Search results for: neural perception.
2360 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping
Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo
Abstract:
Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping
Procedia PDF Downloads 702359 Cosmetic Surgery on the Rise: The Impact of Remote Communication
Authors: Bruno Di Pace, Roxanne H. Padley
Abstract:
Aims: The recent increase in remote video interaction has increased the number of requests for teleconsultations with plastic surgeons in private practice (70% in the UK and 64% in the USA). This study investigated the motivations for such an increase and the underlying psychological impact on patients. Method: An anonymous web-based poll of 8 questions was designed and distributed to patients seeking cosmetic surgery through social networks in both Italy and the UK. The questions gathered responses regarding 1. Reasons for pursuing cosmetic surgery; 2. The effects of delays caused by the SARS-COV-2 pandemic; 3. The effects on mood; 4. The influence of video conferencing on body-image perception. Results: 85 respondents completed the online poll. Overall, 68% of respondents stated that seeing themselves more frequently online had influenced their decision to seek cosmetic surgery. The types of surgeries indicated were predominantly to the upper body and face (82%). Delays and access to surgeons during the pandemic were perceived as negatively impacting patients' moods (95%). Body-image perception and self-esteem were lower than in the pre-pandemic, particularly during lockdown (72%). Patients were more inclined to undergo cosmetic surgery during the pandemic, both due to the wish to improve their “lockdown face” for video conferencing (77%) and also due to the benefits of home recovery while in smart working (58%). Conclusions: Overall, findings suggest that video conferencing has led to a significant increase in requests for cosmetic surgery and the so-called “Zoom Boom” effect.Keywords: cosmetic surgery, remote communication, telehealth, zoom boom
Procedia PDF Downloads 1792358 The Language of Landscape Architecture
Authors: Hosna Pourhashemi
Abstract:
Chahar Bagh, the symbol of the world, displayed around the pool of life in the centre, attempts to emulate Eden. It represents a duality concept based on the division of the universe into two perceptional insights, a celestial and an earthly one. Chahar Bagh garden pattern refers to the Garden of Eden, that was watered and framed by main four rivers. This microcosm is combined with a mystical love of flowers, sweet-scented trees, the variety of colors, and the sense of eternal life. This symbol of the integration of spontaneous expressivity of the natural elements and reasoning awareness of man strives for the ideal of divine perfection. Through collecting and analyzing the data, the prevalence and continuous influence of Chahar Bagh concept on selected historical gardens was elaborated and evaluated. After the conquest of Persia by the Arabs in the 7th century, Chahar Bagh was adopted and spread throughout the Islamic expansion, from the Middle East, westward across northern Africa to Morocco and the Iberian Peninsula, and eastward through Iran to Central Asia and India. Furthermore, its continuity to the mid of 16th century Renaissance period is shown. By adapting the semiotic theory of Peirce and Saussure on the Persian garden, Chahar Bagh was defined as the basic pattern language for the garden culture. The hypothesis of the continuous influence of Chahar Bagh pattern language on today’s landscape architecture was examined on selected works of Dieter Kienast, as the important and relevant protagonist of his time (end of twentieth ct.) and up to our time. Chahar Bagh pattern language offers collective cultural sensitive healing wisdom transmitted down through the millennia. Through my reflections in Dieter Kienast’s works, I transformed my personal experience into a transpersonal understanding regarding the Sufi philosophy and the Jung psychology, which brings me to define new design theories and methods to form a spiritual, as I call it” Quaternary Perception Model” for landscape architecture. Based on a cognition process through self-journeying in this holistic model, human consciousness can be developed to access to “higher” levels of being and embrace the unity. The self-purification and mindfulness through transpersonal confrontation in the ”Quaternary Perception Model” generates a form of heart-based treatment. I adapted the seven spiritual levels of Sufi self-development on the perception of landscape, representing the stages of the self, ranging from absolutely self-centered to pure spiritual humanity. I redefine and reread the elements and features of Chahar Bagh pattern language for today’s landscape architecture. The “lost paradise” lies in our heart and can be perceived by all humans in landscapes and cities designed in the spirit of” Quaternary Model”.Keywords: persian garden, pattern language of Chahar Bagh, wholistic Perception, dieter kienast, “quaternary model”
Procedia PDF Downloads 822357 Investigating the Editing's Effect of Advertising Photos on the Virtual Purchase Decision Based on the Quantitative Electroencephalogram (EEG) Parameters
Authors: Parya Tabei, Maryam Habibifar
Abstract:
Decision-making is an important cognitive function that can be defined as the process of choosing an option among available options to achieve a specific goal. Consumer ‘need’ is the main reason for purchasing decisions. Human decision-making while buying products online is subject to various factors, one of which is the quality and effect of advertising photos. Advertising photo editing can have a significant impact on people's virtual purchase decisions. This technique helps improve the quality and overall appearance of photos by adjusting various aspects such as brightness, contrast, colors, cropping, resizing, and adding filters. This study, by examining the effect of editing advertising photos on the virtual purchase decision using EEG data, tries to investigate the effect of edited images on the decision-making of customers. A group of 30 participants were asked to react to 24 edited and unedited images while their EEG was recorded. Analysis of the EEG data revealed increased alpha wave activity in the occipital regions (O1, O2) for both edited and unedited images, which is related to visual processing and attention. Additionally, there was an increase in beta wave activity in the frontal regions (FP1, FP2, F4, F8) when participants viewed edited images, suggesting involvement in cognitive processes such as decision-making and evaluating advertising content. Gamma wave activity also increased in various regions, especially the frontal and parietal regions, which are associated with higher cognitive functions, such as attention, memory, and perception, when viewing the edited images. While the visual processing reflected by alpha waves remained consistent across different visual conditions, editing advertising photos appeared to boost neural activity in frontal and parietal regions associated with decision-making processes. These Findings suggest that photo editing could potentially influence consumer perceptions during virtual shopping experiences by modulating brain activity related to product assessment and purchase decisions.Keywords: virtual purchase decision, advertising photo, EEG parameters, decision Making
Procedia PDF Downloads 502356 A Non-Destructive Estimation Method for Internal Time in Perilla Leaf Using Hyperspectral Data
Authors: Shogo Nagano, Yusuke Tanigaki, Hirokazu Fukuda
Abstract:
Vegetables harvested early in the morning or late in the afternoon are valued in plant production, and so the time of harvest is important. The biological functions known as circadian clocks have a significant effect on this harvest timing. The purpose of this study was to non-destructively estimate the circadian clock and so construct a method for determining a suitable harvest time. We took eight samples of green busil (Perilla frutescens var. crispa) every 4 hours, six times for 1 day and analyzed all samples at the same time. A hyperspectral camera was used to collect spectrum intensities at 141 different wavelengths (350–1050 nm). Calculation of correlations between spectrum intensity of each wavelength and harvest time suggested the suitability of the hyperspectral camera for non-destructive estimation. However, even the highest correlated wavelength had a weak correlation, so we used machine learning to raise the accuracy of estimation and constructed a machine learning model to estimate the internal time of the circadian clock. Artificial neural networks (ANN) were used for machine learning because this is an effective analysis method for large amounts of data. Using the estimation model resulted in an error between estimated and real times of 3 min. The estimations were made in less than 2 hours. Thus, we successfully demonstrated this method of non-destructively estimating internal time.Keywords: artificial neural network (ANN), circadian clock, green busil, hyperspectral camera, non-destructive evaluation
Procedia PDF Downloads 2992355 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach
Authors: Shital Suresh Borse, Vijayalaxmi Kadroli
Abstract:
E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN
Procedia PDF Downloads 1132354 AI Predictive Modeling of Excited State Dynamics in OPV Materials
Authors: Pranav Gunhal., Krish Jhurani
Abstract:
This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling
Procedia PDF Downloads 1182353 Influence of Information and Communication Technology on Dress Culture among Senior Secondary School Students in Ife East Local Government, Osun State, Nigeria
Authors: Idowu J. Diyaolu, Ebenezer O. Obayomi, Taiwo A. Bamidele
Abstract:
Information and Communication Technology (ICT) has been observed to have influence on the lifestyle of youths in general. Dressing styles, fashion consciousness and choice of role model are some of the areas of influence. The study was carried out to examine the perception and influence of ICT on the clothing culture of selected Senior Secondary School Students in Ife-East Local government area of Osun State, Nigeria. Two hundred Senior Secondary School Students from public and private schools were randomly selected. Data was collected using structured questionnaire. The result showed that 79.0% were computer literate, 64.5% have facebook account and 93.5% browse with phones. Based on their perception on the influence of ICT, 74.5% of the respondents agreed that frequent use of ICT has increased their level of fashion consciousness while 60.5% were motivated by the images and dressing pattern in magazines, on TV and the internet. Also, large proportions (60.5%) were influenced by the dressing styles of their friends on social media. Male students were significantly more engaged in ICT related activities than females (t = 1.29, P < 0.05), whereas there is no significant difference in the involvement in ICT activities between private and public school students (t = 0.325, P > 0.05). Since ICT has influence on dressing, appropriate dressing pattern should be encouraged on mass media.Keywords: dress culture, information and communication technology, fashion trend, role model
