Search results for: industrial systems integration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13966

Search results for: industrial systems integration

12526 Application of Regularized Low-Rank Matrix Factorization in Personalized Targeting

Authors: Kourosh Modarresi

Abstract:

The Netflix problem has brought the topic of “Recommendation Systems” into the mainstream of computer science, mathematics, and statistics. Though much progress has been made, the available algorithms do not obtain satisfactory results. The success of these algorithms is rarely above 5%. This work is based on the belief that the main challenge is to come up with “scalable personalization” models. This paper uses an adaptive regularization of inverse singular value decomposition (SVD) that applies adaptive penalization on the singular vectors. The results show far better matching for recommender systems when compared to the ones from the state of the art models in the industry.

Keywords: convex optimization, LASSO, regression, recommender systems, singular value decomposition, low rank approximation

Procedia PDF Downloads 455
12525 Hearing Threshold Levels among Steel Industry Workers in Samut Prakan Province, Thailand

Authors: Petcharat  Kerdonfag, Surasak Taneepanichskul, Winai Wadwongtham

Abstract:

Industrial noise is usually considered as the main impact of the environmental health and safety because its exposure can cause permanently serious hearing damage. Despite providing strictly hearing protection standards and campaigning extensively encouraging public health awareness among industrial workers in Thailand, hazard noise-induced hearing loss has dramatically been massive obstacles for workers’ health. The aims of the study were to explore and specify the hearing threshold levels among steel industrial workers responsible in which higher noise levels of work zone and to examine the relationships of hearing loss and workers’ age and the length of employment in Samut Prakan province, Thailand. Cross-sectional study design was done. Ninety-three steel industrial workers in the designated zone of higher noise (> 85dBA) with more than 1 year of employment from two factories by simple random sampling and available to participate in were assessed by the audiometric screening at regional Samut Prakan hospital. Data of doing screening were collected from October to December, 2016 by the occupational medicine physician and a qualified occupational nurse. All participants were examined by the same examiners for the validity. An Audiometric testing was performed at least 14 hours after the last noise exposure from the workplace. Workers’ age and the length of employment were gathered by the developed occupational record form. Results: The range of workers’ age was from 23 to 59 years, (Mean = 41.67, SD = 9.69) and the length of employment was from 1 to 39 years, (Mean = 13.99, SD = 9.88). Fifty three (60.0%) out of all participants have been exposing to the hazard of noise in the workplace for more than 10 years. Twenty-three (24.7%) of them have been exposing to the hazard of noise less than or equal to 5 years. Seventeen (18.3%) of them have been exposing to the hazard of noise for 5 to 10 years. Using the cut point of less than or equal to 25 dBA of hearing thresholds, the average means of hearing thresholds for participants at 4, 6, and 8 kHz were 31.34, 29.62, and 25.64 dB, respectively for the right ear and 40.15, 32.20, and 25.48 dB for the left ear, respectively. The more developing age of workers in the work zone with hazard of noise, the more the hearing thresholds would be increasing at frequencies of 4, 6, and 8 kHz (p =.012, p =.026, p =.024) for the right ear, respectively and for the left ear only at the frequency 4 kHz (p =.009). Conclusion: The participants’ age in the hazard of noise work zone was significantly associated with the hearing loss in different levels while the length of participants’ employment was not significantly associated with the hearing loss. Thus hearing threshold levels among industrial workers would be regularly assessed and needed to be protected at the beginning of working.

Keywords: hearing threshold levels, hazard of noise, hearing loss, audiometric testing

Procedia PDF Downloads 227
12524 Exploring the Potential of Chatbots in Higher Education: A Preliminary Study

Authors: S. Studente, S. Ellis, S. F. Garivaldis

Abstract:

We report upon a study introducing a chatbot to develop learning communities at a London University, with a largely international student base. The focus of the chatbot was twofold; to ease the transition for students into their first year of university study, and to increase study engagement. Four learning communities were created using the chatbot; level 3 foundation, level 4 undergraduate, level 6 undergraduate and level 7 post-graduate. Students and programme leaders were provided with access to the chat bot via mobile app prior to their study induction and throughout the autumn term of 2019. At the end of the term, data were collected via questionnaires and focus groups with students and teaching staff to allow for identification of benefits and challenges. Findings indicated a positive correlation between study engagement and engagement with peers. Students reported that the chatbot enabled them to obtain support and connect to their programme leader. Both staff and students also made recommendation on how engagement could be further enhanced using the bot in terms of; clearly specified purpose, integration with existing university systems, leading by example and connectivity. Extending upon these recommendations, a second pilot study is planned for September 2020, for which the focus will be upon improving attendance rates, student satisfaction and module pass rates.

Keywords: chatbot, e-learning, learning communities, student engagement

Procedia PDF Downloads 124
12523 Role-Specific Target-Systems in Professional Bureaucracies: A Qualitative Analysis in the OR

Authors: Kirsten Hoeper, Maike Kriependorf

Abstract:

This paper firstly discusses the initial situation and problems. Afterward, it defines professional bureaucracies and shows their impact for the OR-work. The OR-center and its actors are shown. Finally, the paper provides the empiric design for detecting the target systems of the different work groups within the OR, the quality criteria in qualitative research and empirical results. It is shown that different groups have different targets in their daily work and that helps for a better understanding. More precisely, by detecting the target systems of these experts, we can ‘bridge’ the different points of view to create a common basis for the work in the OR. One of the aims was to find bridges to overcome separating factors. This paper describes the situation in Germany focusing the Hannover Medical School. It can be assumed that the results can be transferred to other countries using the DRG-System (Diagnosis Related Groups).

