Search results for: network diagnostic tool
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10217

Search results for: network diagnostic tool

8777 Colorimetric Measurement of Dipeptidyl Peptidase IV (DPP IV) Activity via Peptide Capped Gold Nanoparticles

Authors: H. Aldewachi, M. Hines, M. McCulloch, N. Woodroofe, P. Gardiner

Abstract:

DPP-IV is an enzyme whose expression is affected in a variety of diseases, therefore, has been identified as possible diagnostic or prognostic marker for various tumours, immunological, inflammatory, neuroendocrine, and viral diseases. Recently, DPP-IV enzyme has been identified as a novel target for type II diabetes treatment where the enzyme is involved. There is, therefore, a need to develop sensitive and specific methods that can be easily deployed for the screening of the enzyme either as a tool for drug screening or disease marker in biological samples. A variety of assays have been introduced for the determination of DPP-IV enzyme activity using chromogenic and fluorogenic substrates, nevertheless these assays either lack the required sensitivity especially in inhibited enzyme samples or displays low water solubility implying difficulty for use in vivo samples in addition to labour and time-consuming sample preparation. In this study, novel strategies based on exploiting the high extinction coefficient of gold nanoparticles (GNPs) are investigated in order to develop fast, specific and reliable enzymatic assay by investigating synthetic peptide sequences containing a DPP IV cleavage site and coupling them to GNPs. The DPP IV could be detected by colorimetric response of peptide capped GNPs (P-GNPS) that could be monitored by a UV-visible spectrophotometer or even naked eyes, and the detection limit could reach 0.01 unit/ml. The P-GNPs, when subjected to DPP IV, showed excellent selectivity compared to other proteins (thrombin and human serum albumin) , which led to prominent colour change. This provided a simple and effective colorimetric sensor for on-site and real-time detection of DPP IV.

Keywords: gold nanoparticles, synthetic peptides, colorimetric detection, DPP-IV enzyme

Procedia PDF Downloads 303
8776 Sustainability as an Effective Tool for a Place Branding an Application on El Gouna City, Egypt

Authors: Sherine El Sakka

Abstract:

Most developing countries consider sustainability is a luxury, but El Gouna city at hurghada, Egypt, thought differently and uses sustainability as a tool for branding the place. Branding a place is new approach towards sustainable cities development (SCD); sustainability(S) requires multi-dimensional indicators to show the relationship between economic, social, environmental and cultural aspects. Sustainable development (SD) according to Brundland commission defined as" meeting the needs of current generations without negative impact on the needs of future generation’, branding a place (BP) integrate economic, social, environmental and cultural aspects into the city. In order for a city to be a good brand it must possess distinctive characteristics that can be identified, these include city appearance, people’s experience, people’s belief as well as what the city stands for. The study has found that place branding is a way to promote sustainable initiative; place branding has the potential to shape as a leading tool for the concurrence of more sustainable cities in developing countries, sustainability and green development should turn main priorities to developing countries.

Keywords: sustainable cities development (SCD), sustainability(S), sustainable development (SD), branding a place (BP)

Procedia PDF Downloads 345
8775 Enhanced Image Representation for Deep Belief Network Classification of Hyperspectral Images

Authors: Khitem Amiri, Mohamed Farah

Abstract:

Image classification is a challenging task and is gaining lots of interest since it helps us to understand the content of images. Recently Deep Learning (DL) based methods gave very interesting results on several benchmarks. For Hyperspectral images (HSI), the application of DL techniques is still challenging due to the scarcity of labeled data and to the curse of dimensionality. Among other approaches, Deep Belief Network (DBN) based approaches gave a fair classification accuracy. In this paper, we address the problem of the curse of dimensionality by reducing the number of bands and replacing the HSI channels by the channels representing radiometric indices. Therefore, instead of using all the HSI bands, we compute the radiometric indices such as NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), etc, and we use the combination of these indices as input for the Deep Belief Network (DBN) based classification model. Thus, we keep almost all the pertinent spectral information while reducing considerably the size of the image. In order to test our image representation, we applied our method on several HSI datasets including the Indian pines dataset, Jasper Ridge data and it gave comparable results to the state of the art methods while reducing considerably the time of training and testing.