Procedia PDF Downloads 4632352 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring
Authors: A. Degale Desta, Cheng Jian
Abstract:
Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning
Procedia PDF Downloads 1612351 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning
Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie
Abstract:
Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue
Procedia PDF Downloads 1902350 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils
Authors: Muqdad Al-Juboori, Bithin Datta
Abstract:
Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis
Procedia PDF Downloads 2242349 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks
Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy
Abstract:
This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.Keywords: sign language, CNN, HCI, segmentation
Procedia PDF Downloads 1572348 Formation of an Artificial Cultural and Language Environment When Teaching a Foreign Language in the Material of Original Films
Authors: Konysbek Aksaule
Abstract:
The purpose of this work is to explore new and effective ways of teaching English to students who are studying a foreign language since the timeliness of the problem disclosed in this article is due to the high level of English proficiency that potential specialists must have due to high competition in the context of global globalization. The article presents an analysis of the feasibility and effectiveness of using an authentic feature film in teaching English to students. The methodological basis of the study includes an assessment of the level of students' proficiency in a foreign language, the stage of evaluating the film, and the method of selecting the film for certain categories of students. The study also contains a list of practical tasks that can be applied in the process of viewing and perception of an original feature film in a foreign language, and which are aimed at developing language skills such as speaking and listening. The results of this study proved that teaching English to students through watching an original film is one of the most effective methods because it improves speech perception, speech reproduction ability, and also expands the vocabulary of students and makes their speech fluent. In addition, learning English through watching foreign films has a huge impact on the cultural views and knowledge of students about the country of the language being studied and the world in general. Thus, this study demonstrates the high potential of using authentic feature film in English lessons for pedagogical science and methods of teaching English in general.Keywords: university, education, students, foreign language, feature film
Procedia PDF Downloads 1482347 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem
Authors: Feng Yang
Abstract:
Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics
Procedia PDF Downloads 1502346 Sustainability Enhancement of Pedestrian Space Quality in Old Communities from the Perspective of Inclusiveness:Taking Cao Yang New Village, Shanghai as an Example
Authors: Feng Zisu
Abstract:
Community is the basic unit of the city, community pedestrian space is also an important part of the urban public space, and its quality improvement is also closely related to the residents' happiness and sense of belonging. Domestic and international research perspectives on community pedestrian space have gradually changed to inclusive design for the whole population, paying more attention to the equitable accessibility of urban space and the multiple composite enhancement of spatial connotation. In order to realize the inclusive and sustainable development of pedestrian space in old communities, this article selects Cao Yang New Village in Shanghai as a practice case, and based on the connotation of inclusiveness, the four dimensions of space, traffic, function and emotion are selected as the layers of inclusive connotation of pedestrian space in old communities. This article identifies the objective social needs, dynamic activity characteristics and subjective feelings of multiple subjects, and reconstructs the structural hierarchy of “spatial perception - behavioral characteristics - subjective feelings” of walking. It also proposes a governance strategy of “reconfiguring the pedestrian network, optimizing street quality, integrating ecological space and reshaping the community scene” from the aspects of quality of physical environment and quality of behavioral perception, aiming to provide new ideas for promoting the inclusive and sustainable development of pedestrian space in old communities.Keywords: inclusivity, old community, pedestrian space, spatial quality, sustainable renovation
Procedia PDF Downloads 352345 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification
Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro
Abstract:
Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification
Procedia PDF Downloads 1162344 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia
Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba
Abstract:
Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of the acquisition of new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used, is the analysis of the dynamics of different areas of the brain during a cognitive activity to find the relationships between the different areas analyzed in order to better understand the functioning of neural networks. Also, the latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neuro-developmental difficulties for their subsequent assessment and cure. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho pedagogical plans that allow obtaining an optimal integral development of the affected people.Keywords: dyscalculia, neurodevelopment, evoked potentials, Learning disabilities, neural networks
Procedia PDF Downloads 1402343 Improvement of Students’ Active Experience through the Provision of Foundational Architecture Pedagogy by Virtual Reality Tools
Authors: Mehdi Khakzand, Flora Fakourian
Abstract:
It has been seen in recent years that architects are using virtual modeling to help them visualize their projects. Research has indicated that virtual media, particularly virtual reality, enhances architects' comprehension of design and spatial perception. Creating a communal experience for active learning is an essential component of the design process in architecture pedagogy. It has been particularly challenging to replicate design principles as a critical teaching function, and this is a complex issue that demands comprehension. Nonetheless, the usage of simulation should be studied and limited as appropriate. In conjunction with extensive technology, 3D geometric illustration can bridge the gap between the real and virtual worlds. This research intends to deliver a pedagogical experience in the architecture basics course to improve the architectural design process utilizing virtual reality tools. This tool seeks to tackle current challenges in current ways of architectural illustration by offering building geometry illustration, building information (data from the building information model), and simulation results. These tools were tested over three days in a design workshop with 12 architectural students. This article provided an architectural VR-based course and explored its application in boosting students' active experiences. According to the research, this technology can improve students' cognitive skills from challenging simulations by boosting visual understanding.Keywords: active experience, architecture pedagogy, virtual reality, spatial perception
Procedia PDF Downloads 872342 Structure-Constructivism in the Philosophy of Mathematics
Authors: Jeansou Moun
Abstract:
This study argues that constructivism and structuralism, which have been the two important schools of mathematical philosophy since the mid-19th century, can and should be synthesized into structure-constructivism. In fact, the philosophy of mathematics is divided into more than ten schools depending on the point of view. However, the biggest trend is Platonism which claims that mathematical objects are "abstract entities" that exists independently of the human mind and material objects. Its opposite is constructivism. According to the latter, mathematical objects are products of the construction of the human mind. However, whether the basis of the construction is a logical device, a symbolic system, or an empirical perception, it is subdivided into logicism, formalism, and intuitionism. However, these three schools themselves are further subdivided into various variants, and among them, structuralism, which emerged in the mid-20th century, is receiving the most attention. On the other hand, structuralism which emphasizes structure instead of individual objects, is divided into non-eliminative structuralism, which supports the a priori of structure, and non-eliminative structuralism, which rejects any abstract entity. In this context, it is believed that the structure itself is not an a priori entity but a result of the construction of the cognitive subject and that no object has ever been given to us in its full meaning from the outset. In other words, concepts are progressively structured through a dialectical cycle between sensory perception, imagination (abstraction), concepts, judgments, and reasoning. Symbols are needed for formal operation. However, without concrete manipulation, the formal operation cannot have any meaning. However, when formal structurization is achieved, the reality (object) itself is also newly structured. This is the "structure-constructivism".Keywords: philosophy of mathematics, platonism, logicism, formalism, constructivism, structuralism, structure-constructivism
Procedia PDF Downloads 972341 Influence of Dental Midline Deviation with Respect to Facial Flow Line on Smile Esthetics – A Cross-sectional Study
Authors: Kanza Tahir, Mubassar Fida, Rashna Hoshang Sukhia
Abstract:
