Search results for: energy consumption schedule
9317 Efficiency Validation of Hybrid Geothermal and Radiant Cooling System Implementation in Hot and Humid Climate Houses of Saudi Arabia
Authors: Jamil Hijazi, Stirling Howieson
Abstract:
Over one-quarter of the Kingdom of Saudi Arabia’s total oil production (2.8 million barrels a day) is used for electricity generation. The built environment is estimated to consume 77% of the total energy production. Of this amount, air conditioning systems consume about 80%. Apart from considerations surrounding global warming and CO2 production it has to be recognised that oil is a finite resource and the KSA like many other oil rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground cooling pipes in combination with black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing carbon emissions while providing all year round thermal comfort in a typical Saudi Arabian urban housing block. At the outset air and soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (Design Builder) that utilised the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/ stack ventilation and radiant cooling pipes embed in floor).Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.Keywords: energy efficiency, ground pipe, hybrid cooling, radiative cooling, thermal comfort
Procedia PDF Downloads 2629316 Vibration Energy Harvesting from Aircraft Structure Using Piezoelectric Transduction
Authors: M. Saifudin Ahmed Atique, Santosh Paudyal, Caixia Yang
Abstract:
In an aircraft, a great portion of energy is wasted due to its inflight structural vibration. Structural components vibrate due to aeroelastic instabilities, gust perturbations and engine rotation at very high rpm. Energy losses due to mechanical vibration can be utilized by harvesting energy from aircraft structure as electrical energy. This harvested energy can be stored in battery panels built into aircraft fuselage and can be used to power inflight auxiliary accessories i.e., lighting and entertainment systems. Moreover, this power can be used for wireless Structural Health Monitoring System (SHM) for aircraft and as an excellent replacement of aircraft Ground Power Unit (GPU)/Auxiliary Power Unit (APU) during passenger onboard time to power aircraft cabin accessories to reduce aircraft ground operation cost significantly. In this paper, we propose the design of a noble aircraft wing in which Piezoelectric panels placed under the composite skin of aircraft wing will generate electrical charges from any inflight aerodynamics or mechanical vibration and store it into battery to power auxiliary inflight systems/accessories as per requirement. Experimental results show that a well-engineered piezoelectric energy harvester based aircraft wing can produce adequate energy to support in-flight lighting and auxiliary cabin accessories.Keywords: vibration energy, aircraft wing, piezoelectric material, inflight accessories
Procedia PDF Downloads 1599315 Fuzzy Logic for Control and Automatic Operation of Natural Ventilation in Buildings
Authors: Ekpeti Bukola Grace, Mahmoudi Sabar Esmail, Chaer Issa
Abstract:
Global energy consumption has been increasing steadily over the last half - century, and this trend is projected to continue. As energy demand rises in many countries throughout the world due to population growth, natural ventilation in buildings has been identified as a viable option for lowering these demands, saving costs, and also lowering CO2 emissions. However, natural ventilation is driven by forces that are generally unpredictable in nature thus, it is important to manage the resulting airflow in order to maintain pleasant indoor conditions, making it a complex system that necessitates specific control approaches. The effective application of fuzzy logic technique amidst other intelligent systems is one of the best ways to bridge this gap, as its control dynamics relates more to human reasoning and linguistic descriptions. This article reviewed existing literature and presented practical solutions by applying fuzzy logic control with optimized techniques, selected input parameters, and expert rules to design a more effective control system. The control monitors used indoor temperature, outdoor temperature, carbon-dioxide levels, wind velocity, and rain as input variables to the system, while the output variable remains the control of window opening. This is achieved through the use of fuzzy logic control tool box in MATLAB and running simulations on SIMULINK to validate the effectiveness of the proposed system. Comparison analysis model via simulation is carried out, and with the data obtained, an improvement in control actions and energy savings was recorded.Keywords: fuzzy logic, intelligent control systems, natural ventilation, optimization
Procedia PDF Downloads 1309314 Advancing Hydrogen Production Through Additive Manufacturing: Optimising Structures of High Performance Electrodes
Authors: Fama Jallow, Melody Neaves, Professor Mcgregor
Abstract:
The quest for sustainable energy sources has driven significant interest in hydrogen production as a clean and efficient fuel. Alkaline water electrolysis (AWE) has emerged as a prominent method for generating hydrogen, necessitating the development of advanced electrode designs with improved performance characteristics. Additive manufacturing (AM) by laser powder bed fusion (LPBF) method presents an opportunity to tailor electrode microstructures and properties, enhancing their performance. This research proposes investigating the AM of electrodes with different lattice structures to optimize hydrogen production. The primary objective is to employ advanced modeling techniques to identify and select two optimal lattice structures for electrode fabrication. LPBF will be used to fabricate electrodes with precise control over lattice geometry, pore size, and distribution. The performance evaluation will encompass energy consumption and porosity analysis. AWE will assess energy efficiency, aiming to identify lattice structures with enhanced hydrogen production rates and reduced power requirements. Computed tomography (CT) scanning will analyze porosity to determine material integrity and mass transport characteristics. The research aims to bridge the gap between AM and