Keywords: hospital, OR, professional bureaucracies, target systems

Procedia PDF Downloads 292
12522 Virtualization of Production Using Digital Twin Technology

Authors: Bohuslava Juhasova, Igor Halenar, Martin Juhas

Abstract:

The contribution deals with the current situation in modern manufacturing enterprises, which is affected by digital virtualization of different parts of the production process. The overview part of this article points to the fact, that wide informatization of all areas causes substitution of real elements and relationships between them with their digital, often virtual images, in real practice. Key characteristics of the systems implemented using digital twin technology along with essential conditions for intelligent products deployment were identified across many published studies. The goal was to propose a template for the production system realization using digital twin technology as a supplement to standardized concepts for Industry 4.0. The main resulting idea leads to the statement that the current trend of implementation of the new technologies and ways of communication between industrial facilities erases the boundaries between the real environment and the virtual world.

Keywords: communication, digital twin, Industry 4.0, simulation, virtualization

Procedia PDF Downloads 248
12521 Improved Production, Purification and Characterization of Invertase from Penicillium lilacinum by Shaken Flask Technique of Submerged Fermentation

Authors: Kashif Ahmed

Abstract:

Recent years researchers have been motivated towards extensive exploring of living organism, which could be utilized effectively in intense industrial conditions. The present study shows enhanced production, purification and characterization of industrial enzyme, invertase (Beta-D-fructofuranosidase) from Penicillium lilacinum. Various agricultural based by-products (cotton stalk, sunflower waste, rice husk, molasses and date syrup) were used as energy source. The highest amount of enzyme (13.05 Units/mL) was produced when the strain was cultured on growth medium containing date syrup as energy source. Yeast extract was used as nitrogen source after 96 h of incubation at incubation temperature of 40º C. Initial pH of medium was 8.0, inoculum size 6x10⁶ conidia and 200 rev/min agitation rate. The enzyme was also purified (7 folds than crude) and characterized. Molecular mass of purified enzyme (65 kDa) was determined by 10 % SDS-PAGE. Lineweaver-Burk Plot was used to determine Kinetic constants (Vmax 178.6 U/mL/min and Km 2.76 mM). Temperature and pH optima were 55º C and 5.5 respectively. MnCl₂ (52.9 %), MgSO₄ (48.9 %), BaCl₂ (24.6 %), MgCl₂ (9.6 %), CoCl₂ (5.7 %) and NaCl (4.2 %) enhanced the relative activity of enzyme and HgCl₂ (-92.8 %), CuSO₄ (-80.2 %) and CuCl₂ (-76.6 %) were proved inhibitors. The strain was showing enzyme activity even at extreme conditions of temperature (up to 60º C) and pH (up to 9), so it can be used in industries.

Keywords: invertase, Penicillium lilacinum, submerged fermentation, industrial enzyme

Procedia PDF Downloads 150
12520 Importance of Hardware Systems and Circuits in Secure Software Development Life Cycle

Authors: Mir Shahriar Emami

Abstract:

Although it is fully impossible to ensure that a software system is quite secure, developing an acceptable secure software system in a convenient platform is not unreachable. In this paper, we attempt to analyze software development life cycle (SDLC) models from the hardware systems and circuits point of view. To date, the SDLC models pay merely attention to the software security from the software perspectives. In this paper, we present new features for SDLC stages to emphasize the role of systems and circuits in developing secure software system through the software development stages, the point that has not been considered previously in the SDLC models.

Keywords: SDLC, SSDLC, software security, software process engineering, hardware systems and circuits security

Procedia PDF Downloads 261
12519 The Effect of Meta-Cognitive Therapy on Meta-Cognitive Defects and Emotional Regulation in Substance Dependence Patients

Authors: Sahra Setorg

Abstract:

The purpose of this study was to determine the effect of meta-cognitive therapy on meta-cognitive defects and emotional regulation in industrial substance dependence patients. This quasi-experimental research was conducted with post-test and two-month follow-up design with control and experimental groups. The statistical population consisted of all industrial Substance dependence patients refer to addictive withdrawal clinics in Esfahan city, in Iran in 2013. 45 patients were selected from three clinics through the convenience sampling method and were randomly divided into two experimental groups (15 crack dependences, 15 amphetamine dependences) and one control group (n=15). The meta-cognitive questionnaire (MCQ) and difficulties in emotional regulation questionnaire (DERS) were used as pre-test measures and the experimental groups (crack and amphetamine) received 8 MC therapy sessions in groups. The data were analyzed via multivariate covariance statistic method by spss-18. The results showed that MCT had a significant effect in improving the meta-cognitive defects in crack and amphetamine dependences. Also, this therapy can increase the emotional regulation in both groups (p<0/05).The effect of this therapy is confirmed in two months followup. According to these findings, met-cognitive is as an interface and important variable in prevention, control, and treatment of the new industrial substance dependences.