Background/Objective: A contemporary concept states that dental midline deviation towards the direction of facial flow line (FFL) can mask the compromised smile esthetics. This study aimed to identify a range of midline deviations that can be perceived towards or away from the FFL influencing smile esthetics. Materials and methods: A cross-sectional study was conducted using a frontal smile photograph of an adult female. The photograph was altered on Adobe Photoshop software into six different photographs by deviating the dental midlines towards and away from the FFL. A constant deviation of the chin towards the left side was incorporated in all the photographs. Forty-three laypersons (LP)and dental professionals (DPs) evaluated those photographs onVisual Analog Scale (VAS). An Independent t-test was used to compare the perception of dental midline deviation between LP and DPs. Simple linear regression was run to identify the factors associated with the VAS scoring. Results: A statistically significant difference was observed for picture two with 4 mm towards FFL in the perception of midline deviation between LP and DPs. LP could not perceive the midline deviations up to 4 mm, while DPs were able to perceive deviations above 2 mm. Age was positively associated with the VAS score, while the female gender had a negative association. Limitations: Only one component of mini-esthetics was studied. This study did not include an ideal picture for comparison. Only one female subject was studied of normal facial type. Conclusions: 2-4 mm of midline deviation towards the facial flow line can be tolerated by laypersons and dental professionals.Keywords: midline, facial flow line, smile esthetics, female
Procedia PDF Downloads 912340 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning
Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim
Abstract:
Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation
Procedia PDF Downloads 932339 Multimodal Deep Learning for Human Activity Recognition
Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja
Abstract:
In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness
Procedia PDF Downloads 1012338 A Real-Time Snore Detector Using Neural Networks and Selected Sound Features
Authors: Stelios A. Mitilineos, Nicolas-Alexander Tatlas, Georgia Korompili, Lampros Kokkalas, Stelios M. Potirakis
Abstract:
Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a widespread chronic disease that mostly remains undetected, mainly due to the fact that it is diagnosed via polysomnography which is a time and resource-intensive procedure. Screening the disease’s symptoms at home could be used as an alternative approach in order to alert individuals that potentially suffer from OSAHS without compromising their everyday routine. Since snoring is usually linked to OSAHS, developing a snore detector is appealing as an enabling technology for screening OSAHS at home using ubiquitous equipment like commodity microphones (included in, e.g., smartphones). In this context, this study developed a snore detection tool and herein present the approach and selection of specific sound features that discriminate snoring vs. environmental sounds, as well as the performance of the proposed tool. Furthermore, a Real-Time Snore Detector (RTSD) is built upon the snore detection tool and employed in whole-night sleep sound recordings resulting to a large dataset of snoring sound excerpts that are made freely available to the public. The RTSD may be used either as a stand-alone tool that offers insight to an individual’s sleep quality or as an independent component of OSAHS screening applications in future developments.Keywords: obstructive sleep apnea hypopnea syndrome, apnea screening, snoring detection, machine learning, neural networks
Procedia PDF Downloads 2072337 Reduction of the Number of Traffic Accidents by Function of Driver's Anger Detection
Authors: Masahiro Miyaji
Abstract:
When a driver happens to be involved in some traffic congestion or after traffic incidents, the driver may fall in a state of anger. State of anger may encounter decisive risk resulting in severer traffic accidents. Preventive safety function using driver’s psychosomatic state with regard to anger may be one of solutions which would avoid that kind of risks. Identifying driver’s anger state is important to create countermeasures to prevent the risk of traffic accidents. As a first step, this research figured out root cause of traffic incidents by means of using Internet survey. From statistical analysis of the survey, dominant psychosomatic states immediately before traffic incidents were haste, distraction, drowsiness and anger. Then, we replicated anger state of a driver while driving, and then, replicated it by means of using driving simulator on bench test basis. Six types of facial expressions including anger were introduced as alternative characteristics. Kohonen neural network was adopted to classify anger state. Then, we created a methodology to detect anger state of a driver in high accuracy. We presented a driving support safety function. The function adapts driver’s anger state in cooperation with an autonomous driving unit to reduce the number of traffic accidents. Consequently, e evaluated reduction rate of driver’s anger in the traffic accident. To validate the estimation results, we referred the reduction rate of Advanced Safety Vehicle (ASV) as well as Intelligent Transportation Systems (ITS).Keywords: Kohonen neural network, driver’s anger state, reduction of traffic accidents, driver’s state adaptive driving support safety
Procedia PDF Downloads 3592336 Effects of Exposure to a Language on Perception of Non-Native Phonologically Contrastive Duration
