Search results for: humidity distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5694

Search results for: humidity distribution

4254 Spatial and Seasonal Distribution of Persistent Organic Pollutant (Polychlorinated Biphenyl) Along the Course of Buffalo River, Eastern Cape Province, South Africa

Authors: Abdulrazaq Yahaya, Omobola Okoh, Anthony Okoh

Abstract:

Polychlorinated biphenyls (PCBs) are generated from short emission or leakage from capacitors and electrical transformers, industrial chemicals wastewater discharge and careless disposal of wastes. They are toxic, semi-volatile compounds which can persist in the environment, hence classified as persistent organic pollutants. Their presence in the environmental matrices has become a global concern. In this study, we assessed the concentrations and distribution patterns of 19 polychlorinated biphenyls congeners (PCB 1, 5, 18, 31, 44, 52, 66, 87, 101, 110, 138, 141, 151, 153, 170, 180, 183, 187, and 206) at six sampling points in water along the course of Buffalo River, Eastern Cape, South Africa. Solvent extraction followed by sulphuric acid, potassium permanganate and silica gel cleanup were used in this study. The analysis was done with gas chromatography electron capture detector (GC-ECD). The results of the analysis of all the 19 PCBs congeners ranged from not detectable to 0.52 ppb and 2.5 ppb during summer and autumn periods respectively. These values are generally higher than the World Health Organization (WHO) maximum permissible limit. Their presence in the waterbody suggests an increase in anthropogenic activities over the seasons. In view of their volatility, the compounds are transportable over long distances by air currents away from their point of origin putting the health of the communities at risk, thus suggesting the need for strict regulations on the use as well as save disposal of this group of compounds in the communities.

Keywords: organic pollutants, polychlorinated biphenyls, pollution, solvent extraction

Procedia PDF Downloads 317
4253 Flow Characteristics around Rectangular Obstacles with the Varying Direction of Obstacles

Authors: Hee-Chang Lim

Abstract:

The study aims to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge on the top and side-face when the aspect ratio of bodies and the wind direction are changed, respectively. We carried out the wind tunnel measurement and numerical simulation around a series of rectangular bodies (40d×80w×80h, 80d×80w×80h, 160d×80w×80h, 80d×40w×80h and 80d×160w×80h in mm3) placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equation with the typical 2-equation (k-ε model) and the DES (Detached Eddy Simulation) turbulence model has been calculated, and they are both compared with the measurement data. Regarding the turbulence model, the DES model makes a better prediction comparing with the k-ε model, especially when calculating the separated turbulent flow around a bluff body with sharp edged corner. In order to observe the effect of wind direction on the pressure variation around the cube (e.g., 80d×80w×80h in mm), it rotates at 0º, 10º, 20º, 30º, and 45º, which stands for the salient wind directions in the tunnel. The result shows that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and the side-face of the cube. In addition, the transverse width has a substantial effect on the variation of surface pressure around the bodies, while the longitudinal length has little or no influence.

Keywords: rectangular bodies, wind direction, aspect ratio, surface pressure distribution, wind-tunnel measurement, k-ε model, DES model, CFD

Procedia PDF Downloads 236
4252 Development and Experimental Validation of Coupled Flow-Aerosol Microphysics Model for Hot Wire Generator

Authors: K. Ghosh, S. N. Tripathi, Manish Joshi, Y. S. Mayya, Arshad Khan, B. K. Sapra

Abstract:

We have developed a CFD coupled aerosol microphysics model in the context of aerosol generation from a glowing wire. The governing equations can be solved implicitly for mass, momentum, energy transfer along with aerosol dynamics. The computationally efficient framework can simulate temporal behavior of total number concentration and number size distribution. This formulation uniquely couples standard K-Epsilon scheme with boundary layer model with detailed aerosol dynamics through residence time. This model uses measured temperatures (wire surface and axial/radial surroundings) and wire compositional data apart from other usual inputs for simulations. The model predictions show that bulk fluid motion and local heat distribution can significantly affect the aerosol behavior when the buoyancy effect in momentum transfer is considered. Buoyancy generated turbulence was found to be affecting parameters related to aerosol dynamics and transport as well. The model was validated by comparing simulated predictions with results obtained from six controlled experiments performed with a laboratory-made hot wire nanoparticle generator. Condensation particle counter (CPC) and scanning mobility particle sizer (SMPS) were used for measurement of total number concentration and number size distribution at the outlet of reactor cell during these experiments. Our model-predicted results were found to be in reasonable agreement with observed values. The developed model is fast (fully implicit) and numerically stable. It can be used specifically for applications in the context of the behavior of aerosol particles generated from glowing wire technique and in general for other similar large scale domains. Incorporation of CFD in aerosol microphysics framework provides a realistic platform to study natural convection driven systems/ applications. Aerosol dynamics sub-modules (nucleation, coagulation, wall deposition) have been coupled with Navier Stokes equations modified to include buoyancy coupled K-Epsilon turbulence model. Coupled flow-aerosol dynamics equation was solved numerically and in the implicit scheme. Wire composition and temperature (wire surface and cell domain) were obtained/measured, to be used as input for the model simulations. Model simulations showed a significant effect of fluid properties on the dynamics of aerosol particles. The role of buoyancy was highlighted by observation and interpretation of nucleation zones in the planes above the wire axis. The model was validated against measured temporal evolution, total number concentration and size distribution at the outlet of hot wire generator cell. Experimentally averaged and simulated total number concentrations were found to match closely, barring values at initial times. Steady-state number size distribution matched very well for sub 10 nm particle diameters while reasonable differences were noticed for higher size ranges. Although tuned specifically for the present context (i.e., aerosol generation from hotwire generator), the model can also be used for diverse applications, e.g., emission of particles from hot zones (chimneys, exhaust), fires and atmospheric cloud dynamics.