Keywords: meta-cognitive therapy, meta-cognitive defects, emotional regulation, substance dependence disorder

Procedia PDF Downloads 513
12518 Implementation of an Open Source ERP for SMEs in the Automotive Sector in Peru: A Case Study

Authors: Gerson E. Cornejo, Luis A. Gamarra, David S. Mauricio

Abstract:

The Enterprise Resource Planning Systems (ERP) allows the integration of all the business processes of the functional areas of the companies, in order to automate and standardize the processes, obtain accurate information and improve decision making in time real. In Peru, 79% of medium and small companies (SMEs) do not use any management software, this is because it is believed that ERPs are expensive, complex and difficult to implement. However, for more than 20 years there have been Open Source ERPs, which are more accessible and have the same benefit as proprietary ERPs, but there is little information on the implementation process. In this work is made a case of study, in order to show the implementation process of an Open Source ERP, Odoo, based on the ASAP methodology (Accelerated SAP) and applied to a company of corrective and preventive maintenance services of vehicles. The ERP allowed the SME to standardize its business processes, increase its productivity, reducing up to 40% certain processes. The study of this case shows that it is feasible and profitable to implement an Open Source ERP in SMEs in the Automotive Sector of Peru. In addition, it is shown that the ASAP methodology is adequate to carry out Open Source ERPs implementation projects.

Keywords: ASAP, automotive sector, ERP implementation, open source

Procedia PDF Downloads 336
12517 Effect of Environmental Changes in Working Heart Rate among Industrial Workers: An Ergonomic Interpretation

Authors: P. Mukhopadhyay, N. C. Dey

Abstract:

Occupational health hazard is a very common term in every emerging country. Along with the unorganized sector, most organized sectors including government industries are suffering from this affliction. In addition to workload, the seasonal changes also have some impacts on working environment. With this focus in mind, one hundred male industrial workers, who are directly involved to the task of Periodic Overhauling (POH) in a fabricating workshop in the public domain are selected for this research work. They have been studied during work periods throughout different seasons in a year. For each and every season, the participants working heart rate (WHR) is measured and compared with the standards given by different national and internationally recognized agencies i.e., World Health Organization (WHO) and American Conference of Governmental Industrial Hygienists (ACGIH) etc. The different environmental parameters i.e. dry bulb temperature (DBT), wet bulb temperature (WBT), globe temperature (GT), natural wet bulb temperature (NWB), relative humidity (RH), wet bulb globe temperature (WBGT), air velocity (AV), effective temperature (ET) are recorded throughout the seasons to critically observe the effect of seasonal changes on the WHR of the workers. The effect of changes in environment to the WHR of the workers is very much surprising. It is found that the percentages of workers who belong to the ‘very heavy’ workload category are 83.33%, 66.66% and 16.66% in the summer, rainy and winter seasons, respectively. Ongoing undertaking of this type of job profile forces the worker towards occupational disorders causing absenteeism. This occurrence results in lower production rates, and on the other hand, costs due to medical claims also weaken the industry’s economic condition. In this circumstance, the authors are trying to focus on some remedial measures from the ergonomic angle by proposing a new work/ rest regimen and introducing engineering controls along with management controls which may help the worker, and consequently, the management also.

Keywords: workload, working heart rate, occupational health hazard, industrial worker

Procedia PDF Downloads 134
12516 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models

Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan

Abstract:

Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.

Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network

Procedia PDF Downloads 27
12515 Failure Analysis and Verification Using an Integrated Method for Automotive Electric/Electronic Systems

Authors: Lei Chen, Jian Jiao, Tingdi Zhao

Abstract:

Failures of automotive electric/electronic systems, which are universally considered to be safety-critical and software-intensive, may cause catastrophic accidents. Analysis and verification of failures in these kinds of systems is a big challenge with increasing system complexity. Model-checking is often employed to allow formal verification by ensuring that the system model conforms to specified safety properties. The system-level effects of failures are established, and the effects on system behavior are observed through the formal verification. A hazard analysis technique, called Systems-Theoretic Process Analysis, is capable of identifying design flaws which may cause potential failure hazardous, including software and system design errors and unsafe interactions among multiple system components. This paper provides a concept on how to use model-checking integrated with Systems-Theoretic Process Analysis to perform failure analysis and verification of automotive electric/electronic systems. As a result, safety requirements are optimized, and failure propagation paths are found. Finally, an automotive electric/electronic system case study is used to verify the effectiveness and practicability of the method.

Keywords: failure analysis and verification, model checking, system-theoretic process analysis, automotive electric/electronic system

Procedia PDF Downloads 120
12514 Integration of Best Practices and Requirements for Preliminary E-Learning Courses

Authors: Sophie Huck, Knut Linke

Abstract:

This study will examine how IT practitioners can be motivated for IT studies and which kind of support they need during their occupational studies. Within this research project, the challenge of supporting students being engaged in business for several years arose. Here, it is especially important to successfully guide them through their studies. The problem of this group is that they finished their school education years ago. In order to gather first experiences, preliminary e-learning courses were introduced and tested with a group of users studying General Management. They had to work with these courses and have been questioned later on about their approach to the different methods. Moreover, a second group of potential students was interviewed with the help of online questionnaires to give information about their expectations regarding extra occupational studies. We also want to present best practices and cases in e-education in the subarea of mathematics and distance learning. Within these cases and practices, we use state of the art systems and technologies in e-education to find a way to increase teaching quality and the success of students. Our research indicated that the first group of enrolled students appreciated the new preliminary e-learning courses. The second group of potential students was convinced of this way of learning as a significant component of extra occupational studies. It can be concluded that this part of the project clarified the acceptance of the e-learning strategy by both groups and led to satisfactory results with the enrolled students.

