue introducing CyberSteer, a novel approach to efficiently design intrinsic reward functions based on human intention to guide deep reinforcement learning agents with no environment-dependent rewards. CyberSteer uses non-expert human operators for initial demonstration of a given task or desired behavior. The trajectories collected are used to train a behavior cloning deep neural network that asynchronously runs in the background and suggests actions to the deep reinforcement learning module. An intrinsic reward is computed based on the similarity between actions suggested and taken by the deep reinforcement learning algorithm commanding the agent. This intrinsic reward can also be reshaped through additional human demonstration or critique. This approach removes the need for environment-dependent or hand-engineered rewards while still being able to safely shape the behavior of autonomous robotic agents, in this case, based on human intention. CyberSteer is tested in a high-fidelity unmanned aerial vehicle simulation environment, the Microsoft AirSim. The simulated aerial robot performs collision avoidance through a clustered forest environment using forward-looking depth sensing and roll, pitch, and yaw references angle commands to the flight controller. This approach shows that the behavior of robotic systems can be shaped in a reduced amount of time when guided by a non-expert human, who is only aware of the high-level goals of the task. Decreasing the amount of training time required and increasing safety during training maneuvers will allow for faster deployment of intelligent robotic agents in dynamic real-world applications.

Keywords: human-robot interaction, intelligent robots, robot learning, semisupervised learning, unmanned aerial vehicles

Procedia PDF Downloads 259
30823 Re-Conceptualizing the Indigenous Learning Space for Children in Bangladesh Placing Built Environment as Third Teacher

Authors: Md. Mahamud Hassan, Shantanu Biswas Linkon, Nur Mohammad Khan

Abstract:

Over the last three decades, the primary education system in Bangladesh has experienced significant improvement, but it has failed to cope with different social and cultural aspects, which present many challenges for children, families, and the public school system. Neglecting our own contextual learning environment, it is a matter of sorrow that much attention has been paid to the more physical outcome-focused model, which is nothing but mere infrastructural development, and less subtle to the environment that suits the child's psychology and improves their social, emotional, physical, and moral competency. In South Asia, the symbol of education was never the little red house of colonial architecture but “A Guru sitting under a tree", whereas a responsive and inclusive design approach could help to create more innovative learning environments. Such an approach incorporates how the built, natural, and cultural environment shapes the learner; in turn, learners shape the learning. This research will be conducted to, i) identify the major issues and drawbacks of government policy for primary education development programs; ii) explore and evaluate the morphology of the conventional model of school, and iii) propose an alternative model in a collaborative design process with the stakeholders for maximizing the relationship between the physical learning environments and learners by treating “the built environment” as “the third teacher.” Based on observation, this research will try to find out to what extent built, and natural environments can be utilized as a teaching tool for a more optimal learning environment. It should also be evident that there is a significant gap in the state policy, predetermined educational specifications, and implementation process in response to stakeholders’ involvement. The outcome of this research will contribute to a people-place sensitive design approach through a more thoughtful and responsive architectural process.

Keywords: built environment, conventional planning, indigenous learning space, responsive design

Procedia PDF Downloads 107
30822 Media-Based Interventions to Influence English Language Learning: A Case of Bangladesh

Authors: Md. Mizanoor Rahman, Md. Zakir Hossain Talukder, M. Mahruf C. Shohel, Prithvi Shrestha

Abstract:

In Bangladesh, classroom practice and English Learning (EL) competencies acquired both by the teacher and learner in primary and secondary schools are still very weak. Therefore, English is the most commonly failed examination subject at the school level; in addition, there are severe problems in communicative English by the Bangladeshi nationals– this has been characterized as a constraint to economic development. Job applicants and employees often lack English language skills necessary to work effectively. As a result; both government and its international development partners such as DFID, UNESCO, and CIDA have been very active to uplift the quality of the English language learning and implementing projects with innovative approaches. Recently; the economy has been increasing and in line with this, the technology has been deployed in English learning to improve reading, writing, speaking and listening skills. Young Bangladeshi creative, from a variety of backgrounds including film, animation, photography, and digital media are being trained to develop ideas for English Language Teaching (ELT) media. They are being motivated to develop a wide range of ideas for low cost English learning media products. English Language education policy in Bangladesh supports communicative language teaching practices and accordingly, actors have been influencing curriculum, textbook, deployment of technology and assessment changes supporting communicative ELT. The various projects are also being implemented to reform the curriculum, revise the textbook and adjust the assessment mechanism so that the country can increase in proficiency in communicative English among the population. At present; the numbers of teachers, students and adult learners classified at higher levels of proficiency because of deployment of technology and motivation for learning and using English among school population of Bangladesh. The current paper discusses the various interventions in Bangladesh with appropriate media to improve the competencies of the ELT among population.