Keywords: hyperspectral images, deep belief network, radiometric indices, image classification

Procedia PDF Downloads 280
8774 Solar Photovoltaic Pumping and Water Treatment Tools: A Case Study in Ethiopian Village

Authors: Corinna Barraco, Ornella Salimbene

Abstract:

This research involves the Ethiopian locality of Jeldi (North Africa), an area particularly affected by water shortage and in which the pumping and treatment of drinking water are extremely sensitive issues. The study aims to develop and apply low-cost tools for the design of solar water pumping and water purification systems in a not developed country. Consequently, two technical tools have been implemented in Excel i) Solar photovoltaic Pumping (Spv-P) ii) Water treatment (Wt). The Spv-P tool was applied to the existing well (depth 110 [m], dynamic water level 90 [m], static water level 53 [m], well yield 0.1728 [m³h⁻¹]) in the Jeldi area, where estimated water demand is about 50 [m3d-1]. Through the application of the tool, it was designed the water extraction system of the well, obtaining the number of pumps and solar panels necessary for water pumping from the well of Jeldi. Instead, the second tool Wt has been applied in the subsequent phase of extracted water treatment. According to the chemical-physical parameters of the water, Wt returns as output the type of purification treatment(s) necessary to potable the extracted water. In the case of the well of Jeldi, the tool identified a high criticality regarding the turbidity parameter (12 [NTU] vs 5 [NTU]), and a medium criticality regarding the exceeding limits of sodium concentration (234 [mg/L Na⁺] vs 200 [mg/L Na⁺]) and ammonia (0.64 [mg/L NH³-N] vs 0.5 [mg/L NH³-N]). To complete these tools, two specific manuals are provided for the users. The joint use of the two tools would help reduce problems related to access to water resources compared to the current situation and represents a simplified solution for the design of pumping systems and analysis of purification treatments to be performed in undeveloped countries.

Keywords: drinking water, Ethiopia, treatments, water pumping

Procedia PDF Downloads 156
8773 Simulation-Based Control Module for Offshore Single Point Mooring System

Authors: Daehyun Baek, Seungmin Lee, Minju Kim Jangik Park, Hyeong-Soon Moon

Abstract:

SPM (Single Point Mooring) is one of the mooring buoy facilities installed on a coast near oil and gas terminal which is not able to berth FPSO or large oil tankers under the condition of high draft due to geometrical limitation. Loading and unloading of crude oil and gas through a subsea pipeline can be carried out between the mooring buoy, ships and onshore facilities. SPM is an offshore-standalone system which has to withstand the harsh marine environment with harsh conditions such as high wind, current and so on. Therefore, SPM is required to have high stability, reliability and durability. Also, SPM is comprised to be integrated systems which consist of power management, high pressure valve control, sophisticated hardware/software and a long distance communication system. In order to secure required functions of SPM system, a simulation model for the integrated system of SPM using MATLAB Simulink and State flow tool has been developed. The developed model consists of configuration of hydraulic system for opening and closing of PLEM (Pipeline End Manifold) valves and control system logic. To verify functions of the model, an integrated simulation model for overall systems of SPM was also developed by considering handshaking variables between individual systems. In addition to the dynamic model, a self-diagnostic function to determine failure of the system was configured, which enables the SPM system itself to alert users about the failure once a failure signal comes to arise. Controlling and monitoring the SPM system is able to be done by a HMI system which is capable of managing the SPM system remotely, which was carried out by building a communication environment between the SPM system and the HMI system.

Keywords: HMI system, mooring buoy, simulink simulation model, single point mooring, stateflow

Procedia PDF Downloads 417
8772 Impact of Foreign Direct Investment on Woman's Lifestyle: A Female Banking Professionals Case Study

Authors: Ruqiya Anwar

Abstract:

The present study is aimed to find out the Impact of Foreign direct Investment on lifestyle of working women in Rawalpindi and Islamabad (Pakistan). It was hypothesized that easy access to consumer loans uplifts the lifestyle of women. First part of the research study was aimed at developing a tool to measure the Impact of FDI on living pattern of women in Rawalpindi and Islamabad. Purposive sampling technique was used to collect the more reliable and valid data.81 females working in different banks of Rawalpindi and Islamabad (Pakistan) were included in the sample. The value of Alpha Reliability coefficient is .774 for the tool of study. Which was found satisfactory and indicated that tool is reliable to measure the study objectives. Finding of the study showed that foreign direct investment has significant and positive impact on lifestyle of women in Rawalpindi and Islamabad (Pakistan). Study also revealed that there is moderate and high level of consumption power women have through foreign direct investment, which supports the hypothesis.

Keywords: foreign direct investment, lifestyle of women, consumption power, consumer loans

Procedia PDF Downloads 350
8771 The Urban Stray Animal Identification Management System Based on YOLOv5

Authors: Chen Xi, LIU Xuebin, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Lao Xuerui

Abstract:

Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature have led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using Yolov5 recognition technology) and recording and managing them in a database.

Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network, machine vision

Procedia PDF Downloads 99
8770 Effectiveness of Powerpoint Presentations in Teaching Anatomy: A Student's Perspective

Authors: Vrinda Hari Ankolekar

Abstract:

Introduction: The advancement of various audio-visual aids in the present era has led to progressive changes in education. Use of powerpoint presentations play a key role in anatomy to learn and understand a particular topic. As the subject of anatomy involves more of illustrations and demonstrations, powerpoint presentations become essential in conveying the necessary information. Objectives: To assess the students’ perspective about the use of powerpoint presentations in teaching anatomy.Method: A questionnaire was constructed and 55 students were asked to put forth their preferences for the powerpoint presentations or blackboard that would help them to understand the subject better. Results and conclusion: 30 voted PPT as better and effective tool to explain the subject efficiently. 35 chose PPT as more creative than Blackboard to create interest in the subject. 20 wanted to retain chalk and talk for teaching their subject instead of replacing it with PowerPoint. 36 felt chalk and talk as more useful and appropriate tool for teaching than PowerPoint. Only 25 felt chalk and talk relatively more boring than PowerPoint. 23 experienced more involvement and active participation in the class when chalk and talk is used as the teaching tool. 26 stated that chalk and talk has most of the features needed for teaching.One of the limitations of this study is that the sample size is drawn from one institution only and deals with the experience of one particular group of individuals.

Keywords: chalk and board, powerpoint presentation, presentation skills, teaching technologies

Procedia PDF Downloads 409
8769 The Per Capita Income, Energy production and Environmental Degradation: A Comprehensive Assessment of the existence of the Environmental Kuznets Curve Hypothesis in Bangladesh

Authors: Ashique Mahmud, MD. Ataul Gani Osmani, Shoria Sharmin

Abstract:

In the first quarter of the twenty-first century, the most substantial global concern is environmental contamination, and it has gained the prioritization of both the national and international community. Keeping in mind this crucial fact, this study conducted different statistical and econometrical methods to identify whether the gross national income of the country has a significant impact on electricity production from nonrenewable sources and different air pollutants like carbon dioxide, nitrous oxide, and methane emissions. Besides, the primary objective of this research was to analyze whether the environmental Kuznets curve hypothesis holds for the examined variables. After analyzing different statistical properties of the variables, this study came to the conclusion that the environmental Kuznets curve hypothesis holds for gross national income and carbon dioxide emission in Bangladesh in the short run as well as the long run. This study comes to this conclusion based on the findings of ordinary least square estimations, ARDL bound tests, short-run causality analysis, the Error Correction Model, and other pre-diagnostic and post-diagnostic tests that have been employed in the structural model. Moreover, this study wants to demonstrate that the outline of gross national income and carbon dioxide emissions is in its initial stage of development and will increase up to the optimal peak. The compositional effect will then force the emission to decrease, and the environmental quality will be restored in the long run.

Keywords: environmental Kuznets curve hypothesis, carbon dioxide emission in Bangladesh, gross national income in Bangladesh, autoregressive distributed lag model, granger causality, error correction model

Procedia PDF Downloads 150
8768 Biophysical Features of Glioma-Derived Extracellular Vesicles as Potential Diagnostic Markers

Authors: Abhimanyu Thakur, Youngjin Lee

Abstract:

Glioma is a lethal brain cancer whose early diagnosis and prognosis are limited due to the dearth of a suitable technique for its early detection. Current approaches, including magnetic resonance imaging (MRI), computed tomography (CT), and invasive biopsy for the diagnosis of this lethal disease, hold several limitations, demanding an alternative method. Recently, extracellular vesicles (EVs) have been used in numerous biomarker studies, majorly exosomes and microvesicles (MVs), which are found in most of the cells and biofluids, including blood, cerebrospinal fluid (CSF), and urine. Remarkably, glioma cells (GMs) release a high number of EVs, which are found to cross the blood-brain-barrier (BBB) and impersonate the constituents of parent GMs including protein, and lncRNA; however, biophysical properties of EVs have not been explored yet as a biomarker for glioma. We isolated EVs from cell culture conditioned medium of GMs and regular primary culture, blood, and urine of wild-type (WT)- and glioma mouse models, and characterized by nano tracking analyzer, transmission electron microscopy, immunogold-EM, and differential light scanning. Next, we measured the biophysical parameters of GMs-EVs by using atomic force microscopy. Further, the functional constituents of EVs were examined by FTIR and Raman spectroscopy. Exosomes and MVs-derived from GMs, blood, and urine showed distinction biophysical parameters (roughness, adhesion force, and stiffness) and different from that of regular primary glial cells, WT-blood, and -urine, which can be attributed to the characteristic functional constituents. Therefore, biophysical features can be potential diagnostic biomarkers for glioma.