Keywords: nanoparticles, k-epsilon model, buoyancy, CFD, hot wire generator, aerosol dynamics

Procedia PDF Downloads 143
4251 Effect of Corrosion on the Shear Buckling Strength

Authors: Myoung-Jin Lee, Sung-Jin Lee, Young-Kon Park, Jin-Wook Kim, Bo-Kyoung Kim, Song-Hun Chong, Sun-Ii Kim

Abstract:

The ability to resist the shear strength arises mainly from the web panel of steel girders and as such, the shear buckling strength of these girders has been extensively investigated. For example, Blaser’s reported that when buckling occurs, the tension field has an effect after the buckling strength of the steel is reached. The findings of these studies have been applied by AASHTO, AISC, and to the European Code that provides guidelines for designs aimed at preventing shear buckling. Steel girders are susceptible to corrosion resulting from exposure to natural elements such as rainfall, humidity, and temperature. This corrosion leads to a reduction in the size of the web panel section, thereby resulting in a decrease in the shear strength. The decrease in the panel section has a significant effect on the maintenance section of the bridge. However, in most conventional designs, the influence of corrosion is overlooked during the calculation of the shear buckling strength and hence over-design is common. Therefore, in this study, a steel girder with an A/D of 1:1, as well as a 6-mm-, 16-mm-, and 12-mm-thick web panel, flange, and intermediate reinforcing material, respectively, were used. The total length was set to that (3200 mm) of the default model. The effect of corrosion shear buckling was investigated by determining the volume amount of corrosion, shape of the erosion patterns, and the angular change in the tensile field of the shear buckling strength. This study provides the basic data that will enable designs that incorporate values closer (than those used in most conventional designs) to the actual shear buckling strength.

Keywords: corrosion, shear buckling strength, steel girder, shear strength

Procedia PDF Downloads 375
4250 Cadaver Free Fatty Acid Distribution Associated with Burial in Mangrove and Oil Palm Plantation Soils under Tropical Climate

Authors: Siti Sofo Ismail, Siti Noraina Wahida Mohd Alwi, Mohamad Hafiz Ameran, Masrudin M. Yusoff

Abstract:

Locating clandestine cadaver is crucially important in forensic investigations. However, it requires a lot of man power, costly and time consuming. Therefore, the development of a new method to locate the clandestine graves is urgently needed as the cases involve burial of cadaver in different types of soils under tropical climates are still not well explored. This study focused on the burial in mangrove and oil palm plantation soils, comparing the fatty acid distributions in different soil acidities. A stimulated burial experiment was conducted using domestic pig (Sus scrofa) to substitute human tissues. Approximately 20g of pig fatty flesh was allowed to decompose in mangrove and oil palm plantation soils, mimicking burial in a shallow grave. The associated soils were collected at different designated sampling points, corresponding different decomposition stages. Modified Bligh-Dyer Extraction method was applied to extract the soil free fatty acids. Then, the obtained free fatty acids were analyzed with gas chromatography-flame ionization (GC-FID). A similar fatty acid distribution was observed for both mangrove and oil palm plantations soils. Palmitic acid (C₁₆) was the most abundance of free fatty acid, followed by stearic acid (C₁₈). However, the concentration of palmitic acid (C₁₆) higher in oil palm plantation compare to mangrove soils. Conclusion, the decomposition rate of cadaver can be affected by different type of soils.

Keywords: clandestine grave, burial, soils, free fatty acid

Procedia PDF Downloads 399
4249 Ultrafast Ground State Recovery Dynamics of a Cyanine Dye Molecule in Heterogeneous Environment

Authors: Tapas Goswami, Debabrata Goswami

Abstract:

We have studied the changes in ground state recovery dynamics of IR 144 dye using degenerate transient absorption spectroscopy technique when going from homogeneous solution phase to heterogeneous partially miscible liquid/liquid interface. Towards this aim, we set up a partially miscible liquid/liquid interface in which dye is insoluble in one solvent carbon tetrachloride (CCl₄) layer and soluble in other solvent dimethyl sulphoxide (DMSO). A gradual increase in ground state recovery time of the dye molecule is observed from homogenous bulk solution to more heterogeneous environment interface layer. In the bulk solution charge distribution of dye molecule is in equilibrium with polar DMSO solvent molecule. Near the interface micro transportation of non-polar solvent, CCl₄ disturbs the solvent equilibrium in DMSO layer and it relaxes to a new equilibrium state corresponding to a new charge distribution of dye with a heterogeneous mixture of polar and non-polar solvent. In this experiment, we have measured the time required for the dye molecule to relax to the new equilibrium state in different heterogeneous environment. As a result, dye remains longer time in the excited state such that even it can populate more triplet state. The present study of ground state recovery dynamics of a cyanine dye molecule in different solvent environment provides the important characteristics of effect of solvation on excited life time of a dye molecule.

Keywords: excited state, ground state recovery, solvation, transient absorption

Procedia PDF Downloads 285
4248 Comparative Analysis of Residual Shear Depiction and Grain Distribution Characteristics of Slide Soil Profile Sections

Authors: Ephrem Getahun, Shengwen Qi, Songfeng Guo, Yu Zou, Melesse Alemayehu

Abstract:

Residual shear characteristics of slide soil profile sections (SSPS) were examined using ring shear tests to know the relative residual shear behaviors among the sections of slide soil. The multistage-multiphase shearing techniques were employed to perform the experiment for each soil specimen continuously towards large displacements. The grain distribution analysis of SSPS samples was characterized by coarsening upward from bottom slip to the top sections; however, the slip surface was considered as a sheared zone that endorses their low shear resistance for failure. There is an average range of 1-2.5 mm axial displacement on each stage of loadings and phases of shearing that depicts the significant effect of dilation and compression of soil specimen. The middle section has the largest consolidation percentage (10-29%), and vertical displacement compared to other sections and showed high shear strengthening behavior having maximum shear stress of 189kPa at 240kPa loading compared to basal and top sections. It is found that the middle section of SSPS has relatively high shear resistance behavior for large displacement shearing. The residual shear assessment indicates that there is a significant influence of large displacement and rate on the friction coefficient behaviors; it resulted in shear weakening effect to attain their residual condition.