Keywords: e-learning evaluation, self-learning, virtual classroom, virtual learning environments

Procedia PDF Downloads 322
12513 Accountability of Artificial Intelligence: An Analysis Using Edgar Morin’s Complex Thought

Authors: Sylvie Michel, Sylvie Gerbaix, Marc Bidan

Abstract:

Artificial intelligence (AI) can be held accountable for its detrimental impacts. This question gains heightened relevance given AI's pervasive reach across various domains, magnifying its power and potential. The expanding influence of AI raises fundamental ethical inquiries, primarily centering on biases, responsibility, and transparency. This encompasses discriminatory biases arising from algorithmic criteria or data, accidents attributed to autonomous vehicles or other systems, and the imperative of transparent decision-making. This article aims to stimulate reflection on AI accountability, denoting the necessity to elucidate the effects it generates. Accountability comprises two integral aspects: adherence to legal and ethical standards and the imperative to elucidate the underlying operational rationale. The objective is to initiate a reflection on the obstacles to this "accountability," facing the challenges of the complexity of artificial intelligence's system and its effects. Then, this article proposes to mobilize Edgar Morin's complex thought to encompass and face the challenges of this complexity. The first contribution is to point out the challenges posed by the complexity of A.I., with fractional accountability between a myriad of human and non-human actors, such as software and equipment, which ultimately contribute to the decisions taken and are multiplied in the case of AI. Accountability faces three challenges resulting from the complexity of the ethical issues combined with the complexity of AI. The challenge of the non-neutrality of algorithmic systems as fully ethically non-neutral actors is put forward by a revealing ethics approach that calls for assigning responsibilities to these systems. The challenge of the dilution of responsibility is induced by the multiplicity and distancing between the actors. Thus, a dilution of responsibility is induced by a split in decision-making between developers, who feel they fulfill their duty by strictly respecting the requests they receive, and management, which does not consider itself responsible for technology-related flaws. Accountability is confronted with the challenge of transparency of complex and scalable algorithmic systems, non-human actors self-learning via big data. A second contribution involves leveraging E. Morin's principles, providing a framework to grasp the multifaceted ethical dilemmas and subsequently paving the way for establishing accountability in AI. When addressing the ethical challenge of biases, the "hologrammatic" principle underscores the imperative of acknowledging the non-ethical neutrality of algorithmic systems inherently imbued with the values and biases of their creators and society. The "dialogic" principle advocates for the responsible consideration of ethical dilemmas, encouraging the integration of complementary and contradictory elements in solutions from the very inception of the design phase. Aligning with the principle of organizing recursiveness, akin to the "transparency" of the system, it promotes a systemic analysis to account for the induced effects and guides the incorporation of modifications into the system to rectify deviations and reintroduce modifications into the system to rectify its drifts. In conclusion, this contribution serves as an inception for contemplating the accountability of "artificial intelligence" systems despite the evident ethical implications and potential deviations. Edgar Morin's principles, providing a lens to contemplate this complexity, offer valuable perspectives to address these challenges concerning accountability.

Keywords: accountability, artificial intelligence, complexity, ethics, explainability, transparency, Edgar Morin

Procedia PDF Downloads 63
12512 Toxicological Validation during the Development of New Catalytic Systems Using Air/Liquid Interface Cell Exposure

Authors: M. Al Zallouha, Y. Landkocz, J. Brunet, R. Cousin, J. M. Halket, E. Genty, P. J. Martin, A. Verdin, D. Courcot, S. Siffert, P. Shirali, S. Billet

Abstract:

Toluene is one of the most used Volatile Organic Compounds (VOCs) in the industry. Amongst VOCs, Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) emitted into the atmosphere have a major and direct impact on human health. It is, therefore, necessary to minimize emissions directly at source. Catalytic oxidation is an industrial technique which provides remediation efficiency in the treatment of these organic compounds. However, during operation, the catalysts can release some compounds, called byproducts, more toxic than the original VOCs. The catalytic oxidation of a gas stream containing 1000ppm of toluene on Pd/α-Al2O3 can release a few ppm of benzene, according to the operating temperature of the catalyst. The development of new catalysts must, therefore, include chemical and toxicological validation phases. In this project, A549 human lung cells were exposed in air/liquid interface (Vitrocell®) to gas mixtures derived from the oxidation of toluene with a catalyst of Pd/α-Al2O3. Both exposure concentrations (i.e. 10 and 100% of catalytic emission) resulted in increased gene expression of Xenobiotics Metabolising Enzymes (XME) (CYP2E1 CYP2S1, CYP1A1, CYP1B1, EPHX1, and NQO1). Some of these XMEs are known to be induced by polycyclic organic compounds conventionally not searched during the development of catalysts for VOCs degradation. The increase in gene expression suggests the presence of undetected compounds whose toxicity must be assessed before the adoption of new catalyst. This enhances the relevance of toxicological validation of such systems before scaling-up and marketing.