Keywords: glioma, extracellular vesicles, exosomes, microvesicles, biophysical properties

Procedia PDF Downloads 142
8767 Bayesian Network and Feature Selection for Rank Deficient Inverse Problem

Authors: Kyugneun Lee, Ikjin Lee

Abstract:

Parameter estimation with inverse problem often suffers from unfavorable conditions in the real world. Useless data and many input parameters make the problem complicated or insoluble. Data refinement and reformulation of the problem can solve that kind of difficulties. In this research, a method to solve the rank deficient inverse problem is suggested. A multi-physics system which has rank deficiency caused by response correlation is treated. Impeditive information is removed and the problem is reformulated to sequential estimations using Bayesian network (BN) and subset groups. At first, subset grouping of the responses is performed. Feature selection with singular value decomposition (SVD) is used for the grouping. Next, BN inference is used for sequential conditional estimation according to the group hierarchy. Directed acyclic graph (DAG) structure is organized to maximize the estimation ability. Variance ratio of response to noise is used to pairing the estimable parameters by each response.

Keywords: Bayesian network, feature selection, rank deficiency, statistical inverse analysis

Procedia PDF Downloads 314
8766 Comparing Phonological Processes in Persian-Arabic Bilingual Children and Monolingual Children

Authors: Vafa Delphi, Maryam Delphi, Talieh Zarifian, Enayatolah Bakhshi

Abstract:

Background and Aim: Bilingualism is a common phenomenon in many countries of the world and May be consistent consonant errors in the speech of bilingual children. The aim of this study was to evaluate Phonological skills include occurrence proportion, frequency and type of phonological processes in Persian-Arabic speaking children in Ahvaz city, the center of Khuzestan. Method: This study is descriptive-analytical and cross-sectional. Twenty-eight children aged 36-48 months were divided into two groups Persian monolingual and Persian-Arabic bilingual: (14 participants in each group). Sampling was recruited randomly based on inclusion criteria from kindergartens of the Ahvaz city in Iran. The tool of this study was the Persian Phonological Test (PPT), a subtest of Persian Diagnostic Evaluation Articulation and Phonological test. In this test, Phonological processes were investigated in two groups: structure and substitution processes. Data was investigated using SPSS software and the U Mann-Whitney test. Results: The results showed that the proportion occurrence of substitution process was significantly different between two groups of monolingual and bilingual (P=0/001), But the type of phonological processes didn’t show a significant difference in both monolingual and bilingual children of the Persian-Arabic.The frequency of phonological processes is greater in bilingual children than monolingual children. Conclusion: The study showed that bilingualism has no effect on type of phonological processes, but this can be effective on the frequency of processes. Since the type of phonological processes in bilingual children is similar to monolingual children So we can conclude the Persian_arabic bilingual children's phonological system is similar to monolingual children.

Keywords: Persian-Arabic bilingual child, phonological processes, the proportion occurrence of syllable structure, the proportion occurrence of substitution

Procedia PDF Downloads 315
8765 Development and Power Characterization of an IoT Network for Agricultural Imaging Applications

Authors: Jacob Wahl, Jane Zhang

Abstract:

This paper describes the development and characterization of a prototype IoT network for use with agricultural imaging and monitoring applications. The sensor and gateway nodes are designed using the ESP32 SoC with integrated Bluetooth Low Energy 4.2 and Wi-Fi. A development board, the Arducam IoTai ESP32, is used for prototyping, testing, and power measurements. Google’s Firebase is used as the cloud storage site for image data collected by the sensor. The sensor node captures images using the OV2640 2MP camera module and transmits the image data to the gateway via Bluetooth Low Energy. The gateway then uploads the collected images to Firebase via a known nearby Wi-Fi network connection. This image data can then be processed and analyzed by computer vision and machine learning pipelines to assess crop growth or other needs. The sensor node achieves a wireless transmission data throughput of 220kbps while consuming 150mA of current; the sensor sleeps at 162µA. The sensor node device lifetime is estimated to be 682 days on a 6600mAh LiPo battery while acquiring five images per day based on the development board power measurements. This network can be utilized by any application that requires high data rates, low power consumption, short-range communication, and large amounts of data to be transmitted at low-frequency intervals.

Keywords: Bluetooth low energy, ESP32, firebase cloud, IoT, smart farming

Procedia PDF Downloads 138
8764 A Fuzzy Structural Equation Model for Development of a Safety Performance Index Assessment Tool in Construction Sites

Authors: Murat Gunduz, Mustafa Ozdemir

Abstract:

In this research, a framework is to be proposed to model the safety performance in construction sites. Determinants of safety performance are to be defined through extensive literature review and a multidimensional safety performance model is to be developed. In this context, a questionnaire is to be administered to construction companies with sites. The collected data through questionnaires including linguistic terms are then to be defuzzified to get concrete numbers by using fuzzy set theory which provides strong and significant instruments for the measurement of ambiguities and provides the opportunity to meaningfully represent concepts expressed in the natural language. The validity of the proposed safety performance model, relationships between determinants of safety performance are to be analyzed using the structural equation modeling (SEM) which is a highly strong multi variable analysis technique that makes possible the evaluation of latent structures. After validation of the model, a safety performance index assessment tool is to be proposed by the help of software. The proposed safety performance assessment tool will be based on the empirically validated theoretical model.