Keywords: English learning, technology, education, psychological sciences

Procedia PDF Downloads 416
30821 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: dynamic system modeling, neural network, normal equation, second order gradient descent

Procedia PDF Downloads 127
30820 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach

Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan

Abstract:

Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.

Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence

Procedia PDF Downloads 111
30819 An Adaptive Conversational AI Approach for Self-Learning

Authors: Airy Huang, Fuji Foo, Aries Prasetya Wibowo

Abstract:

In recent years, the focus of Natural Language Processing (NLP) development has been gradually shifting from the semantics-based approach to deep learning one, which performs faster with fewer resources. Although it performs well in many applications, the deep learning approach, due to the lack of semantics understanding, has difficulties in noticing and expressing a novel business case with a pre-defined scope. In order to meet the requirements of specific robotic services, deep learning approach is very labor-intensive and time consuming. It is very difficult to improve the capabilities of conversational AI in a short time, and it is even more difficult to self-learn from experiences to deliver the same service in a better way. In this paper, we present an adaptive conversational AI algorithm that combines both semantic knowledge and deep learning to address this issue by learning new business cases through conversations. After self-learning from experience, the robot adapts to the business cases originally out of scope. The idea is to build new or extended robotic services in a systematic and fast-training manner with self-configured programs and constructed dialog flows. For every cycle in which a chat bot (conversational AI) delivers a given set of business cases, it is trapped to self-measure its performance and rethink every unknown dialog flows to improve the service by retraining with those new business cases. If the training process reaches a bottleneck and incurs some difficulties, human personnel will be informed of further instructions. He or she may retrain the chat bot with newly configured programs, or new dialog flows for new services. One approach employs semantics analysis to learn the dialogues for new business cases and then establish the necessary ontology for the new service. With the newly learned programs, it completes the understanding of the reaction behavior and finally uses dialog flows to connect all the understanding results and programs, achieving the goal of self-learning process. We have developed a chat bot service mounted on a kiosk, with a camera for facial recognition and a directional microphone array for voice capture. The chat bot serves as a concierge with polite conversation for visitors. As a proof of concept. We have demonstrated to complete 90% of reception services with limited self-learning capability.

Keywords: conversational AI, chatbot, dialog management, semantic analysis

Procedia PDF Downloads 136
30818 Enhancing Project Performance Forecasting using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

Accurate forecasting of project performance metrics is crucial for successfully managing and delivering urban road reconstruction projects. Traditional methods often rely on static baseline plans and fail to consider the dynamic nature of project progress and external factors. This research proposes a machine learning-based approach to forecast project performance metrics, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category in an urban road reconstruction project. The proposed model utilizes time series forecasting techniques, including Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance based on historical data and project progress. The model also incorporates external factors, such as weather patterns and resource availability, as features to enhance the accuracy of forecasts. By applying the predictive power of machine learning, the performance forecasting model enables proactive identification of potential deviations from the baseline plan, which allows project managers to take timely corrective actions. The research aims to validate the effectiveness of the proposed approach using a case study of an urban road reconstruction project, comparing the model's forecasts with actual project performance data. The findings of this research contribute to the advancement of project management practices in the construction industry, offering a data-driven solution for improving project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, earned value management

Procedia PDF Downloads 49
30817 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms

Authors: Man-Yun Liu, Emily Chia-Yu Su

Abstract:

Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.

Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning

Procedia PDF Downloads 322
30816 Complex Learning Tasks and Their Impact on Cognitive Engagement for Undergraduate Engineering Students

Authors: Anastassis Kozanitis, Diane Leduc, Alain Stockless

Abstract:

This paper presents preliminary results from a two-year funded research program looking to analyze and understand the relationship between high cognitive engagement, higher order cognitive processes employed in situations of complex learning tasks, and the use of active learning pedagogies in engineering undergraduate programs. A mixed method approach was used to gauge student engagement and their cognitive processes when accomplishing complex tasks. Quantitative data collected from the self-report cognitive engagement scale shows that deep learning approach is positively correlated with high levels of complex learning tasks and the level of student engagement, in the context of classroom active learning pedagogies. Qualitative analyses of in depth face-to-face interviews reveal insights into the mechanisms influencing students’ cognitive processes when confronted with open-ended problem resolution. Findings also support evidence that students will adjust their level of cognitive engagement according to the specific didactic environment.