Keywords: BTEX toxicity, air/liquid interface cell exposure, Vitrocell®, catalytic oxidation

Procedia PDF Downloads 411
12511 A Modeling Approach for Blockchain-Oriented Information Systems Design

Authors: Jiaqi Yan, Yani Shi

Abstract:

The blockchain technology is regarded as the most promising technology that has the potential to trigger a technological revolution. However, besides the bitcoin industry, we have not yet seen a large-scale application of blockchain in those domains that are supposed to be impacted, such as supply chain, financial network, and intelligent manufacturing. The reasons not only lie in the difficulties of blockchain implementation, but are also root in the challenges of blockchain-oriented information systems design. As the blockchain members are self-interest actors that belong to organizations with different existing information systems. As they expect different information inputs and outputs of the blockchain application, a common language protocol is needed to facilitate communications between blockchain members. Second, considering the decentralization of blockchain organization, there is not any central authority to organize and coordinate the business processes. Thus, the information systems built on blockchain should support more adaptive business process. This paper aims to address these difficulties by providing a modeling approach for blockchain-oriented information systems design. We will investigate the information structure of distributed-ledger data with conceptual modeling techniques and ontology theories, and build an effective ontology mapping method for the inter-organization information flow and blockchain information records. Further, we will study the distributed-ledger-ontology based business process modeling to support adaptive enterprise on blockchain.

Keywords: blockchain, ontology, information systems modeling, business process

Procedia PDF Downloads 449
12510 Addressing Water Scarcity in Gomti Nagar, Lucknow, India: Assessing the Effectiveness of Rooftop Rainwater Harvesting Systems

Authors: Rajkumar Ghosh

Abstract:

Water scarcity is a significant challenge in urban areas, even in smart cities (Lucknow, Bangalore, Jaipur, etc.) where efficient resource management is prioritized. The depletion of groundwater resources in Gomti Nagar, Lucknow, Uttar Pradesh, India is particularly severe, posing a significant challenge for sustainable development in the region. This study focuses on addressing the water shortage by investigating the effectiveness of rooftop rainwater harvesting systems (RTRWHs) as a sustainable approach to bridge the gap between groundwater recharge and extraction. The aim of this study is to assess the effectiveness of RTRWHs in reducing aquifer depletion and addressing the water scarcity issue in the Gomti Nagar region. The research methodology involves the utilization of RTRWHs as the primary method for collecting rainwater. RTRWHs will be implemented in residential and commercial buildings to maximize the collection of rainwater. Data for this study were collected through various sources such as government reports, surveys, and existing groundwater abstraction patterns. Statistical analysis and modelling techniques were employed to assess the current water situation, groundwater depletion rate, and the potential impact of implementing RTRWHs. The study reveals that the installation of RTRWHs in the Gomti Nagar region has a positive impact on addressing the water scarcity issue. Currently, RTRWHs cover only a small percentage of the total rainfall collected in the region. However, when RTRWHs are installed in all buildings, their influence on increasing water availability and reducing aquifer depletion will be significantly greater. The study also highlights the significant water imbalance in the region, emphasizing the urgent need for sustainable water management practices. This research contributes to the theoretical understanding of sustainable water management systems in smart cities. By highlighting the effectiveness of RTRWHs in reducing aquifer depletion, it emphasizes the importance of implementing such systems in urban areas. Data for this study were collected through various sources such as government reports, surveys, and existing groundwater abstraction patterns. The collected data were then analysed using statistical analysis and modelling techniques to assess the current water situation, groundwater depletion rate, and the potential impact of implementing RTRWHs. The findings of this study demonstrate that the implementation of RTRWHs can effectively mitigate the water scarcity crisis in Gomti Nagar. By reducing aquifer depletion and bridging the gap between groundwater recharge and extraction, RTRWHs offer a sustainable solution to the region's water scarcity challenges. Widespread adoption of RTRWHs in all buildings and integration into urban planning and development processes are crucial for efficient water management in smart cities like Gomti Nagar. These findings can serve as a basis for policymakers, urban planners, and developers to prioritize and incentivize the installation of RTRWHs as a potential solution to the water shortage crisis.

Keywords: water scarcity, urban areas, smart cities, resource management, groundwater depletion, rooftop rainwater harvesting systems, sustainable development, sustainable water management, mitigating water scarcity

Procedia PDF Downloads 76
12509 Long-Term Resilience Performance Assessment of Dual and Singular Water Distribution Infrastructures Using a Complex Systems Approach

Authors: Kambiz Rasoulkhani, Jeanne Cole, Sybil Sharvelle, Ali Mostafavi

Abstract:

Dual water distribution systems have been proposed as solutions to enhance the sustainability and resilience of urban water systems by improving performance and decreasing energy consumption. The objective of this study was to evaluate the long-term resilience and robustness of dual water distribution systems versus singular water distribution systems under various stressors such as demand fluctuation, aging infrastructure, and funding constraints. To this end, the long-term dynamics of these infrastructure systems was captured using a simulation model that integrates institutional agency decision-making processes with physical infrastructure degradation to evaluate the long-term transformation of water infrastructure. A set of model parameters that varies for dual and singular distribution infrastructure based on the system attributes, such as pipes length and material, energy intensity, water demand, water price, average pressure and flow rate, as well as operational expenditures, were considered and input in the simulation model. Accordingly, the model was used to simulate various scenarios of demand changes, funding levels, water price growth, and renewal strategies. The long-term resilience and robustness of each distribution infrastructure were evaluated based on various performance measures including network average condition, break frequency, network leakage, and energy use. An ecologically-based resilience approach was used to examine regime shifts and tipping points in the long-term performance of the systems under different stressors. Also, Classification and Regression Tree analysis was adopted to assess the robustness of each system under various scenarios. Using data from the City of Fort Collins, the long-term resilience and robustness of the dual and singular water distribution systems were evaluated over a 100-year analysis horizon for various scenarios. The results of the analysis enabled: (i) comparison between dual and singular water distribution systems in terms of long-term performance, resilience, and robustness; (ii) identification of renewal strategies and decision factors that enhance the long-term resiliency and robustness of dual and singular water distribution systems under different stressors.

Keywords: complex systems, dual water distribution systems, long-term resilience performance, multi-agent modeling, sustainable and resilient water systems

Procedia PDF Downloads 292
12508 'Innovation Clusters' as 'Growth Poles' to Propel Industry 4.0 Capacity Building of small and medium enterprises (SMEs) and Startups

Authors: Vivek Anand, Rainer Naegele

Abstract:

Industry 4.0 envisages 'smart' manufacturing and services, taking the automation of the 3rd Industrial Revolution to the autonomy of the 4th Industrial Revolution. Powered by innovations in technology and business models, this disruptive transformation is revitalising industry by integrating silos across and beyond value chains. Motivated by the challenges faced by SMEs and Startups in understanding and adopting Industry 4.0, this paper aims to analyse the concept of Growth Poles and evaluate the possibility of its application to Innovation Clusters that strive to propel Industry 4.0 adoption and capacity building. The proposed paper applies qualitative research methodologies including focus groups and survey questionnaires to identify the various factors that affect formation and development of Innovation Clusters. Employing content analysis, the interaction between SMEs and other ecosystem players in such clusters is studied. A strong collaborative culture is a key driver of digital transformation and technology adoption across sectors, value chains and supply chains; and will position these cluster-based growth poles at the forefront of industrial renaissance. Motivated by this argument, and based on the results of the qualitative research, a roadmap will be proposed to position Innovation Clusters as Growth Poles and effective ecosystems to support Industry 4.0 adoption in a region in the medium to long term. This paper will contribute to the current understanding of the role of Innovation Clusters in capacity building. Relevant management and policy implications stem from the analysis. Furthermore, the findings will be helpful for academicians and policymakers alike, who can leverage an ‘innovation cluster policy’ to enable Industry 4.0 Growth Poles in their regions.

Keywords: digital transformation, fourth industrial revolution, growth poles, industry 4.0, innovation clusters, innovation policy, SMEs and startups

Procedia PDF Downloads 230
12507 Application of the Building Information Modeling Planning Approach to the Factory Planning

Authors: Peggy Näser

Abstract:

Factory planning is a systematic, objective-oriented process for planning a factory, structured into a sequence of phases, each of which is dependent on the preceding phase and makes use of particular methods and tools, and extending from the setting of objectives to the start of production. The digital factory, on the other hand, is the generic term for a comprehensive network of digital models, methods, and tools – including simulation and 3D visualisation – integrated by a continuous data management system. Its aim is the holistic planning, evaluation and ongoing improvement of all the main structures, processes and resources of the real factory in conjunction with the product. Digital factory planning has already become established in factory planning. The application of Building Information Modeling has not yet been established in factory planning but has been used predominantly in the planning of public buildings. Furthermore, this concept is limited to the planning of the buildings and does not include the planning of equipment of the factory (machines, technical equipment) and their interfaces to the building. BIM is a cooperative method of working, in which the information and data relevant to its lifecycle are consistently recorded, managed and exchanged in a transparent communication between the involved parties on the basis of digital models of a building. Both approaches, the planning approach of Building Information Modeling and the methodical approach of the Digital Factory, are based on the use of a comprehensive data model. Therefore it is necessary to examine how the approach of Building Information Modeling can be extended in the context of factory planning in such a way that an integration of the equipment planning, as well as the building planning, can take place in a common digital model. For this, a number of different perspectives have to be investigated: the equipment perspective including the tools used to implement a comprehensive digital planning process, the communication perspective between the planners of different fields, the legal perspective, that the legal certainty in each country and the quality perspective, on which the quality criteria are defined and the planning will be evaluated. The individual perspectives are examined and illustrated in the article. An approach model for the integration of factory planning into the BIM approach, in particular for the integrated planning of equipment and buildings and the continuous digital planning is developed. For this purpose, the individual factory planning phases are detailed in the sense of the integration of the BIM approach. A comprehensive software concept is shown on the tool. In addition, the prerequisites required for this integrated planning are presented. With the help of the newly developed approach, a better coordination between equipment and buildings is to be achieved, the continuity of the digital factory planning is improved, the data quality is improved and expensive implementation errors are avoided in the implementation.