Keywords: Fuzzy set theory, safety performance assessment, safety index, structural equation modeling (SEM), construction sites

Procedia PDF Downloads 522
8763 An Algorithm Based on Control Indexes to Increase the Quality of Service on Cellular Networks

Authors: Rahman Mofidi, Sina Rahimi, Farnoosh Darban

Abstract:

Communication plays a key role in today’s world, and to support it, the quality of service has the highest priority. It is very important to differentiate between traffic based on priority level. Some traffic classes should be a higher priority than other classes. It is also necessary to give high priority to customers who have more payment for better service, however, without influence on other customers. So to realize that, we will require effective quality of service methods. To ensure the optimal performance of the network in accordance with the quality of service is an important goal for all operators in the mobile network. In this work, we propose an algorithm based on control parameters which it’s based on user feedback that aims at minimizing the access to system transmit power and thus improving the network key performance indicators and increasing the quality of service. This feedback that is known as channel quality indicator (CQI) indicates the received signal level of the user. We aim at proposing an algorithm in control parameter criterion to study improving the quality of service and throughput in a cellular network at the simulated environment. In this work we tried to parameter values have close to their actual level. Simulation results show that the proposed algorithm improves the system throughput and thus satisfies users' throughput and improves service to set up a successful call.

Keywords: quality of service, key performance indicators, control parameter, channel quality indicator

Procedia PDF Downloads 203
8762 Detecting Geographically Dispersed Overlay Communities Using Community Networks

Authors: Madhushi Bandara, Dharshana Kasthurirathna, Danaja Maldeniya, Mahendra Piraveenan

Abstract:

Community detection is an extremely useful technique in understanding the structure and function of a social network. Louvain algorithm, which is based on Newman-Girman modularity optimization technique, is extensively used as a computationally efficient method extract the communities in social networks. It has been suggested that the nodes that are in close geographical proximity have a higher tendency of forming communities. Variants of the Newman-Girman modularity measure such as dist-modularity try to normalize the effect of geographical proximity to extract geographically dispersed communities, at the expense of losing the information about the geographically proximate communities. In this work, we propose a method to extract geographically dispersed communities while preserving the information about the geographically proximate communities, by analyzing the ‘community network’, where the centroids of communities would be considered as network nodes. We suggest that the inter-community link strengths, which are normalized over the community sizes, may be used to identify and extract the ‘overlay communities’. The overlay communities would have relatively higher link strengths, despite being relatively apart in their spatial distribution. We apply this method to the Gowalla online social network, which contains the geographical signatures of its users, and identify the overlay communities within it.

Keywords: social networks, community detection, modularity optimization, geographically dispersed communities

Procedia PDF Downloads 235
8761 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm

Authors: Safayat Ali Shaikh

Abstract:

Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.

Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern

Procedia PDF Downloads 203
8760 O-LEACH: The Problem of Orphan Nodes in the LEACH of Routing Protocol for Wireless Sensor Networks

Authors: Wassim Jerbi, Abderrahmen Guermazi, Hafedh Trabelsi

Abstract:

The optimum use of coverage in wireless sensor networks (WSNs) is very important. LEACH protocol called Low Energy Adaptive Clustering Hierarchy, presents a hierarchical clustering algorithm for wireless sensor networks. LEACH is a protocol that allows the formation of distributed cluster. In each cluster, LEACH randomly selects some sensor nodes called cluster heads (CHs). The selection of CHs is made with a probabilistic calculation. It is supposed that each non-CH node joins a cluster and becomes a cluster member. Nevertheless, some CHs can be concentrated in a specific part of the network. Thus, several sensor nodes cannot reach any CH. to solve this problem. We created an O-LEACH Orphan nodes protocol, its role is to reduce the sensor nodes which do not belong the cluster. The cluster member called Gateway receives messages from neighboring orphan nodes. The gateway informs CH having the neighboring nodes that not belong to any group. However, Gateway called (CH') attaches the orphaned nodes to the cluster and then collected the data. O-Leach enables the formation of a new method of cluster, leads to a long life and minimal energy consumption. Orphan nodes possess enough energy and seeks to be covered by the network. The principal novel contribution of the proposed work is O-LEACH protocol which provides coverage of the whole network with a minimum number of orphaned nodes and has a very high connectivity rates.As a result, the WSN application receives data from the entire network including orphan nodes. The proper functioning of the Application requires, therefore, management of intelligent resources present within each the network sensor. The simulation results show that O-LEACH performs better than LEACH in terms of coverage, connectivity rate, energy and scalability.