Keywords: cognitive engagement, deep and shallow strategies, engineering programs, higher order cognitive processes

Procedia PDF Downloads 324
30815 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder

Authors: Dua Hişam, Serhat İkizoğlu

Abstract:

Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.

Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting

Procedia PDF Downloads 69
30814 A Constructionist View of Projects, Social Media and Tacit Knowledge in a College Classroom: An Exploratory Study

Authors: John Zanetich

Abstract:

Designing an educational activity that encourages inquiry and collaboration is key to engaging students in meaningful learning. Educational Information and Communications Technology (EICT) plays an important role in facilitating cooperative and collaborative learning in the classroom. The EICT also facilitates students’ learning and development of the critical thinking skills needed to solve real world problems. Projects and activities based on constructivism encourage students to embrace complexity as well as find relevance and joy in their learning. It also enhances the students’ capacity for creative and responsible real-world problem solving. Classroom activities based on constructivism offer students an opportunity to develop the higher–order-thinking skills of defining problems and identifying solutions. Participating in a classroom project is an activity for both acquiring experiential knowledge and applying new knowledge to practical situations. It also provides an opportunity for students to integrate new knowledge into a skill set using reflection. Classroom projects can be developed around a variety of learning objects including social media, knowledge management and learning communities. The construction of meaning through project-based learning is an approach that encourages interaction and problem-solving activities. Projects require active participation, collaboration and interaction to reach the agreed upon outcomes. Projects also serve to externalize the invisible cognitive and social processes taking place in the activity itself and in the student experience. This paper describes a classroom project designed to elicit interactions by helping students to unfreeze existing knowledge, to create new learning experiences, and then refreeze the new knowledge. Since constructivists believe that students construct their own meaning through active engagement and participation as well as interactions with others. knowledge management can be used to guide the exchange of both tacit and explicit knowledge in interpersonal interactions between students and guide the construction of meaning. This paper uses an action research approach to the development of a classroom project and describes the use of technology, social media and the active use of tacit knowledge in the college classroom. In this project, a closed group Facebook page becomes the virtual classroom where interaction is captured and measured using engagement analytics. In the virtual learning community, the principles of knowledge management are used to identify the process and components of the infrastructure of the learning process. The project identifies class member interests and measures student engagement in a learning community by analyzing regular posting on the Facebook page. These posts are used to foster and encourage interactions, reflect a student’s interest and serve as reaction points from which viewers of the post convert the explicit information in the post to implicit knowledge. The data was collected over an academic year and was provided, in part, by the Google analytic reports on Facebook and self-reports of posts by members. The results support the use of active tacit knowledge activities, knowledge management and social media to enhance the student learning experience and help create the knowledge that will be used by students to construct meaning.

Keywords: constructivism, knowledge management, tacit knowledge, social media

Procedia PDF Downloads 215
30813 Collaboration and Automatic Tutoring as a Learning Strategy: A Case Study in Programming Courses

Authors: Luis H. Gonzalez-Guerra, Armandina J. Leal-Flores

Abstract:

Students attending classrooms nowadays are habituated to use digital devices all the time and for multiple things. They have been familiar with digital technology throughout their lives so they have developed skills that should be naturally adopted as part of their study strategies. New learning styles require taking in consideration the use of models that support and promote student motivation for learning and development of their creative thinking skills. To achieve student learning in programming courses, different strategies are used. One of them is a collaboration between students, which is a tool which faculty can take advantage of when teaching these kinds of courses. Moreover, cooperation is an essential skill that society should reinforce in order to promote a healthy social environment and cohabitation. Nevertheless, students will still require support and advice to get a complete and correct programming solution to successfully address and solve the problems given throughout the course. This paper present a model where collaboration between students is associated with an automatic tutoring platform providing an excellent approach for the individual learning in collaborative activities in programming courses, and also motivates students to increase their knowledge regarding the topics covered in the classroom.