Authors: Chuyu Huang, Itsuki Minemi, Kuanlin Chen, Yuki Hirose
Abstract:
It remains unclear how language speakers are able to perceive phonological contrasts that do not exist on their own. This experiment uses the vowel-length distinction in Japanese, which is phonologically contrastive and co-occurs with tonal change in some cases. For speakers whose first language does not distinguish vowel length, contrastive duration is usually misperceived, e.g., Mandarin speakers. Two alternative hypotheses for how Mandarin speakers would perceive a phonological contrast that does not exist in their language make different predictions. The stress parameter model does not have a clear prediction about the impact of tonal type. Mandarin speakers will likely be not able to perceive vowel length as well as Japanese native speakers do, but the performance might not correlate to tonal type because the prosody of their language is distinctive, which requires users to encode lexical prosody and notice subtle differences in word prosody. By contrast, cue-based phonetic models predict that Mandarin speakers may rely on pitch differences, a secondary cue, to perceive vowel length. Two groups of Mandarin speakers, including naive non-Japanese speakers and beginner learners, were recruited to participate in an AX discrimination task involving two Japanese sound stimuli that contain a phonologically contrastive environment. Participants were asked to indicate whether the two stimuli containing a vowel-length contrast (e.g., maapero vs. mapero) sound the same. The experiment was bifactorial. The first factor contrasted three syllabic positions (syllable position; initial/medial/final), as it would be likely to affect the perceptual difficulty, as seen in previous studies, and the second factor contrasted two pitch types (accent type): one with accentual change that could be distinguished with the lexical tones in Mandarin (the different condition), with the other group having no tonal distinction but only differing in vowel length (the same condition). The overall results showed that a significant main effect of accent type by applying a linear mixed-effects model (β = 1.48, SE = 0.35, p < 0.05), which implies that Mandarin speakers tend to more successfully recognize vowel-length differences when the long vowel counterpart takes on a tone that exists in Mandarin. The interaction between the accent type and the syllabic position is also significant (β = 2.30, SE = 0.91, p < 0.05), showing that vowel lengths in the different conditions are more difficult to recognize in the word-final case relative to the initial condition. The second statistical model, which compares naive speakers to beginners, was conducted with logistic regression to test the effects of the participant group. A significant difference was found between the two groups (β = 1.06, 95% CI = [0.36, 2.03], p < 0.05). This study shows that: (1) Mandarin speakers are likely to use pitch cues to perceive vowel length in a non-native language, which is consistent with the cue-based approaches; (2) an exposure effect was observed: the beginner group achieved a higher accuracy for long vowel perception, which implied the exposure effect despite the short period of language learning experience.Keywords: cue-based perception, exposure effect, prosodic perception, vowel duration
Procedia PDF Downloads 2202335 Corporate Social Responsibility: A Paradigm Shift in the New Indian Companies Act, 2013
Authors: Suvankar Chakraborty
Abstract:
Introduction: Corporate Social Responsibility means the obligations of business to act in a manner which will serve the best interests of the Society. The Companies Act , 2013 for the first time has emphasized on the fact that every company having net worth of rupees five hundred crore or more, or turnover of rupees one thousand crore or more or a net profit of rupees five crore or more during any financial year shall constitute a Corporate Social Responsibility Committee of the Board consisting of three or more directors, out of which at least one director shall be an independent director. In the previous Companies Act, 1956 there was no such compulsion for constituting a Corporate Social Responsibility Committee. Objective: This study examines the changes in the perception of corporate sectors so far as social responsibility is concerned. Methodology: The study is based on secondary data obtained from various websites of different corporate sectors and the Gazette of India related to Companies Act, 1956 and the new Companies Act, 2013. For capturing the perception of the corporate world regarding the provisions of CSR in the new Companies Act, 2013, primary data has been collected through structured questionnaire. Findings: Corporate Social Responsibility can put a company on a strong base of sustainable development and in facing the business risk of foreclosure or winding up. Shouldering social responsibility on a long-term basis can help a company not only in increasing its reputation in the business world but also helps in minimizing Government intervention. . But, there can hardly be any universal rule that the area of social responsibility being wholly and solely dependent on the ethical aspect of the corporate sectors. But having said that it may be asserted that business ethics may be a key driver of CSR activities rather than rule based CSR activities in the years to come.Keywords: business ethics, corporate social responsibility, companies act, 2013, CSR committee