Keywords: WSNs; routing; LEACH; O-LEACH; Orphan nodes; sub-cluster; gateway; CH’

Procedia PDF Downloads 371
8759 Hand Symbol Recognition Using Canny Edge Algorithm and Convolutional Neural Network

Authors: Harshit Mittal, Neeraj Garg

Abstract:

Hand symbol recognition is a pivotal component in the domain of computer vision, with far-reaching applications spanning sign language interpretation, human-computer interaction, and accessibility. This research paper discusses the approach with the integration of the Canny Edge algorithm and convolutional neural network. The significance of this study lies in its potential to enhance communication and accessibility for individuals with hearing impairments or those engaged in gesture-based interactions with technology. In the experiment mentioned, the data is manually collected by the authors from the webcam using Python codes, to increase the dataset augmentation, is applied to original images, which makes the model more compatible and advanced. Further, the dataset of about 6000 coloured images distributed equally in 5 classes (i.e., 1, 2, 3, 4, 5) are pre-processed first to gray images and then by the Canny Edge algorithm with threshold 1 and 2 as 150 each. After successful data building, this data is trained on the Convolutional Neural Network model, giving accuracy: 0.97834, precision: 0.97841, recall: 0.9783, and F1 score: 0.97832. For user purposes, a block of codes is built in Python to enable a window for hand symbol recognition. This research, at its core, seeks to advance the field of computer vision by providing an advanced perspective on hand sign recognition. By leveraging the capabilities of the Canny Edge algorithm and convolutional neural network, this study contributes to the ongoing efforts to create more accurate, efficient, and accessible solutions for individuals with diverse communication needs.

Keywords: hand symbol recognition, computer vision, Canny edge algorithm, convolutional neural network

Procedia PDF Downloads 64
8758 On Privacy-Preserving Search in the Encrypted Domain

Authors: Chun-Shien Lu

Abstract:

Privacy-preserving query has recently received considerable attention in the signal processing and multimedia community. It is also a critical step in wireless sensor network for retrieval of sensitive data. The purposes of privacy-preserving query in both the areas of signal processing and sensor network are the same, but the similarity and difference of the adopted technologies are not fully explored. In this paper, we first review the recently developed methods of privacy-preserving query, and then describe in a comprehensive manner what we can learn from the mutual of both areas.

Keywords: encryption, privacy-preserving, search, security

Procedia PDF Downloads 256
8757 A Software Tool for Computer Forensic Investigation Using Client-Side Web History Visualization

Authors: Francisca Onaolapo Oladipo, Peter Afam Ugwu

Abstract:

Records of user activities which are valuable for forensic investigation purposes are provided by web browsers -these records in most cases are not in visual formats that are easily understood, thereby requiring some extra processes. This paper describes the implementation of a software tool for client-side web history visualization providing suitable forensic evidence for investigative purposes. Visual C#, Perl and gnuplot were deployed on Windows Operating System (OS) environment to implement the system and the resulting tool parses and transforms a web browser history into a visual format that enables an investigator to quickly and efficiently explore, understand, and interpret the user online activities in the context of a specific investigation. The system was tested using two forensic cases: the client-side web history files generated by Mozilla Firefox browser was extracted using MozillaHistoryView utility, then parsed and visualized using bar and stacked column charts. From the visual representation, results of user web activities across various productive and non-productive websites were obtained.

Keywords: history, forensics, visualization, web activities

Procedia PDF Downloads 296
8756 On the Performance Analysis of Coexistence between IEEE 802.11g and IEEE 802.15.4 Networks

Authors: Chompunut Jantarasorn, Chutima Prommak

Abstract:

This paper presents an intensive measurement studying of the network performance analysis when IEEE 802.11g Wireless Local Area Networks (WLAN) coexisting with IEEE 802.15.4 Wireless Personal Area Network (WPAN). The measurement results show that the coexistence between both networks could increase the Frame Error Rate (FER) of the IEEE 802.15.4 networks up to 60% and it could decrease the throughputs of the IEEE 802.11g networks up to 55%.