Keywords: automatic tutoring, collaboration learning, creative thinking, motivation

Procedia PDF Downloads 272
30812 Advantages and Disadvantages of Distance Learning in Comparison with Full-time Teaching from the Perspective of Chinese University Students

Authors: Daniel Ecler

Abstract:

The aim of this paper was to find out how Chinese university students perceive distance learning compared to full-time teaching, to reveal its advantages and disadvantages, and to try to find what elements could be implemented in regular full-time teaching in order to make it more effective. Recent events have shown that online teaching has a significant role to play in the field of education and needs to be given increased attention and scrutiny. For this purpose, a research survey was conducted using semi-structured questionnaires, which aimed to determine the attitudes of Chinese university students to the phenomenon of distance learning. The results of this survey revealed that most students prefer distance learning to full-time teaching, mainly because it gives them more freedom to participate in teaching, regardless of the environment in which they are currently located. In conclusion, it is necessary to mention that the possibility to participate virtually in teaching from anywhere is a huge advantage that could become part of regular teaching in the future. However, further research into this issue will be necessary.

Keywords: distance learning, full-time teaching, Chinese college students, cultural background

Procedia PDF Downloads 176
30811 A Qualitative Study About a Former Professional Baseball Player with Dyslexia

Authors: Matthias Grunke

Abstract:

In this qualitative study, we interviewed a young man with learning disabilities who played professional baseball for two years. Individuals with severe academic challenges constitute one of the most vulnerable groups of our society. Science has to find ways on how to arm them against life’s challenges and help them to cope with the many risk factors that they are usually confronted with. Team sports like baseball seem to be a suitable means for that purpose. In the interview, our participant talked about his life as a student with severe learning difficulties and related how his career in baseball made his academic challenges appear much less significant. He gave some meaningful insights into what helped him to build a happy and fulfilling life for himself, not only in spite of his challenges but also because of what he's learning disabilities taught him. Support from significant others, a sense of purpose, his fighting spirit ignited by sports, and the success that he experienced on the baseball field were among the most relevant factors. Overall, this study highlights the importance of finding an outlet for young people with learning disabilities where their academic difficulties retreat into the background and their talents are validated.

Keywords: baseball, inclusion, learning disabilities, resilience

Procedia PDF Downloads 97
30810 Facial Recognition Technology in Institutions of Higher Learning: Exploring the Use in Kenya

Authors: Samuel Mwangi, Josephine K. Mule

Abstract:

Access control as a security technique regulates who or what can access resources. It is a fundamental concept in security that minimizes risks to the institutions that use access control. Regulating access to institutions of higher learning is key to ensure only authorized personnel and students are allowed into the institutions. The use of biometrics has been criticized due to the setup and maintenance costs, hygiene concerns, and trepidations regarding data privacy, among other apprehensions. Facial recognition is arguably a fast and accurate way of validating identity in order to guard protected areas. It guarantees that only authorized individuals gain access to secure locations while requiring far less personal information whilst providing an additional layer of security beyond keys, fobs, or identity cards. This exploratory study sought to investigate the use of facial recognition in controlling access in institutions of higher learning in Kenya. The sample population was drawn from both private and public higher learning institutions. The data is based on responses from staff and students. Questionnaires were used for data collection and follow up interviews conducted to understand responses from the questionnaires. 80% of the sampled population indicated that there were many security breaches by unauthorized people, with some resulting in terror attacks. These security breaches were attributed to stolen identity cases, where staff or student identity cards were stolen and used by criminals to access the institutions. These unauthorized accesses have resulted in losses to the institutions, including reputational damages. The findings indicate that security breaches are a major problem in institutions of higher learning in Kenya. Consequently, access control would be beneficial if employed to curb security breaches. We suggest the use of facial recognition technology, given its uniqueness in identifying users and its non-repudiation capabilities.

Keywords: facial recognition, access control, technology, learning

Procedia PDF Downloads 125
30809 Student Researchers and Industry Partnerships Improve Health Management with Data Driven Decisions

Authors: Carole A. South-Winter

Abstract:

Research-based learning gives students the opportunity to experience problems that require critical thinking and idea development. The skills they gain in working through these problems 'hands-on,' develop into attributes that benefit their careers in the professional field. The partnerships developed between students and industries give advantages to both sides. The students gain knowledge and skills that will increase their likelihood of success in the future and the industries are given research on new advancements that will give them a competitive advantage in their given field of work. The future of these partnerships is dependent on the success of current programs, enabling the enhancement and improvement of the research efforts. Once more students can complete research, there will be an increase in reliability of the results for each industry. The overall goal is to continue the support for research-based learning and the partnerships formed between students and industries.