Keywords: comparison, displacements, residual shear stress, shear behavior, slide soils

Procedia PDF Downloads 149
4247 A Study on the Magnetic and Submarine Geology Structure of TA22 Seamount in Lau Basin, Tonga

Authors: Soon Young Choi, Chan Hwan Kim, Chan Hong Park, Hyung Rae Kim, Myoung Hoon Lee, Hyeon-Yeong Park

Abstract:

We performed the marine magnetic, bathymetry and seismic survey at the TA22 seamount (in the Lau basin, SW Pacific) for finding the submarine hydrothermal deposits in October 2009. We acquired magnetic and bathymetry data sets by suing Overhouser Proton Magnetometer SeaSPY (Marine Magnetics Co.), Multi-beam Echo Sounder EM120 (Kongsberg Co.). We conducted the data processing to obtain detailed seabed topography, magnetic anomaly, reduction to the pole (RTP) and magnetization. Based on the magnetic properties result, we analyzed submarine geology structure of TA22 seamount with post-processed seismic profile. The detailed bathymetry of the TA22 seamount showed the left and right crest parts that have caldera features in each crest central part. The magnetic anomaly distribution of the TA22 seamount regionally displayed high magnetic anomalies in northern part and the low magnetic anomalies in southern part around the caldera features. The RTP magnetic anomaly distribution of the TA22 seamount presented commonly high magnetic anomalies in the each caldera central part. Also, it represented strong anomalies at the inside of caldera rather than outside flank of the caldera. The magnetization distribution of the TA22 seamount showed the low magnetization zone in the center of each caldera, high magnetization zone in the southern and northern east part. From analyzed the seismic profile map, The TA22 seamount area is showed for the inferred small mounds inside each caldera central part and it assumes to make possibility of sills by the magma in cases of the right caldera. Taking into account all results of this study (bathymetry, magnetic anomaly, RTP, magnetization, seismic profile) with rock samples at the left caldera area in 2009 survey, we suppose the possibility of hydrothermal deposits at mounds in each caldera central part and at outside flank of the caldera representing the low magnetization zone. We expect to have the better results by combined modeling from this study data with the other geological data (ex. detailed gravity, 3D seismic, petrologic study results and etc).

Keywords: detailed bathymetry, magnetic anomaly, seamounts, seismic profile, SW Pacific

Procedia PDF Downloads 403
4246 Effects of Grape Seed Oil on Postharvest Life and Quality of Some Grape Cultivars

Authors: Zeki Kara, Kevser Yazar

Abstract:

Table grapes (Vitis vinifera L.) are an important crop worldwide. Postharvest problems like berry shattering, decay and stem dehydration are some of the important factors that limit the marketing of table grapes. Edible coatings are an alternative for increasing shelf-life of fruits, protecting fruits from humidity and oxygen effects, thus retarding their deterioration. This study aimed to compare different grape seed oil applications (GSO, 0.5 g L-1, 1 g L-1, 2 g L-1) and SO2 generating pads effects (SO2-1, SO2-2). Treated grapes with GSO and generating pads were packaged into polyethylene trays and stored at 0 ± 1°C and 85-95% moisture. Effects of the applications were investigated by some quality and sensory evaluations with intervals of 15 days. SO2 applications were determined the most effective treatments for minimizing weight loss and changes in TA, pH, color and appearance value. Grape seed oil applications were determined as a good alternative for grape preservation, improving weight losses and °Brix, TA, the color values and sensory analysis. Commercially, ‘Alphonse Lavallée’ clusters were stored for 75 days and ‘Antep Karası’ clusters for 60 days. The data obtained from GSO indicated that it had a similar quality result to SO2 for up to 40 days storage.

Keywords: postharvest, quality, sensory analyses, Vitis vinifera L.

Procedia PDF Downloads 170
4245 Analyzing of Good Dairy Practices in Dairy Farm Management in Sleman, Daerah Istimewa Yogyakarta: The Effect of Good Management in Milk Production

Authors: Dandi Riswanto, Mahendra Wahyu Eka Pradana, Hutomo Abdurrohman

Abstract:

The dairy farm has strategic roles in meeting the demand of foods. Sleman Regency is a central dairy production in Daerah Istimewa Yogyakarta. Sleman district has a population of 3954 heads dairy cattle with an environmental temperature of 22 to 35 degrees Celsius and humidity 74 to 87% which makes a good location for a dairy cattle farm. The dairy cattle that are kept by the majority of the Friesian Holstein Crossbreed are predominantly reared by conventional management. Sleman Regency accounts for 7.3% of national milk production. Factors influencing include genetic, environmental, and management. The purpose of this research was to determine the effect of Good Dairy Farming Practices (GDFP) application on milk production in Sleman Regency. The data collection was conducted in January 2017 until May 2017 using survey and interviews methods at 5 locations of dairy farms selected randomly. Data were analyzed with the chi-square test. The result of this research showed that GDFP point was management 1,47 points (less good). The result showed that Good Dairy Farming Practices (GDFP) has a positive effect on milk production.