Procedia PDF Downloads 2992334 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall
Procedia PDF Downloads 2772333 Multimodal Biometric Cryptography Based Authentication in Cloud Environment to Enhance Information Security
Authors: D. Pugazhenthi, B. Sree Vidya
Abstract:
Cloud computing is one of the emerging technologies that enables end users to use the services of cloud on ‘pay per usage’ strategy. This technology grows in a fast pace and so is its security threat. One among the various services provided by cloud is storage. In this service, security plays a vital factor for both authenticating legitimate users and protection of information. This paper brings in efficient ways of authenticating users as well as securing information on the cloud. Initial phase proposed in this paper deals with an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. Unique identification and slow intrusive formulates an advanced reliability on user-behaviour based biometrics than conventional means of password authentication. By biometric systems, the accounts are accessed only by a legitimate user and not by a nonentity. The biometric templates employed here do not include single trait but multiple, viz., iris and finger prints. The coordinating stage of the authentication system functions on Ensemble Support Vector Machine (SVM) and optimization by assembling weights of base SVMs for SVM ensemble after individual SVM of ensemble is trained by the Artificial Fish Swarm Algorithm (AFSA). Thus it helps in generating a user-specific secure cryptographic key of the multimodal biometric template by fusion process. Data security problem is averted and enhanced security architecture is proposed using encryption and decryption system with double key cryptography based on Fuzzy Neural Network (FNN) for data storing and retrieval in cloud computing . The proposing scheme aims to protect the records from hackers by arresting the breaking of cipher text to original text. This improves the authentication performance that the proposed double cryptographic key scheme is capable of providing better user authentication and better security which distinguish between the genuine and fake users. Thus, there are three important modules in this proposed work such as 1) Feature extraction, 2) Multimodal biometric template generation and 3) Cryptographic key generation. The extraction of the feature and texture properties from the respective fingerprint and iris images has been done initially. Finally, with the help of fuzzy neural network and symmetric cryptography algorithm, the technique of double key encryption technique has been developed. As the proposed approach is based on neural networks, it has the advantage of not being decrypted by the hacker even though the data were hacked already. The results prove that authentication process is optimal and stored information is secured.Keywords: artificial fish swarm algorithm (AFSA), biometric authentication, decryption, encryption, fingerprint, fusion, fuzzy neural network (FNN), iris, multi-modal, support vector machine classification
Procedia PDF Downloads 2592332 Denoising Convolutional Neural Network Assisted Electrocardiogram Signal Watermarking for Secure Transmission in E-Healthcare Applications
Authors: Jyoti Rani, Ashima Anand, Shivendra Shivani
Abstract:
In recent years, physiological signals obtained in telemedicine have been stored independently from patient information. In addition, people have increasingly turned to mobile devices for information on health-related topics. Major authentication and security issues may arise from this storing, degrading the reliability of diagnostics. This study introduces an approach to reversible watermarking, which ensures security by utilizing the electrocardiogram (ECG) signal as a carrier for embedding patient information. In the proposed work, Pan-Tompkins++ is employed to convert the 1D ECG signal into a 2D signal. The frequency subbands of a signal are extracted using RDWT(Redundant discrete wavelet transform), and then one of the subbands is subjected to MSVD (Multiresolution singular valued decomposition for masking. Finally, the encrypted watermark is embedded within the signal. The experimental results show that the watermarked signal obtained is indistinguishable from the original signals, ensuring the preservation of all diagnostic information. In addition, the DnCNN (Denoising convolutional neural network) concept is used to denoise the retrieved watermark for improved accuracy. The proposed ECG signal-based watermarking method is supported by experimental results and evaluations of its effectiveness. The results of the robustness tests demonstrate that the watermark is susceptible to the most prevalent watermarking attacks.Keywords: ECG, VMD, watermarking, PanTompkins++, RDWT, DnCNN, MSVD, chaotic encryption, attacks
Procedia PDF Downloads 1022331 Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring
Authors: Jean-Francois Rajotte, Martin Sotir, Frank Gouineau
Abstract:
The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution.Keywords: traffic monitoring, deep learning, image annotation, vehicles, roads, artificial intelligence, real-time systems
Procedia PDF Downloads 200