Keywords: global healthcare, industry partnerships, research-driven decisions, short-term study abroad

Procedia PDF Downloads 126
30808 Towards Human-Interpretable, Automated Learning of Feedback Control for the Mixing Layer

Authors: Hao Li, Guy Y. Cornejo Maceda, Yiqing Li, Jianguo Tan, Marek Morzynski, Bernd R. Noack

Abstract:

We propose an automated analysis of the flow control behaviour from an ensemble of control laws and associated time-resolved flow snapshots. The input may be the rich database of machine learning control (MLC) optimizing a feedback law for a cost function in the plant. The proposed methodology provides (1) insights into the control landscape, which maps control laws to performance, including extrema and ridge-lines, (2) a catalogue of representative flow states and their contribution to cost function for investigated control laws and (3) visualization of the dynamics. Key enablers are classification and feature extraction methods of machine learning. The analysis is successfully applied to the stabilization of a mixing layer with sensor-based feedback driving an upstream actuator. The fluctuation energy is reduced by 26%. The control replaces unforced Kelvin-Helmholtz vortices with subsequent vortex pairing by higher-frequency Kelvin-Helmholtz structures of lower energy. These efforts target a human interpretable, fully automated analysis of MLC identifying qualitatively different actuation regimes, distilling corresponding coherent structures, and developing a digital twin of the plant.

Keywords: machine learning control, mixing layer, feedback control, model-free control

Procedia PDF Downloads 223
30807 Learning on the Go: Practicing Vocabulary with Mobile Apps

Authors: Shoba Bandi-Rao

Abstract:

The lack of college readiness is one of the major contributors to low graduation rates at community colleges, especially among educationally and financially disadvantaged students. About 45% of underprepared high school graduates are required to complete ‘remedial’ reading/writing courses before they can begin taking college-level courses. Mobile apps present ‘bite-size’ learning materials that can be useful for practicing certain literacy skills, such as vocabulary learning. The convenience of mobile phones is ideal for a majority of students at community colleges who hold full or part-time jobs. Mobile apps allow students to learn during small ‘chunks’ of time available to them outside of the class—during subway commute, between classes, etc. Learning with mobile apps is a relatively new area in research, and their effectiveness for learning new words has been inconclusive. Using Mishra & Koehler’s TPCK theoretical framework, this study explored the effectiveness of the mobile app (Quizlet) for learning one hundred common college-level words in ‘remedial’ writing class over one semester. Each week, before coming to class, students studied a list of 10-15 words presented in context within sentences. Students came across these words in the article they read in class making their learning more meaningful. A pre and post-test measured the number of words students knew, learned and remembered. Statistical analysis shows that students performed better by 41% on the post-test indicating that the mobile app was helpful for learning words. Students also completed a short survey each week that sought to determine the amount of time students spent on the vocabulary app. A positive correlation was found between the amount of time spent on the mobile app and the number of words learned. The goal of this research is to capitalize on the convenience of smartphones to (1) better prepare them for college-level course work, and (2) contribute to current literature on mobile learning.

Keywords: mobile learning, vocabulary learning, literacy skills, Quizlet

Procedia PDF Downloads 224
30806 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.

Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation

Procedia PDF Downloads 266
30805 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer

Authors: Ravinder Bahl, Jamini Sharma

Abstract:

The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.

Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning

Procedia PDF Downloads 360
30804 Assessment of the Readiness of Institutions and Undergraduates’ Attitude to Online Learning Mode in Nigerian Universities

Authors: Adedolapo Taiwo Adeyemi, Success Ayodeji Fasanmi

Abstract:

The emergence of the coronavirus pandemic and the rate of the spread affected a lot of activities across the world. This led to the introduction of online learning modes in several countries after institutions were shut down. Unfortunately, most public universities in Nigeria could not switch to the online mode because they were not prepared for it, as they do not have the technological capacity to support a full online learning mode. This study examines the readiness of university and the attitude of undergraduates towards online learning mode in Obafemi Awolowo University (OAU), Ile Ife. It investigated the skills and competencies of students for online learning as well as the university’s readiness towards online learning mode; the effort was made to identify challenges of online teaching and learning in the study area, and suggested solutions were advanced. OAU was selected because it is adjudged to be the leading Information and Communication Technology (ICT) driven institution in Nigeria. The descriptive survey research design was used for the study. A total of 256 academic staff and 1503 undergraduates were selected across six faculties out of the thirteen faculties in the University. Two set of questionnaires were used to get responses from the selected respondents. The result showed that students have the skills and competence to operate e-learning facilities but are faced with challenges such as high data cost, erratic power supply, and lack of gadgets, among others. The study found out that the university was not prepared for online learning mode as it lacks basic technological facilities to support it. The study equally showed that while lecturers possess certain skills in using some e-learning applications, they were limited by the unavailability of online support gadgets, poor internet connectivity, and unstable power supply. Furthermore, the assessment of student attitude towards online learning mode shows that the students found the online learning mode very challenging as they had to bear the huge cost of data. Lecturers also faced the same challenge as they had to pay a lot to buy data, and the networks were sometimes unstable. The study recommended that adequate funding needs to be provided to public universities by the government while the management of institutions must build technological capacities to support online learning mode in the hybrid form and on a full basis in case of future emergencies.

Keywords: universities, online learning, undergraduates, attitude

Procedia PDF Downloads 96
30803 Fostering Students' Engagement with Historical Issues Surrounding the Field of Graphic Design

Authors: Sara Corvino

Abstract:

The aim of this study is to explore the potential of inclusive learning and assessment strategies to foster students' engagement with historical debates surrounding the field of graphic design. The goal is to respond to the diversity of L4 Graphic Design students, at Nottingham Trent University, in a way that instead of 'lowering standards' can benefit everyone. This research tests, measures, and evaluates the impact of a specific intervention, an assessment task, to develop students' critical visual analysis skills and stimulate a deeper engagement with the subject matter. Within the action research approach, this work has followed a case study research method to understand students' views and perceptions of a specific project. The primary methods of data collection have been: anonymous electronic questionnaire and a paper-based anonymous critical incident questionnaire. NTU College of Business Law and Social Sciences Research Ethics Committee granted the Ethical approval for this research in November 2019. Other methods used to evaluate the impact of this assessment task have been Evasys's report and students' performance. In line with the constructivist paradigm, this study embraces an interpretative and contextualized analysis of the collected data within the triangulation analytical framework. The evaluation of both qualitative and quantitative data demonstrates that active learning strategies and the disruption of thinking patterns can foster greater students' engagement and can lead to meaningful learning.

Keywords: active learning, assessment for learning, graphic design, higher education, student engagement

Procedia PDF Downloads 178
30802 Enhancing Secondary School Mathematics Retention with Blended Learning: Integrating Concepts for Improved Understanding

Authors: Felix Oromena Egara, Moeketsi Mosia

Abstract:

The study aimed to evaluate the impact of blended learning on mathematics retention among secondary school students. Conducted in the Isoko North Local Government Area of Delta State, Nigeria, the research involved 1,235 senior class one (SS 1) students. Employing a non-equivalent control group pre-test-post-test quasi-experimental design, a sample of 70 students was selected from two secondary schools with ICT facilities through purposive sampling. Random allocation of students into experimental and control groups was achieved through balloting within each selected school. The investigation included three assessment points: pre-Mathematics Achievement Test (MAT), post-MAT, and post-post-MAT (retention), administered systematically by the researchers. Data collection utilized the established MAT instrument, which demonstrated a high reliability score of 0.86. Statistical analysis was conducted using the Statistical Package for Social Sciences (SPSS) version 28, with mean and standard deviation addressing study questions and analysis of covariance scrutinizing hypotheses at a significance level of .05. Results revealed significantly greater improvements in mathematics retention scores among students exposed to blended learning compared to those instructed through conventional methods. Moreover, noticeable differences in mean retention scores were observed, with male students in the blended learning group exhibiting notably higher performance. Based on these findings, recommendations were made, advocating for mathematics educators to integrate blended learning, particularly in geometry teaching, to enhance students’ retention of mathematical concepts.