Keywords: dairy cattle, GDFP, milk production, Sleman regency

Procedia PDF Downloads 219
4244 Multi-Agent System Based Distributed Voltage Control in Distribution Systems

Authors: A. Arshad, M. Lehtonen. M. Humayun

Abstract:

With the increasing Distributed Generation (DG) penetration, distribution systems are advancing towards the smart grid technology for least latency in tackling voltage control problem in a distributed manner. This paper proposes a Multi-agent based distributed voltage level control. In this method a flat architecture of agents is used and agents involved in the whole controlling procedure are On Load Tap Changer Agent (OLTCA), Static VAR Compensator Agent (SVCA), and the agents associated with DGs and loads at their locations. The objectives of the proposed voltage control model are to minimize network losses and DG curtailments while maintaining voltage value within statutory limits as close as possible to the nominal. The total loss cost is the sum of network losses cost, DG curtailment costs, and voltage damage cost (which is based on penalty function implementation). The total cost is iteratively calculated for various stricter limits by plotting voltage damage cost and losses cost against varying voltage limit band. The method provides the optimal limits closer to nominal value with minimum total loss cost. In order to achieve the objective of voltage control, the whole network is divided into multiple control regions; downstream from the controlling device. The OLTCA behaves as a supervisory agent and performs all the optimizations. At first, a token is generated by OLTCA on each time step and it transfers from node to node until the node with voltage violation is detected. Upon detection of such a node, the token grants permission to Load Agent (LA) for initiation of possible remedial actions. LA will contact the respective controlling devices dependent on the vicinity of the violated node. If the violated node does not lie in the vicinity of the controller or the controlling capabilities of all the downstream control devices are at their limits then OLTC is considered as a last resort. For a realistic study, simulations are performed for a typical Finnish residential medium-voltage distribution system using Matlab ®. These simulations are executed for two cases; simple Distributed Voltage Control (DVC) and DVC with optimized loss cost (DVC + Penalty Function). A sensitivity analysis is performed based on DG penetration. The results indicate that costs of losses and DG curtailments are directly proportional to the DG penetration, while in case 2 there is a significant reduction in total loss. For lower DG penetration, losses are reduced more or less 50%, while for higher DG penetration, loss reduction is not very significant. Another observation is that the newer stricter limits calculated by cost optimization moves towards the statutory limits of ±10% of the nominal with the increasing DG penetration as for 25, 45 and 65% limits calculated are ±5, ±6.25 and 8.75% respectively. Observed results conclude that the novel voltage control algorithm proposed in case 1 is able to deal with the voltage control problem instantly but with higher losses. In contrast, case 2 make sure to reduce the network losses through proposed iterative method of loss cost optimization by OLTCA, slowly with time.

Keywords: distributed voltage control, distribution system, multi-agent systems, smart grids

Procedia PDF Downloads 312
4243 Reconstruction of Age-Related Generations of Siberian Larch to Quantify the Climatogenic Dynamics of Woody Vegetation Close the Upper Limit of Its Growth

Authors: A. P. Mikhailovich, V. V. Fomin, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova

Abstract:

Woody vegetation among the upper limit of its habitat is a sensitive indicator of biota reaction to regional climate changes. Quantitative assessment of temporal and spatial changes in the distribution of trees and plant biocenoses calls for the development of new modeling approaches based upon selected data from measurements on the ground level and ultra-resolution aerial photography. Statistical models were developed for the study area located in the Polar Urals. These models allow obtaining probabilistic estimates for placing Siberian Larch trees into one of the three age intervals, namely 1-10, 11-40 and over 40 years, based on the Weilbull distribution of the maximum horizontal crown projection. Authors developed the distribution map for larch trees with crown diameters exceeding twenty centimeters by deciphering aerial photographs made by a UAV from an altitude equal to fifty meters. The total number of larches was equal to 88608, forming the following distribution row across the abovementioned intervals: 16980, 51740, and 19889 trees. The results demonstrate that two processes can be observed in the course of recent decades: first is the intensive forestation of previously barren or lightly wooded fragments of the study area located within the patches of wood, woodlands, and sparse stand, and second, expansion into mountain tundra. The current expansion of the Siberian Larch in the region replaced the depopulation process that occurred in the course of the Little Ice Age from the late 13ᵗʰ to the end of the 20ᵗʰ century. Using data from field measurements of Siberian larch specimen biometric parameters (including height, diameter at root collar and at 1.3 meters, and maximum projection of the crown in two orthogonal directions) and data on tree ages obtained at nine circular test sites, authors developed a model for artificial neural network including two layers with three and two neurons, respectively. The model allows quantitative assessment of a specimen's age based on height and maximum crone projection values. Tree height and crown diameters can be quantitatively assessed using data from aerial photographs and lidar scans. The resulting model can be used to assess the age of all Siberian larch trees. The proposed approach, after validation, can be applied to assessing the age of other tree species growing near the upper tree boundaries in other mountainous regions. This research was collaboratively funded by the Russian Ministry for Science and Education (project No. FEUG-2023-0002) and Russian Science Foundation (project No. 24-24-00235) in the field of data modeling on the basis of artificial neural network.

Keywords: treeline, dynamic, climate, modeling

Procedia PDF Downloads 83
4242 Drinking Water Quality of Lahore Pakistan: A Comparison of Quality of Drinking Water from Source and Distribution System

Authors: Zainab Abbas Soharwardi, Chunli Su, Fazeelat Tahira, Syed Zahid Aziz

Abstract:

The study monitors the quality of drinking water consumed by urban population of Lahore. A total of 50 drinking water samples (16 from source and 34 from distribution system) were examined for physical, chemical and bacteriological parameters. The parameters including pH, turbidity, electrical conductivity, total dissolved solids, total hardness, calcium, magnesium, total alkalinity, carbonate, sulphate, chloride, nitrite, fluoride, sodium and potassium were analyzed. Sixteen out of fifty samples showed high values of alkalinity compared to EPA standards and WHO guidelines. Twenty-eight samples were analyzed for heavy metals, chromium, iron, copper, zinc, cadmium and lead. Trace amounts of heavy metals were detected in some samples, however for most of the samples values were within the permissible limits although high concentration of zinc was detected in one sample collected from Mughal Pura area. Fifteen samples were analyzed for arsenic. The results were unsatisfactory; around 73% samples showed exceeding values of As. WHO has suggested permissible limits of arsenic < 0.01 ppm, whereas 27 % of samples have shown 0.05 ppm arsenic, which is five times greater than WHO highest permissible limits. All the samples were examined for E. coli bacteria. On the basis of bacteriological analysis, 42 % samples did not meet WHO guidelines and were unsafe for drinking.