Keywords: wireless performance analysis, coexistence analysis, IEEE 802.11g, IEEE 802.15.4

Procedia PDF Downloads 552
8755 Using Group Concept Mapping to Identify a Pharmacy-Based Trigger Tool to Detect Adverse Drug Events

Authors: Rodchares Hanrinth, Theerapong Srisil, Peeraya Sriphong, Pawich Paktipat

Abstract:

The trigger tool is the low-cost, low-tech method to detect adverse events through clues called triggers. The Institute for Healthcare Improvement (IHI) has developed the Global Trigger Tool for measuring and preventing adverse events. However, this tool is not specific for detecting adverse drug events. The pharmacy-based trigger tool is needed to detect adverse drug events (ADEs). Group concept mapping is an effective method for conceptualizing various ideas from diverse stakeholders. This technique was used to identify a pharmacy-based trigger to detect adverse drug events (ADEs). The aim of this study was to involve the pharmacists in conceptualizing, developing, and prioritizing a feasible trigger tool to detect adverse drug events in a provincial hospital, the northeastern part of Thailand. The study was conducted during the 6-month period between April 1 and September 30, 2017. Study participants involved 20 pharmacists (17 hospital pharmacists and 3 pharmacy lecturers) engaging in three concept mapping workshops. In this meeting, the concept mapping technique created by Trochim, a highly constructed qualitative group technic for idea generating and sharing, was used to produce and construct participants' views on what triggers were potential to detect ADEs. During the workshops, participants (n = 20) were asked to individually rate the feasibility and potentiality of each trigger and to group them into relevant categories to enable multidimensional scaling and hierarchical cluster analysis. The outputs of analysis included the trigger list, cluster list, point map, point rating map, cluster map, and cluster rating map. The three workshops together resulted in 21 different triggers that were structured in a framework forming 5 clusters: drug allergy, drugs induced diseases, dosage adjustment in renal diseases, potassium concerning, and drug overdose. The first cluster is drug allergy such as the doctor’s orders for dexamethasone injection combined with chlorpheniramine injection. Later, the diagnosis of drug-induced hepatitis in a patient taking anti-tuberculosis drugs is one trigger in the ‘drugs induced diseases’ cluster. Then, for the third cluster, the doctor’s orders for enalapril combined with ibuprofen in a patient with chronic kidney disease is the example of a trigger. The doctor’s orders for digoxin in a patient with hypokalemia is a trigger in a cluster. Finally, the doctor’s orders for naloxone with narcotic overdose was classified as a trigger in a cluster. This study generated triggers that are similar to some of IHI Global trigger tool, especially in the medication module such as drug allergy and drug overdose. However, there are some specific aspects of this tool, including drug-induced diseases, dosage adjustment in renal diseases, and potassium concerning which do not contain in any trigger tools. The pharmacy-based trigger tool is suitable for pharmacists in hospitals to detect potential adverse drug events using clues of triggers.

Keywords: adverse drug events, concept mapping, hospital, pharmacy-based trigger tool

Procedia PDF Downloads 163
8754 An Interpolation Tool for Data Transfer in Two-Dimensional Ice Accretion Problems

Authors: Marta Cordero-Gracia, Mariola Gomez, Olivier Blesbois, Marina Carrion

Abstract:

One of the difficulties in icing simulations is for extended periods of exposure, when very large ice shapes are created. As well as being large, they can have complex shapes, such as a double horn. For icing simulations, these configurations are currently computed in several steps. The icing step is stopped when the ice shapes become too large, at which point a new mesh has to be created to allow for further CFD and ice growth simulations to be performed. This can be very costly, and is a limiting factor in the simulations that can be performed. A way to avoid the costly human intervention in the re-meshing step of multistep icing computation is to use mesh deformation instead of re-meshing. The aim of the present work is to apply an interpolation method based on Radial Basis Functions (RBF) to transfer deformations from surface mesh to volume mesh. This deformation tool has been developed specifically for icing problems. It is able to deal with localized, sharp and large deformations, unlike the tools traditionally used for more smooth wing deformations. This tool will be presented along with validation on typical two-dimensional icing shapes.

Keywords: ice accretion, interpolation, mesh deformation, radial basis functions

Procedia PDF Downloads 313
8753 CompleX-Machine: An Automated Testing Tool Using X-Machine Theory

Authors: E. K. A. Ogunshile

Abstract:

This paper is aimed at creating an Automatic Java X-Machine testing tool for software development. The nature of software development is changing; thus, the type of software testing tools required is also changing. Software is growing increasingly complex and, in part due to commercial impetus for faster software releases with new features and value, increasingly in danger of containing faults. These faults can incur huge cost for software development organisations and users; Cambridge Judge Business School’s research estimated the cost of software bugs to the global economy is $312 billion. Beyond the cost, faster software development methodologies and increasing expectations on developers to become testers is driving demand for faster, automated, and effective tools to prevent potential faults as early as possible in the software development lifecycle. Using X-Machine theory, this paper will explore a new tool to address software complexity, changing expectations on developers, faster development pressures and methodologies, with a view to reducing the huge cost of fixing software bugs.