Keywords: blended learning, flipped classroom model, secondary school students, station rotation model

Procedia PDF Downloads 42
30801 Learning Mathematics Online: Characterizing the Contribution of Online Learning Environment’s Components to the Development of Mathematical Knowledge and Learning Skills

Authors: Atara Shriki, Ilana Lavy

Abstract:

Teaching for the first time an online course dealing with the history of mathematics, we were struggling with questions related to the design of a proper learning environment (LE). Thirteen high school mathematics teachers, M.Ed. students, attended the course. The teachers were engaged in independent reading of mathematical texts, a task that is recognized as complex due to the unique characteristics of such texts. In order to support the learning processes and develop skills that are essential for succeeding in learning online (e.g. self-regulated learning skills, meta-cognitive skills, reflective ability, and self-assessment skills), the LE comprised of three components aimed at “scaffolding” the learning: (1) An online "self-feedback" questionnaires that included drill-and-practice questions. Subsequent to responding the questions the online system provided a grade and the teachers were entitled to correct their answers; (2) Open-ended questions aimed at stimulating critical thinking about the mathematical contents; (3) Reflective questionnaires designed to assist the teachers in steering their learning. Using a mixed-method methodology, an inquiry study examined the learning processes, the learners' difficulties in reading the mathematical texts and on the unique contribution of each component of the LE to the ability of teachers to comprehend the mathematical contents, and support the development of their learning skills. The results indicate that the teachers found the online feedback as most helpful in developing self-regulated learning skills and ability to reflect on deficiencies in knowledge. Lacking previous experience in expressing opinion on mathematical ideas, the teachers had troubles in responding open-ended questions; however, they perceived this assignment as nurturing cognitive and meta-cognitive skills. The teachers also attested that the reflective questionnaires were useful for steering the learning. Although in general the teachers found the LE as supportive, most of them indicated the need to strengthen instructor-learners and learners-learners interactions. They suggested to generate an online forum to enable them receive direct feedback from the instructor, share ideas with other learners, and consult with them about solutions. Apparently, within online LE, supporting learning merely with respect to cognitive aspects is not sufficient. Leaners also need an emotional support and sense a social presence.

Keywords: cognitive and meta-cognitive skills, independent reading of mathematical texts, online learning environment, self-regulated learning skills

Procedia PDF Downloads 621
30800 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction

Procedia PDF Downloads 114
30799 The Effectiveness of ICT-Assisted PBL on College-Level Nano Knowledge and Learning Skills

Authors: Ya-Ting Carolyn Yang, Ping-Han Cheng, Shi-Hui Gilbert Chang, Terry Yuan-Fang Chen, Chih-Chieh Li

Abstract:

Nanotechnology is widely applied in various areas so professionals in the related fields have to know more than nano knowledge. In the study, we focus on adopting ICT-assisted PBL in college general education to foster professionals who possess multiple abilities. The research adopted a pretest and posttest quasi-experimental design. The control group received traditional instruction, and the experimental group received ICT-assisted PBL instruction. Descriptive statistics will be used to describe the means, standard deviations, and adjusted means for the tests between the two groups. Next, analysis of covariance (ANCOVA) will be used to compare the final results of the two research groups after 6 weeks of instruction. Statistics gathered in the end of the research can be used to make contrasts. Therefore, we will see how different teaching strategies can improve students’ understanding about nanotechnology and learning skills.

Keywords: nanotechnology, science education, project-based learning, information and communication technology

Procedia PDF Downloads 375
30798 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis

Authors: Syed Asif Hassan, Syed Atif Hassan

Abstract:

Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.

Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction

Procedia PDF Downloads 391
30797 Chinese Vocabulary Acquisition and Mobile Assisted Language Learning

Authors: Yuqing Sun

Abstract:

Chinese has been regarded as one of the most difficult languages in learning due to its complex spelling structure, difficult pronunciation, as well as its varying forms. Since vocabulary acquisition is the basic process to acquire a language, to express yourself, to compose a sentence, and to conduct a communication, so learning the vocabulary is of great importance. However, the vocabulary contains pronunciation, spelling, recognition and application which may seem as a huge work. This may pose a question for the language teachers (language teachers in China who teach Chinese to the foreign students): How to teach them in an effective way? Traditionally, teachers have no choice but teach it all by themselves, then with the development of technology, they can use computer as a tool to help them (Computer Assisted Language Learning or CALL). Now, they move into the Mobile Assisted Language Learning (MALL) method to guide their teaching, upon which the appraisal is convincing. It diversifies the learning material and the way of output, which can activate learners’ curiosity and accelerate their understanding. This paper will focus on actual case studies occurring in the universities in China of teaching the foreign students to learn Chinese, and the analysis of the utilization of WeChat channel as an example of MALL model to explore the active role of MALL to enhance the effectiveness of Chinese vocabulary acquisition.

Keywords: Chinese, vocabulary acquisition, MALL, case

Procedia PDF Downloads 414