Keywords: arsenic, heavy metals, ground water, Lahore

Procedia PDF Downloads 342
4241 Study on Natural Light Distribution Inside the Room by Using Sudare as an Outside Horizontal Blind in Tropical Country of Indonesia

Authors: Agus Hariyadi, Hiroatsu Fukuda

Abstract:

In tropical country like Indonesia, especially in Jakarta, most of the energy consumption on building is for the cooling system, the second one is from lighting electric consumption. One of the passive design strategy that can be done is optimizing the use of natural light from the sun. In this area, natural light is always available almost every day around the year. Natural light have many effect on building. It can reduce the need of electrical lighting but also increase the external load. Another thing that have to be considered in the use of natural light is the visual comfort from occupant inside the room. To optimize the effectiveness of natural light need some modification of façade design. By using external shading device, it can minimize the external load that introduces into the room, especially from direct solar radiation which is the 80 % of the external energy load that introduces into the building. It also can control the distribution of natural light inside the room and minimize glare in the perimeter zone of the room. One of the horizontal blind that can be used for that purpose is Sudare. It is traditional Japanese blind that have been used long time in Japanese traditional house especially in summer. In its original function, Sudare is used to prevent direct solar radiation but still introducing natural ventilation. It has some physical characteristics that can be utilize to optimize the effectiveness of natural light. In this research, different scale of Sudare will be simulated using EnergyPlus and DAYSIM simulation software. EnergyPlus is a whole building energy simulation program to model both energy consumption—for heating, cooling, ventilation, lighting, and plug and process loads—and water use in buildings, while DAYSIM is a validated, RADIANCE-based daylighting analysis software that models the annual amount of daylight in and around buildings. The modelling will be done in Ladybug and Honeybee plugin. These are two open source plugins for Grasshopper and Rhinoceros 3D that help explore and evaluate environmental performance which will directly be connected to EnergyPlus and DAYSIM engines. Using the same model will maintain the consistency of the same geometry used both in EnergyPlus and DAYSIM. The aims of this research is to find the best configuration of façade design which can reduce the external load from the outside of the building to minimize the need of energy for cooling system but maintain the natural light distribution inside the room to maximize the visual comfort for occupant and minimize the need of electrical energy consumption.

Keywords: façade, natural light, blind, energy

Procedia PDF Downloads 345
4240 Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region

Authors: Mace Bentley, Zhuojun Duan, Tobias Gerken, Dudley Bonsal, Henry Way, Endre Szakal, Mia Pham, Hunter Donaldson, Chelsea Lang, Hayden Abbott, Leah Wilcynzski

Abstract:

Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region.

Keywords: lightning, urbanization, thunderstorms, climatology

Procedia PDF Downloads 76
4239 A Framework Based on Dempster-Shafer Theory of Evidence Algorithm for the Analysis of the TV-Viewers’ Behaviors

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we propose an approach of detecting the behavior of the viewers of a TV program in a non-controlled environment. The experiment we propose is based on the use of three types of connected objects (smartphone, smart watch, and a connected remote control). 23 participants were observed while watching their TV programs during three phases: before, during and after watching a TV program. Their behaviors were detected using an approach based on The Dempster Shafer Theory (DST) in two phases. The first phase is to approximate dynamically the mass functions using an approach based on the correlation coefficient. The second phase is to calculate the approximate mass functions. To approximate the mass functions, two approaches have been tested: the first approach was to divide each features data space into cells; each one has a specific probability distribution over the behaviors. The probability distributions were computed statistically (estimated by empirical distribution). The second approach was to predict the TV-viewing behaviors through the use of classifiers algorithms and add uncertainty to the prediction based on the uncertainty of the model. Results showed that mixing the fusion rule with the computation of the initial approximate mass functions using a classifier led to an overall of 96%, 95% and 96% success rate for the first, second and third TV-viewing phase respectively. The results were also compared to those found in the literature. This study aims to anticipate certain actions in order to maintain the attention of TV viewers towards the proposed TV programs with usual connected objects, taking into account the various uncertainties that can be generated.

Keywords: Iot, TV-viewing behaviors identification, automatic classification, unconstrained environment

Procedia PDF Downloads 229
4238 Erosion of Culture through Democratization

Authors: Mladen Milicevic

Abstract:

This paper explores how the explosion of computer technologies has allowed for the democratization of many aspects of human activities, which were in the past only available through the institutionalized channels of production and distribution. We will going to use as an example the music recording industries, just to illustrate this process, but the analogies to other activities and aspects of human life can easily be extrapolated from it.

Keywords: aura, democratization, music industry, music sharing, paradigm-shift

Procedia PDF Downloads 236
4237 Explicit Numerical Approximations for a Pricing Weather Derivatives Model

Authors: Clarinda V. Nhangumbe, Ercília Sousa

Abstract:

Weather Derivatives are financial instruments used to cover non-catastrophic weather events and can be expressed in the form of standard or plain vanilla products, structured or exotics products. The underlying asset, in this case, is the weather index, such as temperature, rainfall, humidity, wind, and snowfall. The complexity of the Weather Derivatives structure shows the weakness of the Black Scholes framework. Therefore, under the risk-neutral probability measure, the option price of a weather contract can be given as a unique solution of a two-dimensional partial differential equation (parabolic in one direction and hyperbolic in other directions), with an initial condition and subjected to adequate boundary conditions. To calculate the price of the option, one can use numerical methods such as the Monte Carlo simulations and implicit finite difference schemes conjugated with Semi-Lagrangian methods. This paper is proposed two explicit methods, namely, first-order upwind in the hyperbolic direction combined with Lax-Wendroff in the parabolic direction and first-order upwind in the hyperbolic direction combined with second-order upwind in the parabolic direction. One of the advantages of these methods is the fact that they take into consideration the boundary conditions obtained from the financial interpretation and deal efficiently with the different choices of the convection coefficients.