hydrogen production by investigating lattice structures potential in electrode design. By systematically exploring lattice structures and their impact on performance, this study aims to provide valuable insights into the design and fabrication of highly efficient and cost-effective electrodes for AWE. The outcomes hold promise for advancing hydrogen production through AM. The research will have a significant impact on the development of sustainable energy sources. The findings from this study will help to improve the efficiency of AWE, making it a more viable option for hydrogen production. This could lead to a reduction in our reliance on fossil fuels, which would have a positive impact on the environment. The research is also likely to have a commercial impact. The findings could be used to develop new electrode designs that are more efficient and cost-effective. This could lead to the development of new hydrogen production technologies, which could have a significant impact on the energy market.Keywords: hydrogen production, electrode, lattice structure, Africa
Procedia PDF Downloads 709313 Ab Initio Multiscale Catalytic Synthesis/Cracking Reaction Modelling of Ammonia as Liquid Hydrogen Carrier
Authors: Blaž Likozar, Andraž Pavlišič, Matic Pavlin, Taja Žibert, Aleksandra Zamljen, Sašo Gyergyek, Matej Huš
Abstract:
Ammonia is gaining recognition as a carbon-free fuel for energy-intensive applications, particularly transportation, industry, and power generation. Due to its physical properties, high energy density of 3 kWh kg-1, and high gravimetric hydrogen capacity of 17.6 wt%, ammonia is an efficient energy vector for green hydrogen, capable of mitigating hydrogen’s storage, distribution, and infrastructure deployment limitations. Chemicalstorage in the form of ammonia provides an efficient and affordable solution for energy storage, which is currently a critical step in overcoming the intermittency of abundant renewable energy sources with minimal or no environmental impact. Experiments were carried out to validate the modelling in a packed bed reactor, which proved to be agreeing.Keywords: hydrogen, ammonia, catalysis, modelling, kinetics
Procedia PDF Downloads 699312 Analysis of Energy Required for the Massive Incorporation of Electric Buses in the City of Ambato - Ecuador
Authors: Paola Quintana, Angélica Vaca, Sebastián Villacres, Henry Acurio
Abstract:
Ecuador through the Organic Law of Energy Efficiency establishes that "Starting in the year 2025, all vehicles that are incorporated into the urban and inter-parroquial public transport service must only be electric”, this marks a foundation for the introduction of electric mobility in the country. The present investigation is based on developing an analysis and projection of the Energy Required for the incorporation of electric buses for public passenger transport in the city of Ambato-Ecuador, taking into account the useful life of the vehicle fleet, number of existing vehicles and analysis of transport routes in the study city. The energy demand based on the vehicular dynamics is analyzed, determination of equations for the calculation of force in the wheel since it is considered a variable of slope due to the fact that this has a great incidence in the autonomy when speaking of electric mobility, later the energy analysis applied to public transport routes, finally a projection of the energy requirement is made based on the change of public transport units according to their useful life.Keywords: public transport, electric mobility, energy, ecuador
Procedia PDF Downloads 879311 Efficacy of Erector Spinae Plane Block for Postoperative Pain Management in Coronary Artery Bypass Graft Patients
Authors: Santosh Sharma Parajuli, Diwas Manandhar
Abstract:
Background: Perioperative pain management plays an integral part in patients undergoing cardiac surgery. We studied the effect of Erector Spinae Plane block on acute postoperative pain reduction and 24 hours opioid consumption in adult cardiac surgical patients. Methods: Twenty-five adult cardiac surgical patients who underwent cardiac surgery with sternotomy in whom ESP catheters were placed preoperatively were kept in group E, and the other 25 patients who had undergone cardiac surgery without ESP catheter and pain management done with conventional opioid injection were placed in group C. Fentanyl was used for pain management. The primary study endpoint was to compare the consumption of fentanyl and to assess the numeric rating scale in the postoperative period in the first 24 hours in both groups. Results: The 24 hours fentanyl consumption was 43.00±51.29 micrograms in the Erector Spinae Plane catheter group and 147.00±60.94 micrograms in the control group postoperatively which was statistically significant (p <0.001). The numeric rating scale was also significantly reduced in the Erector Spinae Plane group compared to the control group in the first 24 hours postoperatively. Conclusion: Erector Spinae Plane block is superior to the conventional opioid injection method for postoperative pain management in CABG patients. Erector Spinae Plane block not only decreases the overall opioid consumption but also the NRS score in these patients.Keywords: erector, spinae, plane, numerical rating scale
Procedia PDF Downloads 679310 Study of Methods to Reduce Carbon Emissions in Structural Engineering
Authors: Richard Krijnen, Alan Wang
Abstract:
As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice.Keywords: efficient structural design, embodied carbon, low-carbon material, sustainable structural design
Procedia PDF Downloads 419309 Effects of Sleep Deprivation on Athletic Performance in Nigeria Colleges of Education Games
Authors: Rasheed Owolabi Oloyede, Joseph Olusegun Adelusi, Seun Oluwadare
Abstract:
Sleep has been found to have many recuperative and restorative beneficial effects on athletic recovery. When a person is deprived of sleep this can have many effects on their immune and endocrine systems. Both of these systems are extremely important for the recovery process of any athlete and when we deprive ourselves of sleep, we are depriving ourselves of recovery. This study examined how sleep deprivation can hinder sport performance among selected athletes representing Adeyemi College of Education at Nigeria Colleges of Education Games (NICEGA) competitions at Minna. A total of 32 athletes were sampled for the study. They were exposed to two different activities. Each activity was performed before and after sleep deprivation, the activities were 100m dash, shuttle relay. The athletes were randomly assigned to two groups that are experimental and control groups. Pretest were conducted on both groups before apply treatment to the other group. A day before the activities to be performed the control group was denied of sleep between 10p.m to 5a.m for a period of 6 weeks. The analysis of the data showed that athletes performance in the two selected activities performed on equal basis before the sleep deprivation. After sleep deprivation the performance of experimental group was a little better than the control group that were denied of sleep. It was concluded that sleep allows the body to spend less energy resources on body processes needed while awake, it was concluded that sleep deprivation enables the body system work effectively. The body can expend needed energy, balance and adequate reaction time if it is allowed to have enough rest. Lack of adequate sleep results to dullness of the brain, nervousness and anxiety which all have negative effect on performance of activities by athletes. Based on the findings, it was recommended that extend nightly sleep for several week to reduce your sleep debt before competition. Maintain a low sleep debt by obtaining a sufficient amount of nightly sleep (seven to eight hours for adults, nine or more hours for teens and young adults). Keep a regular sleep-wake schedule, going to bed and waking up at the same times every day.Keywords: activities, deprivation, performance, sleep
Procedia PDF Downloads 3499308 High-Performance Non-aqueous Organic Redox Flow Battery in Ambient Condition
Authors: S. K. Mohapatra, K. Ramanujam, S. Sankararaman
Abstract:
Redox flow battery (RFB) is a preferred energy storage option for grid stabilisation and energy arbitrage as it offers energy and power decoupling. In contrast to aqueous RFBs (ARFBs), nonaqueous RFBs (NARFBs) could offer high energy densities due to the wider electrochemical window of the solvents used, which could handle high and low voltage organic redox couples without undergoing electrolysis. In this study, a RFB based on benzyl viologen hexafluorophosphate [BV(PF6)2] as anolyte and N-hexyl phenothiazine [HPT] as catholyte demonstrated. A cell operated with mixed electrolyte (1:1) containing 0.2 M [BV(PF₆)₂] and 0.2 M [HPT] delivered a coulombic efficiency (CE) of 95.3 % and energy efficiency (EE) 53%, with nearly 68.9% material utilisation at 40 mA cm-2 current density.Keywords: non-aqueous redox flow battery, benzyl viologen, N-hexyl phenothiazine, mixed electrolyte
Procedia PDF Downloads 769307 Energy Conversion from Waste Paper Industry Using Fluidized Bed Combustion
Authors: M. Dyah Ayu Yuli, S. Faisal Dhio, P. Johandi, P. Muhammad Sofyan
Abstract:
Pulp and paper mills generate various quantities of energy-rich biomass as wastes, depending on technological level, pulp and paper grades and wood quality. These wastes are produced in all stages of the process: wood preparation, pulp and paper manufacture, chemical recovery, recycled paper processing, waste water treatment. Energy recovery from wastes of different origin has become a generally accepted alternative to their disposal. Pulp and paper industry expresses an interest in adapting and integrating advanced biomass energy conversion technologies into its mill operations using Fluidized Bed Combustion. Industrial adoption of these new technologies has the potential for higher efficiency, lower capital cost, and safer operation than conventional operations that burn fossil fuels for energy. Incineration with energy recovery has the advantage of hygienic disposal, volume reduction, and the recovery of thermal energy by means of steam or super heated water that can be used for heating and power generation.Keywords: biomass, fluidized bed combustion, pulp and paper mills, waste
Procedia PDF Downloads 4739306 Energy Efficiency Analysis of Electrical Submersible Pump on Mature Oil Field Offshore Java Sea
Authors: Marda Vidrianto, Tania Surya Utami
Abstract:
Electrical Submersible Pump (ESP) is an artificial lift of choice to produce oil on Offshore Java Sea. It is selected based on the production rate capacity and running life expectation. ESP performance in a mature field is highly affected by oil well conditions. The presence of sand, scale, gas, and low influx will create unstable ESP operation hence lowering the run life expectation and system efficiency. This paper reviews the current energy usage and efficiency on every part of the ESP system. The hydraulic and electrical losses, as well as system efficiency for each well, are calculated to identify energy losses and the possibility for improvement. It is shown that high back pressure on the system and low-efficiency pump are the major contributors to energy losses. It was found that optimized production rate and the use of advanced technology on pump and motor unit could improve energy efficiency.Keywords: advance technology, energy efficiency, ESP, mature field, production rate
Procedia PDF Downloads 3429305 Performance and Nutritional Evaluation of Moringa Leaves Dried in a Solar-Assisted Heat Pump Dryer Integrated with Thermal Energy Storage
Authors: Aldé Belgard Tchicaya Loemba, Baraka Kichonge, Thomas Kivevele, Juma Rajabu Selemani
Abstract:
Plants used for medicinal purposes are extremely perishable, owing to moisture-enhanced enzymatic and microorganism activity, climate change, and improper handling and storage. Experiments have shown that drying the medicinal plant without affecting the active nutrients and controlling the moisture content as much as possible can extend its shelf life. Different traditional and modern drying techniques for preserving medicinal plants have been developed, with some still being improved in Sub-Saharan Africa. However, many of these methods fail to address the most common issues encountered when drying medicinal plants, such as nutrient loss, long drying times, and a limited capacity to dry during the evening or cloudy hours. Heat pump drying is an alternate drying method that results in no nutritional loss. Furthermore, combining a heat pump dryer with a solar energy storage system appears to be a viable option for all-weather drying without affecting the nutritional values of dried products. In this study, a solar-assisted heat pump dryer integrated with thermal energy storage is developed for drying moringa leaves. The study also discusses the performance analysis of the developed dryer as well as the proximate analysis of the dried moringa leaves. All experiments were conducted from 11 a.m. to 4 p.m. to assess the dryer's performance in “daytime mode”. Experiment results show that the drying time was significantly reduced, and the dryer demonstrated high performance in preserving all of the nutrients. In 5 hours of the drying process, the moisture content was reduced from 75.7 to 3.3%. The average COP value was 3.36, confirming the dryer's low energy consumption. The findings also revealed that after drying, the content of protein, carbohydrates, fats, fiber, and ash greatly increased.Keywords: heat pump dryer, efficiency, moringa leaves, proximate analysis
Procedia PDF Downloads 829304 Efficient Field-Oriented Motor Control on Resource-Constrained Microcontrollers for Optimal Performance without Specialized Hardware
Authors: Nishita Jaiswal, Apoorv Mohan Satpute
Abstract:
The increasing demand for efficient, cost-effective motor control systems in the automotive industry has driven the need for advanced, highly optimized control algorithms. Field-Oriented Control (FOC) has established itself as the leading approach for motor control, offering precise and dynamic regulation of torque, speed, and position. However, as energy efficiency becomes more critical in modern applications, implementing FOC on low-power, cost-sensitive microcontrollers pose significant challenges due to the limited availability of computational and hardware resources. Currently, most solutions rely on high-performance 32-bit microcontrollers or Application-Specific Integrated Circuits (ASICs) equipped with Floating Point Units (FPUs) and Hardware Accelerated Units (HAUs). These advanced platforms enable rapid computation and simplify the execution of complex control algorithms like FOC. However, these benefits come at the expense of higher costs, increased power consumption, and added system complexity. These drawbacks limit their suitability for embedded systems with strict power and budget constraints, where achieving energy and execution efficiency without compromising performance is essential. In this paper, we present an alternative approach that utilizes optimized data representation and computation techniques on a 16-bit microcontroller without FPUs or HAUs. By carefully optimizing data point formats and employing fixed-point arithmetic, we demonstrate how the precision and computational efficiency required for FOC can be maintained in resource-constrained environments. This approach eliminates the overhead performance associated with floating-point operations and hardware acceleration, providing a more practical solution in terms of cost, scalability and improved execution time efficiency, allowing faster response in motor control applications. Furthermore, it enhances system design flexibility, making it particularly well-suited for applications that demand stringent control over power consumption and costs.Keywords: field-oriented control, fixed-point arithmetic, floating point unit, hardware accelerator unit, motor control systems
Procedia PDF Downloads 159303 Learning Predictive Models for Efficient Energy Management of Exhibition Hall
Authors: Jeongmin Kim, Eunju Lee, Kwang Ryel Ryu
Abstract:
This paper addresses the problem of predictive control for energy management of large-scaled exhibition halls, where a lot of energy is consumed to maintain internal atmosphere under certain required conditions. Predictive control achieves better energy efficiency by optimizing the operation of air-conditioning facilities with not only the current but also some future status taken into account. In this paper, we propose to use predictive models learned from past sensor data of hall environment, for use in optimizing the operating plan for the air-conditioning facilities by simulating future environmental change. We have implemented an emulator of an exhibition hall by using EnergyPlus, a widely used building energy emulation tool, to collect data for learning environment-change models. Experimental results show that the learned models predict future change highly accurately on a short-term basis.Keywords: predictive control, energy management, machine learning, optimization
Procedia PDF Downloads 2749302 Lessons of Passive Environmental Design in the Sarabhai and Shodan Houses by Le Corbusier
Authors: Juan Sebastián Rivera Soriano, Rosa Urbano Gutiérrez
Abstract:
The Shodan House and the Sarabhai House (Ahmedabad, India, 1954 and 1955, respectively) are considered some of the most important works of Le Corbusier produced in the last stage of his career. There are some academic publications that study the compositional and formal aspects of their architectural design, but there is no in-depth investigation into how the climatic conditions of this region were a determining factor in the design decisions implemented in these projects. This paper argues that Le Corbusier developed a specific architectural design strategy for these buildings based on scientific research on climate in the Indian context. This new language was informed by a pioneering study and interpretation of climatic data as a design methodology that would even involve the development of new design tools. This study investigated whether their use of climatic data meets values and levels of accuracy obtained with contemporary instruments and tools, such as Energy Plus weather data files and Climate Consultant. It also intended to find out if Le Corbusier's office’s intentions and decisions were indeed appropriate and efficient for those climate conditions by assessing these projects using BIM models and energy performance simulations from Design Builder. Accurate models were built using original historical data through archival research. The outcome is to provide a new understanding of the environment of these houses through the combination of modern building science and architectural history. The results confirm that in these houses, it was achieved a model of low energy consumption. This paper contributes new evidence not only on exemplary modern architecture concerned with environmental performance but also on how it developed progressive thinking in this direction.Keywords: bioclimatic architecture, Le Corbusier, Shodan, Sarabhai Houses