Keywords: conformance testing, finite state machine, software testing, x-machine

Procedia PDF Downloads 268
8752 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction

Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.

Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme

Procedia PDF Downloads 117
8751 Privacy-Preserving Model for Social Network Sites to Prevent Unwanted Information Diffusion

Authors: Sanaz Kavianpour, Zuraini Ismail, Bharanidharan Shanmugam

Abstract:

Social Network Sites (SNSs) can be served as an invaluable platform to transfer the information across a large number of individuals. A substantial component of communicating and managing information is to identify which individual will influence others in propagating information and also whether dissemination of information in the absence of social signals about that information will be occurred or not. Classifying the final audience of social data is difficult as controlling the social contexts which transfers among individuals are not completely possible. Hence, undesirable information diffusion to an unauthorized individual on SNSs can threaten individuals’ privacy. This paper highlights the information diffusion in SNSs and moreover it emphasizes the most significant privacy issues to individuals of SNSs. The goal of this paper is to propose a privacy-preserving model that has urgent regards with individuals’ data in order to control availability of data and improve privacy by providing access to the data for an appropriate third parties without compromising the advantages of information sharing through SNSs.

Keywords: anonymization algorithm, classification algorithm, information diffusion, privacy, social network sites

Procedia PDF Downloads 321
8750 The Predictive Utility of Subjective Cognitive Decline Using Item Level Data from the Everyday Cognition (ECog) Scales

Authors: J. Fox, J. Randhawa, M. Chan, L. Campbell, A. Weakely, D. J. Harvey, S. Tomaszewski Farias

Abstract:

Early identification of individuals at risk for conversion to dementia provides an opportunity for preventative treatment. Many older adults (30-60%) report specific subjective cognitive decline (SCD); however, previous research is inconsistent in terms of what types of complaints predict future cognitive decline. The purpose of this study is to identify which specific complaints from the Everyday Cognition Scales (ECog) scales, a measure of self-reported concerns for everyday abilities across six cognitive domains, are associated with: 1) conversion from a clinical diagnosis of normal to either MCI or dementia (categorical variable) and 2) progressive cognitive decline in memory and executive function (continuous variables). 415 cognitively normal older adults were monitored annually for an average of 5 years. Cox proportional hazards models were used to assess associations between self-reported ECog items and progression to impairment (MCI or dementia). A total of 114 individuals progressed to impairment; the mean time to progression was 4.9 years (SD=3.4 years, range=0.8-13.8). Follow-up models were run controlling for depression. A subset of individuals (n=352) underwent repeat cognitive assessments for an average of 5.3 years. For those individuals, mixed effects models with random intercepts and slopes were used to assess associations between ECog items and change in neuropsychological measures of episodic memory or executive function. Prior to controlling for depression, subjective concerns on five of the eight Everyday Memory items, three of the nine Everyday Language items, one of the seven Everyday Visuospatial items, two of the five Everyday Planning items, and one of the six Everyday Organization items were associated with subsequent diagnostic conversion (HR=1.25 to 1.59, p=0.003 to 0.03). However, after controlling for depression, only two specific complaints of remembering appointments, meetings, and engagements and understanding spoken directions and instructions were associated with subsequent diagnostic conversion. Episodic memory in individuals reporting no concern on ECog items did not significantly change over time (p>0.4). More complaints on seven of the eight Everyday Memory items, three of the nine Everyday Language items, and three of the seven Everyday Visuospatial items were associated with a decline in episodic memory (Interaction estimate=-0.055 to 0.001, p=0.003 to 0.04). Executive function in those reporting no concern on ECog items declined slightly (p <0.001 to 0.06). More complaints on three of the eight Everyday Memory items and three of the nine Everyday Language items were associated with a decline in executive function (Interaction estimate=-0.021 to -0.012, p=0.002 to 0.04). These findings suggest that specific complaints across several cognitive domains are associated with diagnostic conversion. Specific complaints in the domains of Everyday Memory and Language are associated with a decline in both episodic memory and executive function. Increased monitoring and treatment of individuals with these specific SCD may be warranted.

Keywords: alzheimer’s disease, dementia, memory complaints, mild cognitive impairment, risk factors, subjective cognitive decline

Procedia PDF Downloads 80
8749 Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network

Authors: A. Ejah Umraeni Salam, M. Tola, M. Selintung, F. Maricar

Abstract:

Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system.

Keywords: radial basis function neural network, leakage pipeline, EPANET, RMSE

Procedia PDF Downloads 358
8748 Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece

Authors: Dimitrios Triantakonstantis, Demetris Stathakis

Abstract:

Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.

Keywords: artificial neural networks, CORINE, urban atlas, urban growth prediction

Procedia PDF Downloads 528