Keywords: incomplete markets, numerical methods, partial differential equations, stochastic process, weather derivatives

Procedia PDF Downloads 85
4236 Quantum Graph Approach for Energy and Information Transfer through Networks of Cables

Authors: Mubarack Ahmed, Gabriele Gradoni, Stephen C. Creagh, Gregor Tanner

Abstract:

High-frequency cables commonly connect modern devices and sensors. Interestingly, the proportion of electric components is rising fast in an attempt to achieve lighter and greener devices. Modelling the propagation of signals through these cable networks in the presence of parameter uncertainty is a daunting task. In this work, we study the response of high-frequency cable networks using both Transmission Line and Quantum Graph (QG) theories. We have successfully compared the two theories in terms of reflection spectra using measurements on real, lossy cables. We have derived a generalisation of the vertex scattering matrix to include non-uniform networks – networks of cables with different characteristic impedances and propagation constants. The QG model implicitly takes into account the pseudo-chaotic behavior, at the vertices, of the propagating electric signal. We have successfully compared the asymptotic growth of eigenvalues of the Laplacian with the predictions of Weyl law. We investigate the nearest-neighbour level-spacing distribution of the resonances and compare our results with the predictions of Random Matrix Theory (RMT). To achieve this, we will compare our graphs with the generalisation of Wigner distribution for open systems. The problem of scattering from networks of cables can also provide an analogue model for wireless communication in highly reverberant environments. In this context, we provide a preliminary analysis of the statistics of communication capacity for communication across cable networks, whose eventual aim is to enable detailed laboratory testing of information transfer rates using software defined radio. We specialise this analysis in particular for the case of MIMO (Multiple-Input Multiple-Output) protocols. We have successfully validated our QG model with both TL model and laboratory measurements. The growth of Eigenvalues compares well with Weyl’s law and the level-spacing distribution agrees so well RMT predictions. The results we achieved in the MIMO application compares favourably with the prediction of a parallel on-going research (sponsored by NEMF21.)

Keywords: eigenvalues, multiple-input multiple-output, quantum graph, random matrix theory, transmission line

Procedia PDF Downloads 173
4235 Effect of Class V Cavity Configuration and Loading Situation on the Stress Concentration

Authors: Jia-Yu Wu, Chih-Han Chang, Shu-Fen Chuang, Rong-Yang Lai

Abstract:

Objective: This study was to examine the stress distribution of tooth with different class V restorations under different loading situations and geometry by 3D finite element (FE) analysis. `Methods: A series of FE models of mandibular premolars containing class V cavities were constructed using micro-CT. The class V cavities were assigned as the combinations of different cavity depths x occlusal -gingival heights: 1x2, 1x4, 2x2, and 2x4 mm. Three alveolar bone loss conditions were examined: 0, 1, and 2 mm. 200 N force was exerted on the buccal cusp tip under various directions (vertical, V; obliquely 30° angled, O; oblique and parallel the individual occlusal cavity wall, P). A 3-D FE analysis was performed and the von-Mises stress was used to summarize the data of stress distribution and maximum stress. Results: The maximal stress did not vary in different alveolar bone heights. For each geometry, the maximal stress was found at bilateral corners of the cavity. The peak stress of restorations was significantly higher under load P compared to those under loads V and O while the latter two were similar. 2x2mm cavity exhibited significantly increased (2.88 fold) stress under load P compared to that under load V, followed by 1x2mm (2.11 fold), 2x4mm (1.98 fold) and 1x4mm (1.1fold). Conclusion: Load direction causes the greatest impact on the results of stress, while the effect of alveolar bone loss is minor. Load direction parallel to the cavity wall may enhance the stress concentration especially in deep and narrow class cavities.

Keywords: class v restoration, finite element analysis, loading situation, stress

Procedia PDF Downloads 243
4234 Preliminary Studies in the Determination of Deteriorations in Eflatunpınar Hitit Water Monument (Konya, Turkey) by Non-Destructive Tests

Authors: İsmail İnce, Ali Bozdag, Ayla Bozdag, M. Bahadır Tosunlar, M. Ergun Hatır, Mustafa Korkanc

Abstract:

The building stones used in the construction of historical structures are exposed to atmospheric effects directly or indirectly. As a result of this process, building stones are partially or completely degraded. Historical buildings are important symbols of cultural heritage, so it is very significant to transfer to the future generations by protecting and repairing of these historical buildings. The Eflatunpınar Hitit Monument located near the Eflatunpınar cold water spring was constructed by using natural rock blocks during the Hittites Empire period. The monument has been protected without losing its function until today. The purpose of this study is to evaluate the deteriorations in the Eflatunpınar Hitit Monument and to detect the water chemistry of the Eflatunpınar spring located around the Beysehir County in the west of Konya. For this purpose, the petrographic and mechanical properties of the rocks used in this monument were determined, and the deteriorations in the monument were determined with the aid of non-destructive test methods including Schmidt hardness value, relative humidity measurement, thermal imaging. Additionally, the physical (electrical conductivity (EC), pH and temperature) and chemical characteristics (major anions and cations) of the Eflatunpınar cold water spring have been detected.