Procedia PDF Downloads 659301 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models
Authors: Ramin Vafadary, Maryam Khanbaghi
Abstract:
Forecasting electricity load is important for various purposes like planning, operation, and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet, and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria, namely, the mean absolute error and root mean square error. The National Renewable Energy Laboratory (NREL) residential energy consumption data is used to train the models. The results of this study show that the SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts, we can improve the robustness of the models for 24 hours ahead of electricity load forecasting.Keywords: bagging, Fbprophet, Holt-Winters, LSTM, load forecast, SARIMA, TensorFlow probability, time series
Procedia PDF Downloads 969300 STC Parameters versus Real Time Measured Parameters to Determine Cost Effectiveness of PV Panels
Authors: V. E. Selaule, R. M. Schoeman H. C. Z. Pienaar
Abstract:
Research has shown that solar energy is a renewable energy resource with the most potential when compared to other renewable energy resources in South Africa. There are many makes of Photovoltaic (PV) panels on the market and it is difficult to assess which to use. PV panel manufacturers use Standard Test Conditions (STC) to rate their PV panels. STC conditions are different from the actual operating environmental conditions were the PV panels are used. This paper describes a practical method to determine the most cost effective available PV panel. The method shows that PV panel manufacturer STC ratings cannot be used to select a cost effective PV panel.Keywords: PV orientation, PV panel, PV STC, Solar energy
Procedia PDF Downloads 4739299 The Current Application of BIM - An Empirical Study Focusing on the BIM-Maturity Level
Authors: Matthias Stange
Abstract:
Building Information Modelling (BIM) is one of the most promising methods in the building design process and plays an important role in the digitalization of the Architectural, Engineering, and Construction (AEC) Industry. The application of BIM is seen as the key enabler for increasing productivity in the construction industry. The model-based collaboration using the BIM method is intended to significantly reduce cost increases, schedule delays, and quality problems in the planning and construction of buildings. Numerous qualitative studies based on expert interviews support this theory and report perceived benefits from the use of BIM in terms of achieving project objectives related to cost, schedule, and quality. However, there is a large research gap in analysing quantitative data collected from real construction projects regarding the actual benefits of applying BIM based on representative sample size and different application regions as well as different project typologies. In particular, the influence of the project-related BIM maturity level is completely unexplored. This research project examines primary data from 105 construction projects worldwide using quantitative research methods. Projects from the areas of residential, commercial, and industrial construction as well as infrastructure and hydraulic engineering were examined in application regions North America, Australia, Europe, Asia, MENA region, and South America. First, a descriptive data analysis of 6 independent project variables (BIM maturity level, application region, project category, project type, project size, and BIM level) were carried out using statistical methods. With the help of statisticaldata analyses, the influence of the project-related BIM maturity level on 6 dependent project variables (deviation in planning time, deviation in construction time, number of planning collisions, frequency of rework, number of RFIand number of changes) was investigated. The study revealed that most of the benefits of using BIM perceived through numerous qualitative studies have not been confirmed. The results of the examined sample show that the application of BIM did not have an improving influence on the dependent project variables, especially regarding the quality of the planning itself and the adherence to the schedule targets. The quantitative research suggests the conclusion that the BIM planning method in its current application has not (yet) become a recognizable increase in productivity within the planning and construction process. The empirical findings indicate that this is due to the overall low level of BIM maturity in the projects of the examined sample. As a quintessence, the author suggests that the further implementation of BIM should primarily focus on an application-oriented and consistent development of the project-related BIM maturity level instead of implementing BIM for its own sake. Apparently, there are still significant difficulties in the interweaving of people, processes, and technology.Keywords: AEC-process, building information modeling, BIM maturity level, project results, productivity of the construction industry
Procedia PDF Downloads 739298 Prediction of Pounding between Two SDOF Systems by Using Link Element Based On Mathematic Relations and Suggestion of New Equation for Impact Damping Ratio
Authors: Seyed M. Khatami, H. Naderpour, R. Vahdani, R. C. Barros
Abstract:
Many previous studies have been carried out to calculate the impact force and the dissipated energy between two neighboring buildings during seismic excitation, when they collide with each other. Numerical studies are an important part of impact, which several researchers have tried to simulate the impact by using different formulas. Estimation of the impact force and the dissipated energy depends significantly on some parameters of impact. Mass of bodies, stiffness of spring, coefficient of restitution, damping ratio of dashpot and impact velocity are some known and unknown parameters to simulate the impact and measure dissipated energy during collision. Collision is usually shown by force-displacement hysteresis curve. The enclosed area of the hysteresis loop explains the dissipated energy during impact. In this paper, the effect of using different types of impact models is investigated in order to calculate the impact force. To increase the accuracy of impact model and to optimize the results of simulations, a new damping equation is assumed and is validated to get the best results of impact force and dissipated energy, which can show the accuracy of suggested equation of motion in comparison with other formulas. This relation is called "n-m". Based on mathematical relation, an initial value is selected for the mentioned coefficients and kinetic energy loss is calculated. After each simulation, kinetic energy loss and energy dissipation are compared with each other. If they are equal, selected parameters are true and, if not, the constant of parameters are modified and a new analysis is performed. Finally, two unknown parameters are suggested to estimate the impact force and calculate the dissipated energy.Keywords: impact force, dissipated energy, kinetic energy loss, damping relation
Procedia PDF Downloads 5529297 Large Eddy Simulation with Energy-Conserving Schemes: Understanding Wind Farm Aerodynamics
Authors: Dhruv Mehta, Alexander van Zuijlen, Hester Bijl
Abstract:
Large Eddy Simulation (LES) numerically resolves the large energy-containing eddies of a turbulent flow, while modelling the small dissipative eddies. On a wind farm, these large scales carry the energy wind turbines extracts and are also responsible for transporting the turbines’ wakes, which may interact with downstream turbines and certainly with the atmospheric boundary layer (ABL). In this situation, it is important to conserve the energy that these wake’s carry and which could be altered artificially through numerical dissipation brought about by the schemes used for the spatial discretisation and temporal integration. Numerical dissipation has been reported to cause the premature recovery of turbine wakes, leading to an over prediction in the power produced by wind farms.An energy-conserving scheme is free from numerical dissipation and ensures that the energy of the wakes is increased or decreased only by the action of molecular viscosity or the action of wind turbines (body forces). The aim is to create an LES package with energy-conserving schemes to simulate wind turbine wakes correctly to gain insight into power-production, wake meandering etc. Such knowledge will be useful in designing more efficient wind farms with minimal wake interaction, which if unchecked could lead to major losses in energy production per unit area of the wind farm. For their research, the authors intend to use the Energy-Conserving Navier-Stokes code developed by the Energy Research Centre of the Netherlands.Keywords: energy-conserving schemes, modelling turbulence, Large Eddy Simulation, atmospheric boundary layer
Procedia PDF Downloads 4659296 Carbon Footprint Reduction Using Cleaner Production Strategies in a Otoshimi Producing Plant
Authors: Razuana Rahim, Abdul Aziz Abdul Raman
Abstract:
In this work, a study was conducted to evaluate the feasibility of using Cleaner Production (CP) strategy to reduce carbon dioxide emission (CO2) in a plant that produces Otoshimi. CP strategy is meant to reduce CO2 emission while taking into consideration the economic aspect. For this purpose, a CP audit was conducted and the information obtained were analyzed and major contributors of CO2 emission inside the boundary of the production plant was identified. Electricity, water and fuel consumption and generation of solid waste and wastewater were identified as the main contributors. Total CO2 emission generated was 0.27 kg CO2 per kg of Otoshimi produced, where 68% was contributed by electricity consumption. Subsequently, a total of three CP options were generated and implementations of these options are expected to reduce the CO2 emission from electricity consumption to 0.16 kg CO2 per kg of Otoshimi produced, a reduction of about 14%. The study proves that CP strategy can be implemented even without any investment to reduce CO2 for a plant that produces Otoshimi.Keywords: carbon dioxide emission, cleaner production audit, cleaner production options, otoshimi production
Procedia PDF Downloads 4279295 3D Simulation for Design and Predicting Performance of a Thermal Heat Storage Facility using Sand
Authors: Nadjiba Mahfoudi, Abdelhafid Moummi , Mohammed El Ganaoui
Abstract:
Thermal applications are drawing increasing attention in the solar energy research field, due to their high performance in energy storage density and energy conversion efficiency. In these applications, solar collectors and thermal energy storage systems are the two core components. This paper presents a thermal analysis of the transient behavior and storage capability of a sensible heat storage device in which sand is used as a storage media. The TES unit with embedded charging tubes is connected to a solar air collector. To investigate it storage characteristics a 3D-model using no linear coupled partial differential equations for both temperature of storage medium and heat transfer fluid (HTF), has been developed. Performances of thermal storage bed of capacity of 17 MJ (including bed temperature, charging time, energy storage rate, charging energy efficiency) have been evaluated. The effect of the number of charging tubes (3 configurations) is presented.Keywords: design, thermal modeling, heat transfer enhancement, sand, sensible heat storage
Procedia PDF Downloads 5629294 Optimising Urban Climate at Mesoscale: The Case of Floor-Area-Ratio Modelling and Energy Planning Integration
Authors: Ali Cheshmehzangi, Ayotunde Dawodu
Abstract:
In urban planning, Floor Area Ratio (FAR) of the site plays a major role in the multiplicity of performances, from humane living environments to energy performance. When one considers the astounding volume of new housing that is going to be constructed across the globe during the next few decades due to growing urbanisation (e.g. particularly in developing world), it is imperative that we have an empirically grounded grasp of which building configurations are more energy efficient. As a common planning metric, it would be helpful to know exactly how managing FAR connects with energy efficiency. Hence, this study puts together a set of modelling of various FARs for a typical residential compound and address the considerations of energy planning integration in the practice of building configuration and urban planning. Such decision makings at the planning and design stage enable us to provide pathways of optimising urban climate at mesoscale of the built environment, i.e. the neighbourhood or community level. In this study, a comparative study is conducted using Eco-Tect Software, using a case study in the City of Ningbo, China. Findings of the study contribute to identifying scenarios of various FAR use and energy planning at mesoscale. The final results contribute to studies in urban climate, from the perspectives of urban planning, energy planning, and urban modelling.Keywords: China, energy planning, FAR, floor-area-ratio, mesoscale, urban climate, urban modelling
Procedia PDF Downloads 1649293 Photovoltaic Maximum Power-Point Tracking Using Artificial Neural Network
Authors: Abdelazziz Aouiche, El Moundher Aouiche, Mouhamed Salah Soudani
Abstract:
Renewable energy sources now significantly contribute to the replacement of traditional fossil fuel energy sources. One of the most potent types of renewable energy that has developed quickly in recent years is photovoltaic energy. We all know that solar energy, which is sustainable and non-depleting, is the best knowledge form of energy that we have at our disposal. Due to changing weather conditions, the primary drawback of conventional solar PV cells is their inability to track their maximum power point. In this study, we apply artificial neural networks (ANN) to automatically track and measure the maximum power point (MPP) of solar panels. In MATLAB, the complete system is simulated, and the results are adjusted for the external environment. The results are better performance than traditional MPPT methods and the results demonstrate the advantages of using neural networks in solar PV systems.Keywords: modeling, photovoltaic panel, artificial neural networks, maximum power point tracking
Procedia PDF Downloads 889292 Model Organic Ranikin Cycle Power Plant for Waste Heat Recovery in Olkaria-I Geothermal Power Plant
Authors: Haile Araya Nigusse, Hiram M. Ndiritu, Robert Kiplimo
Abstract:
Energy consumption is an indispensable component for the continued development of the human population. The global energy demand increases with development and population rise. The increase in energy demand, high cost of fossil fuels and the link between energy utilization and environmental impacts have resulted in the need for a sustainable approach to the utilization of the low grade energy resources. The Organic Rankine Cycle (ORC) power plant is an advantageous technology that can be applied in generation of power from low temperature brine of geothermal reservoirs. The power plant utilizes a low boiling organic working fluid such as a refrigerant or a hydrocarbon. Researches indicated that the performance of ORC power plant is highly dependent upon factors such as proper organic working fluid selection, types of heat exchangers (condenser and evaporator) and turbine used. Despite a high pressure drop, shell-tube heat exchangers have satisfactory performance for ORC power plants. This study involved the design, fabrication and performance assessment of the components of a model Organic Rankine Cycle power plant to utilize the low grade geothermal brine. Two shell and tube heat exchangers (evaporator and condenser) and a single stage impulse turbine have been designed, fabricated and the performance assessment of each component has been conducted. Pentane was used as a working fluid and hot water simulating the geothermal brine. The results of the experiment indicated that the increase in mass flow rate of hot water by 0.08 kg/s caused a rise in overall heat transfer coefficient of the evaporator by 17.33% and the heat transferred was increased by 6.74%. In the condenser, the increase of cooling water flow rate from 0.15 kg/s to 0.35 kg/s increased the overall heat transfer coefficient by 1.21% and heat transferred was increased by 4.26%. The shaft speed varied from 1585 to 4590 rpm as inlet pressure was varied from 0.5 to 5.0 bar and power generated was varying from 4.34 to 14.46W. The results of the experiments indicated that the performance of each component of the model Organic Rankine Cycle power plant operating at low temperature heat resources was satisfactory.Keywords: brine, heat exchanger, ORC, turbine
Procedia PDF Downloads 6499291 Energy Transition in the Netherlands - the Best Way to Motivate Citizens
Authors: Nayden Takev, Remy van Leeuwen, Shiva Chotoe, Hani Alers, Xiao Peng
Abstract:
Citizens, businesses, and public authorities all around the world are becoming aware of the impact that they have on the environment. Currently, climate change is an apparent cause to urge everyone to act and move to sustainable energy solutions. After the Paris Climate Agreement, every country has thought of a way to cut down carbon emissions. The Netherlands formulated the National Climate Agreement. “The government’s central goal with the National Climate Agreement is to reduce greenhouse gas emissions in the Netherlands by 49% compared to 1990 levels. At a European level, the government is advocating a 55% reduction of greenhouse gas emissions by 2030.” [5]. From a survey of the CBS, it is apparent that citizens are not putting in as much effort into the transition to sustainable energy as the government would like them to. After analysing the data, it became clear that the citizens miss the motivation to switch to sustainable energy because they do not believe it is urgent at this point and it is too expensive for them [2]. This needs to be changed. The citizens need to be aware of their impact on the climate and the advantages that this process will bring them. For example, the implementation of smart home displays 4 for real time energy measuring will give the citizens an overview of their energy usage so they are aware of the impact they have. Researchers have also found that the citizens must be included in the decision-making aimed at changing their behaviour [4, 3, 1]. In the future, the government will need to include the citizens when they create campaigns, strategies or introduce new policies [7, 6]. By including and informing the citizens about the policies it will be more attractive for them to choose sustainable energy. However, is all of this enough to motivate the citizens towards energy transition? Or are there other and better ways to do it?Keywords: Awereness, Energy Transition, Netherlands, citizens