Keywords: building information modeling, digital factory, digital planning, factory planning

Procedia PDF Downloads 266
12506 Evolving Urban Landscapes: Smart Cities and Sustainable Futures

Authors: Mehrzad Soltani, Pegah Rezaei

Abstract:

In response to the escalating challenges posed by resource scarcity, urban congestion, and the dearth of green spaces, contemporary urban areas have undergone a remarkable transformation into smart cities. This evolution necessitates a strategic and forward-thinking approach to urban development, with the primary objective of diminishing and eventually eradicating dependence on non-renewable energy sources. This steadfast commitment to sustainable development is geared toward the continual enhancement of our global urban milieu, ensuring a healthier and more prosperous environment for forthcoming generations. This transformative vision has been meticulously shaped by an extensive research framework, incorporating in-depth field studies and investigations conducted at both neighborhood and city levels. Our holistic strategy extends its purview to encompass major cities and states, advocating for the realization of exceptional development firmly rooted in the principles of sustainable intelligence. At its core, this approach places a paramount emphasis on stringent pollution control measures, concurrently safeguarding ecological equilibrium and regional cohesion. Central to the realization of this vision is the widespread adoption of environmentally friendly materials and components, championing the cultivation of plant life and harmonious green spaces, and the seamless integration of intelligent lighting and irrigation systems. These systems, including solar panels and solar energy utilization, are deployed wherever feasible, effectively meeting the essential lighting and irrigation needs of these dynamic urban ecosystems. Overall, the transformation of urban areas into smart cities necessitates a holistic and innovative approach to urban development. By actively embracing sustainable intelligence and adhering to strict environmental standards, these cities pave the way for a brighter and more sustainable future, one that is marked by resilient, thriving, and eco-conscious urban communities.

Keywords: smart city, green urban, sustainability, urban management

Procedia PDF Downloads 72
12505 The Digitalization of Occupational Health and Safety Training: A Fourth Industrial Revolution Perspective

Authors: Deonie Botha

Abstract:

Digital transformation and the digitization of occupational health and safety training have grown exponentially due to a variety of contributing factors. The literature suggests that digitalization has numerous benefits but also has associated challenges. The aim of the paper is to develop an understanding of both the perceived benefits and challenges of digitalization in an occupational health and safety context in an effort to design and develop e-learning interventions that will optimize the benefits of digitalization and address the associated challenges. The paper proposes, deliberate and tests the design principles of an e-learning intervention to ensure alignment with the requirements of a digitally transformed environment. The results of the research are based on a literature review regarding the requirements and effect of the Fourth Industrial Revolution on learning and e-learning in particular. The findings of the literature review are enhanced with empirical research in the form of a case study conducted in an organization that designs and develops e-learning content in the occupational health and safety industry. The primary findings of the research indicated that: (i) The requirements of learners and organizations in respect of e-learning are different than previously (i.e., a pre-Fourth Industrial Revolution related work setting). (ii) The design principles of an e-learning intervention need to be aligned with the entire value chain of the organization. (iii) Digital twins support and enhance the design and development of e-learning. (iv)Learning should incorporate a multitude of sensory experiences and should not only be based on visual stimulation. (v) Data that are generated as a result of e-learning interventions should be incorporated into big data streams to be analyzed and to become actionable. It is therefore concluded that there is general consensus on the requirements that e-learning interventions need to adhere to in a digitally transformed occupational health and safety work environment. The challenge remains for organizations to incorporate data generated as a result of e-learning interventions into the digital ecosystem of the organization.

Keywords: digitalization, training, fourth industrial revolution, big data

Procedia PDF Downloads 156
12504 Smart Services for Easy and Retrofittable Machine Data Collection

Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum

Abstract:

This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.

Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data

Procedia PDF Downloads 73
12503 The Effect of Language and Literature Integration on the Teaching of English Vocabulary and Grammar in Secondary Schools in Zamfara State, Nigeria

Authors: Umar Bello

Abstract:

Literature has become an invaluable subject which has added a great value and contribution to the teaching of English language and the discovery of many other developed ideas. Literature produces an exhilarating impulse that imprints a lasting picture on the mind of a learner. Many researchers have devised various means and approaches to language Teaching methods which remain unconvinging and which yield little result, but it has remained unconvincing because it has only produced little results. Devicing a method that eliminates monotony and boredome to learners is a good factor that enhances students’ motivation to learning. In this sense, literature and language become unavoidable components that aid intellectual development. This study examines the indispensability of literature as a means of English Language teaching to secondary school classes. The researcher has developed many instructive activities which are believed will help students to improve their study in grammar and vocabulary. The researcher has used quasi-experimental approach using experimental group and control group to find out how literature enhances the students grammar as well as their vocabulary. The findings revealed a positive performance in the experimental group doing better than the control group using simple percentage. The results make it clear that literature allows learners to pay more attention and develop more interest to their studies. In giving a perspicacious linguistic development, literature therefore remains an essential tool for language teaching classrooms, thereby enhancing their grammatical and vocabulary usage.