Keywords: deteriorations, Eflatunpınar Hitit monument, Eflatunpınar spring, Konya, non-destructıve tests

Procedia PDF Downloads 166
4233 A Real Time Development Study for Automated Centralized Remote Monitoring System at Royal Belum Forest

Authors: Amri Yusoff, Shahrizuan Shafiril, Ashardi Abas, Norma Che Yusoff

Abstract:

Nowadays, illegal logging has been causing much effect to our forest. Some of it causes a flash flood, avalanche, global warming, and etc. This comprehensibly makes us wonder why, what, and who has made it happened. Often, it already has been too late after we have known the cause of it. Even the Malaysian Royal Belum forest has not been spared from land clearing or illegal activity by the natives although this area has been gazetted as a protected area preserved for future generations. Furthermore, because of its sizeable and wide area, these illegal activities are difficult to monitor and to maintain. A critical action must be called upon to prevent all of these unhealthy activities from recurrence. Therefore, a remote monitoring device must be developed in order to capture critical real-time data such as temperature, humidity, gaseous, fire, and rain detection which indicates the current and preserved natural state and habitat in the forest. Besides, this device location can be detected via GPS by showing the latitudes and longitudes of its current location and then to be transmitted by SMS via GSM system. All of its readings will be sent in real-time for data management and analysis. This result will be benefited to the monitoring bodies or relevant authority in keeping the forest in the natural habitat. Furthermore, this research is to gather a unified data and then will be analysed for its comparison with an existing method.

Keywords: remote monitoring system, forest data, GSM, GPS, wireless sensor

Procedia PDF Downloads 417
4232 The Effects of Local Factors on the Concentrations and Flora of Viable Fungi in School Buildings

Authors: H. Salonen, E. Castagnoli, C. Vornanen-Winqvist, R. Mikkola, C. Duchaine, L. Morawska, J. Kurnitski

Abstract:

A wide range of health effects among occupants are associated with the exposure to bioaerosols from fungal sources. Although the accurate role of these aerosols in causing the symptoms and diseases is poorly understood, the important effect of bioaerosol exposure on human health is well recognized. Thus, there is a need to determine all of the contributing factors related to the concentration of fungi in indoor air. In this study, we reviewed and summarized the different factors affecting the concentrations of viable fungi in school buildings. The literature research was conducted using Pubmed and Google Scholar. In addition, we searched the lists of references of selected articles. According to the literature, the main factors influencing the concentration of viable fungi in the school buildings are moisture damage in building structures, the season (temperature and humidity conditions), the type and rate of ventilation, the number and activities of occupants and diurnal variations. This study offers valuable information that can be used in the interpretation of the fungal analysis and to decrease microbial exposure by reducing known sources and/or contributing factors. However, more studies of different local factors contributing to the human microbial exposure in school buildings—as well as other type of buildings and different indoor environments—are needed.

Keywords: fungi, concentration, indoor, school, contributing factor

Procedia PDF Downloads 262
4231 Modelling the Yield Stress of Magnetorheological Fluids

Authors: Hesam Khajehsaeid, Naeimeh Alagheband

Abstract:

Magnetorheological fluids (MRF) are a category of smart materials. They exhibit a reversible change from a Newtonian-like fluid to a semi-solid state upon application of an external magnetic field. In contrast to ordinary fluids, MRFs can tolerate shear stresses up to a threshold value called yield stress which strongly depends on the strength of the magnetic field, magnetic particles volume fraction and temperature. Even beyond the yield, a magnetic field can increase MR fluid viscosity up to several orders. As yield stress is an important parameter in the design of MR devices, in this work, the effects of magnetic field intensity and magnetic particle concentration on the yield stress of MRFs are investigated. Four MRF samples with different particle concentrations are developed and tested through flow-ramp analysis to obtain the flow curves at a range of magnetic field intensity as well as shear rate. The viscosity of the fluids is determined by means of the flow curves. The results are then used to determine the yield stresses by means of the steady stress sweep method. The yield stresses are then determined by means of a modified form of the dipole model as well as empirical models. The exponential distribution function is used to describe the orientation of particle chains in the dipole model under the action of the external magnetic field. Moreover, the modified dipole model results in a reasonable distribution of chains compared to previous similar models.

Keywords: magnetorheological fluids, yield stress, particles concentration, dipole model

Procedia PDF Downloads 179
4230 Exploring the Effect of Cellulose Based Coating Incorporated with CaCl2 and MgSO4 on Shelf Life Extension of Kinnow (Citrus reticulata blanco) Cultivar

Authors: Muhammad Atif Randhawa, Muhammad Nadeem

Abstract:

Kinnow (Citrus reticulate Blanco) is nutritious and perishable fruit with high juice content, and also rich source of vitamin-C. In Pakistan, kinnow export is limited due to inadequate post-harvest handling and lack of satisfactory storage practices. Considering these issues, the present study was designed to evaluate the effect of hydroxypropyl methylcellulose (HPMC) coating in combination with CaCl2 and MgSO4 on shelf life extension of kinnow. Fruits were treated with different levels of CaCl2 and MgSO4 followed by HPMC coating (3 and 5%) and stored at 10°C with 80% relative humidity for 6 weeks. Fruits were analyzed for various physico-chemical parameters on weekly basis. During this study lower fruit firmness (0.24Nm-2), loss in weight (0.64%) and ethylene production (0.039 µL•kg-1•hr-1) was observed in fruits treated with 1% CaCl2 + 1% MgSO4 + 5% HPMC (T6) during storage of 42 days. Minimum chilling injury indexes 0.22% and 0.61% were recorded in treatments T4 and T6, respectively. T6 showed higher values of titerable acidity (0.29%) and ascorbic acid contents (39.82mg/100g). Minimum TSS (9.62°Brix) was found in fruits of T6. Overall T6 showed significantly better results for various parameters, as compared to all other treated and control fruits.

Keywords: firmness, kinnow coating, physicochemical, storage

Procedia PDF Downloads 430
4229 Effects of the Fractional Order on Nanoparticles in Blood Flow through the Stenosed Artery

Authors: Mohammed Abdulhameed, Sagir M. Abdullahi

Abstract:

In this paper, based on the applications of nanoparticle, the blood flow along with nanoparticles through stenosed artery is studied. The blood is acted by periodic body acceleration, an oscillating pressure gradient and an external magnetic field. The mathematical formulation is based on Caputo-Fabrizio fractional derivative without singular kernel. The model of ordinary blood, corresponding to time-derivatives of integer order, is obtained as a limiting case. Analytical solutions of the blood velocity and temperature distribution are obtained by means of the Hankel and Laplace transforms. Effects of the order of Caputo-Fabrizio time-fractional derivatives and three different nanoparticles i.e. Fe3O4, TiO4 and Cu are studied. The results highlights that, models with fractional derivatives bring significant differences compared to the ordinary model. It is observed that the addition of Fe3O4 nanoparticle reduced the resistance impedance of the blood flow and temperature distribution through bell shape stenosed arteries as compared to TiO4 and Cu nanoparticles. On entering in the stenosed area, blood temperature increases slightly, but, increases considerably and reaches its maximum value in the stenosis throat. The shears stress has variation from a constant in the area without stenosis and higher in the layers located far to the longitudinal axis of the artery. This fact can be an important for some clinical applications in therapeutic procedures.

Keywords: nanoparticles, blood flow, stenosed artery, mathematical models

Procedia PDF Downloads 267
4228 A Comparative Analysis of Thermal Performance of Building Envelope Types over Time

Authors: Aram Yeretzian, Yaser Abunnasr, Zahraa Makki, Betina Abi Habib

Abstract:

Developments in architectural building typologies that are informed by prevalent construction techniques and socio-cultural practices generate different adaptations in the building envelope. While different building envelope types exhibit different climate responsive passive strategies, the individual and comparative thermal performance analysis resulting from these technologies is yet to be understood. This research aims to develop this analysis by selecting three building envelope types from three distinct building traditions by measuring the heat transmission in the city of Beirut. The three typical residential buildings are selected from the 1920s, 1940s, and 1990s within the same street to ensure similar climatic and urban conditions. Climatic data loggers are installed inside and outside of the three locations to measure indoor and outdoor temperatures, relative humidity, and heat flow. The analysis of the thermal measurements is complemented by site surveys on window opening, lighting, and occupancy in the three selected locations and research on building technology from the three periods. Apart from defining the U-value of the building envelopes, the collected data will help evaluate the indoor environments with respect to the thermal comfort zone. This research, thus, validates and contextualizes the role of building technologies in relation to climate responsive design.

Keywords: architecture, wall construction, envelope performance, thermal comfort

Procedia PDF Downloads 234
4227 Evaluation of the UV Stability of Unidirectional Crossply Ultrahigh-Molecular-Weight-Polyethylene Composite

Authors: Jonmichael Weaver, David Miller

Abstract:

Dyneema is an ultra-high molecular weight polyethylene (UHMWPE) fiber created by DSM. This fiber has many applications due to the high tensile strength, low weight, and inability to absorb water. DSM manufactures a non-woven unidirectional cross-ply [0,90]2 lamina, using the Dyneema fiber. Using this lamina system, various thickness panels are created for a 40% lighter weight alternative to Kevlar for the same ballistics protection. Environmental effects on the ply/laminate system alter the material properties, resulting in diminished ultimate performance. Understanding the specific environmental parameters and characterizing the resulting material property degradation is essential for determining the safety and reliability of Dyneema in service. Two laminas were contrasted for their response to accelerated aging by UV, humidity, and temperature cycling. Both lamina contain the same fiber, SK-99, but differ in matrix composition, Dyneema HB-210 employs a polyurethane (PUR) based matrix, and HB-212 contains a rubber-based matrix. Each system was inspected using a scanning electron microscope (SEM) and evaluated by dynamic mechanical analysis (DMA) to characterize the material property changes alongside the corresponding composite damage and matrix failure mode over the aging parameters. Overall, resulting in the HB-212 degrading faster compared with the HB-210.

Keywords: dyneema, accelerated aging, polymers, ballistics protection, armor, DSM, kevlar, composites

Procedia PDF Downloads 150
4226 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: anomaly detection, autoencoder, data centers, deep learning

Procedia PDF Downloads 194
4225 Development and Performance of Aerobic Granular Sludge at Elevated Temperature

Authors: Mustafa M. Bob, Siti Izaidah Azmi, Mohd Hakim Ab Halim, Nur Syahida Abdul Jamal, Aznah Nor-Anuar, Zaini Ujang

Abstract:

In this research, the formation and development of aerobic granular sludge (AGS) for domestic wastewater treatment application in hot climate conditions was studied using a sequencing batch reactor (SBR). The performance of the developed AGS in the removal of organic matter and nutrients from wastewater was also investigated. The operation of the reactor was based on the sequencing batch system with a complete cycle time of 3 hours that included feeding, aeration, settling, discharging and idling. The reactor was seeded with sludge collected from the municipal wastewater treatment plant in Madinah city, Saudi Arabia and operated at a temperature of 40ºC using synthetic wastewater as influent. Results showed that granular sludge was developed after an operation period of 30 days. The developed granular sludge had a good settling ability with the average size of the granules ranging from 1.03 to 2.42 mm. The removal efficiency of chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total phosphorus (TP) were 87.31%, 91.93% and 61.25% respectively. These results show that AGS can be developed at elevated temperatures and it is a promising technique to treat domestic wastewater in hot and low humidity climate conditions such as those encountered in Saudi Arabia.

Keywords: aerobic granular sludge, hot climate, sequencing batch reactor, domestic wastewater treatment

Procedia PDF Downloads 359