Keywords: teaching vocabulary, integration, poetry, classroom

Procedia PDF Downloads 104
12502 H∞ Takagi-Sugeno Fuzzy State-Derivative Feedback Control Design for Nonlinear Dynamic Systems

Authors: N. Kaewpraek, W. Assawinchaichote

Abstract:

This paper considers an H TS fuzzy state-derivative feedback controller for a class of nonlinear dynamical systems. A Takagi-Sugeno (TS) fuzzy model is used to approximate a class of nonlinear dynamical systems. Then, based on a linear matrix inequality (LMI) approach, we design an HTS fuzzy state-derivative feedback control law which guarantees L2-gain of the mapping from the exogenous input noise to the regulated output to be less or equal to a prescribed value. We derive a sufficient condition such that the system with the fuzzy controller is asymptotically stable and H performance is satisfied. Finally, we provide and simulate a numerical example is provided to illustrate the stability and the effectiveness of the proposed controller.

Keywords: h-infinity fuzzy control, an LMI approach, Takagi-Sugano (TS) fuzzy system, the photovoltaic systems

Procedia PDF Downloads 384
12501 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration

Authors: Dina Magdy Abdo, Ayat N. El-Shazly, E. A. Abdel-Aal

Abstract:

Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, the traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.

Keywords: forward osmosis, membrane, solar, water treatement

Procedia PDF Downloads 91
12500 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes

Authors: Frank Kuebler, Rolf Steinhilper

Abstract:

Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.

Keywords: artificial neural network, design of experiments, regression analysis, resource efficiency, manufacturing process

Procedia PDF Downloads 524
12499 Mechanical Properties of Palm Oil-Based Resin Containing Unsaturated Polyester

Authors: Alireza Fakhari, Abdul Razak Rahmat

Abstract:

In this study, new palm oil-based polymer systems have been produced by blending unsaturated polyester (UPE) and maleinated, acrylated epoxidized palm oil (MAEPO). The MAEPO/UPE ratio was varied between 10/90 and 40/60 wt%. The influences of various loadings of MAEPO (10, 20, 30, and 40 wt%) on tensile, flexural and impact properties of resulting polymer systems were investigated. The results revealed that, these bio-based polymer systems exhibit mechanical properties comparable to those of petroleum-based polymers.

Keywords: palm oil, bio-based resin, renewable resources, unsaturated polyester resin

Procedia PDF Downloads 345
12498 pH-Responsive Carrier Based on Polymer Particle

Authors: Florin G. Borcan, Ramona C. Albulescu, Adela Chirita-Emandi

Abstract:

pH-responsive drug delivery systems are gaining more importance because these systems deliver the drug at a specific time in regards to pathophysiological necessity, resulting in improved patient therapeutic efficacy and compliance. Polyurethane materials are well-known for industrial applications (elastomers and foams used in different insulations and automotive), but they are versatile biocompatible materials with many applications in medicine, as artificial skin for the premature neonate, membrane in the hybrid artificial pancreas, prosthetic heart valves, etc. This study aimed to obtain the physico-chemical characterization of a drug delivery system based on polyurethane microparticles. The synthesis is based on a polyaddition reaction between an aqueous phase (mixture of polyethylene-glycol M=200, 1,4-butanediol and Tween® 20) and an organic phase (lysin-diisocyanate in acetone) combined with simultaneous emulsification. Different active agents (omeprazole, amoxicillin, metoclopramide) were used to verify the release profile of the macromolecular particles in different pH mediums. Zetasizer measurements were performed using an instrument based on two modules: a Vasco size analyzer and a Wallis Zeta potential analyzer (Cordouan Technol., France) in samples that were kept in various solutions with different pH and the maximum absorbance in UV-Vis spectra were collected on a UVi Line 9,400 Spectrophotometer (SI Analytics, Germany). The results of this investigation have revealed that these particles are proper for a prolonged release in gastric medium where they can assure an almost constant concentration of the active agents for 1-2 weeks, while they can be disassembled faster in a medium with neutral pHs, such as the intestinal fluid.

Keywords: lysin-diisocyanate, nanostructures, polyurethane, Zetasizer

Procedia PDF Downloads 184
12497 Global City Typologies: 300 Cities and Over 100 Datasets

Authors: M. Novak, E. Munoz, A. Jana, M. Nelemans

Abstract:

Cities and local governments the world over are interested to employ circular strategies as a means to bring about food security, create employment and increase resilience. The selection and implementation of circular strategies is facilitated by modeling the effects of strategies locally and understanding the impacts such strategies have had in other (comparable) cities and how that would translate locally. Urban areas are heterogeneous because of their geographic, economic, social characteristics, governance, and culture. In order to better understand the effect of circular strategies on urban systems, we create a dataset for over 300 cities around the world designed to facilitate circular strategy scenario modeling. This new dataset integrates data from over 20 prominent global national and urban data sources, such as the Global Human Settlements layer and International Labour Organisation, as well as incorporating employment data from over 150 cities collected bottom up from local departments and data providers. The dataset is made to be reproducible. Various clustering techniques are explored in the paper. The result is sets of clusters of cities, which can be used for further research, analysis, and support comparative, regional, and national policy making on circular cities.

Keywords: data integration, urban innovation, cluster analysis, circular economy, city profiles, scenario modelling

Procedia PDF Downloads 180