Procedia PDF Downloads 779290 Strategies for Arctic Greenhouse Farming: An Energy and Technology Survey of Greenhouse Farming in the North of Sweden
Authors: William Sigvardsson, Christoffer Alenius, Jenny Lindblom, Andreas Johansson, Marcus Sandberg
Abstract:
This article covers a study focusing on a subarctic greenhouse located in Nikkala, Sweden. Through a visit and the creation of a CFD model, the study investigates the differences in energy demand with high pressure sodium (HPS) lights and light emitting diode (LED) lights in combination with an air-carried and water-carried heating system accordingly. Through an IDA ICE model, the impact of insulating the parts of the greenhouse without active cultivation was also investigated. This, with the purpose of comparing the current system in the greenhouse to state-of-the-art alternatives and evaluating if an investment in either a water-carried heating system in combination with LED lights and insulating the non-cultivating parts of the greenhouse could be considered profitable. Operating a greenhouse in the harsh subarctic climate found in the northern parts of Sweden is not an easy task and especially if the operation is year-round. With an average temperature of under -5 °C from November through January, efficient growing techniques are a must to ensure a profitable business. Today the most crucial parts of a greenhouse are the heating system, lighting system, dehumidifying measures, as well as thermal screen, and the impact of a poorly designed system in a sub-arctic could be devastating as the margins are slim. The greenhouse studied uses a pellet burner to power their air- carried heating system which is used. The simulations found the resulting savings amounted to just under 14 800 SEK monthly or 18 % of the total cost of energy by implementing the water-carrying heating system in combination with the LED lamps. Given this, a payback period of 3-9 years could be expected given different scenarios, including specific time periods, financial aids, and the resale price of the current system. The insulation of the non-cultivating parts of the greenhouse was found to have possible savings of 25 300 SEK annually or 46 % of the current heat demand resulting in a payback period of just over 1-2 years. Given the possible energy savings, a reduction in emitted CO2 equivalents of almost 1,9 tonnes could be achieved annually. It was concluded that relatively inexpensive investments in modern greenhouse equipment could make a significant contribution to reducing the energy consumption of the greenhouse resulting in a more competitive business environment for sub-arctic greenhouse owners. New parts of the greenhouse should be built with the water-carried heating system in combination with state-of-the-art LED lights, and all parts which are not housing active cultivation should be insulated. If the greenhouse in Nikkala is eligible for financial aid or finds a resale value in the current system, an investment should be made in a new water-carried heating system in combination with LED lights.Keywords: energy efficiency, sub-arctic greenhouses, energy measures, greenhouse climate control, greenhouse technology, CFD
Procedia PDF Downloads 759289 Environmental Justice and Marginalized Communities: Addressing Barriers to Energy Justice in the Negev
Authors: Mohammad Naser Aldeen
Abstract:
This study explores environmental justice issues among Bedouin communities in Israel’s Negev region, focusing on energy access and their exclusion from state-supported energy services. As a historically marginalized and indigenous population, Bedouins face intersecting inequities, including limited access to national grid energy, waste management, access to water, systematic discrimination, and environmental harms such as industrial pollution and land degradation. Employing Pellow’s Critical Environmental Justice framework, this research examines how power relations and intersecting identities – ethnicity, class, and indigeneity – shape energy exclusion. Utilizing K. Arrow’s Barriers Analysis framework, it identifies the multifaceted barriers obstructing equitable energy access, including structural policy deficiencies, socio-economic constraints, and administrative neglect. The study also highlights Bedouins’ resilience, advocacy, and community-led strategies to address these challenges through the adoption of solar energy. A mixed-methods approach integrates quantitative data with qualitative narratives from community leaders, policymakers, and activists, revealing the multidimensional nature of energy inequities in the Negev. Findings emphasize the urgent need for inclusive energy policies that address intersectional barriers and prioritize environmental justice in planning and management. By advancing discourse on energy equity, this research underscores the importance of integrating marginalized communities into sustainable energy systems, contributing to the development of equitable energy policies and fostering pathways toward environmental justice and sustainable development.Keywords: environmental justice, energy justice, intersectionality, Bedouin communities, barriers analysis
Procedia PDF Downloads 09288 Power Management in Wireless Combustible Gas Sensors
Authors: Denis Spirjakin, Alexander Baranov, Saba Akbari, Natalia Kalenova, Vladimir Sleptsov
Abstract:
In this paper we propose the approach to power management in wireless combustible gas sensors. This approach makes possible drastically prolong sensor nodes autonomous lifetime. That is necessary to tie battery replacement to every year technical service procedures which are claimed by safety standards. Using this approach the current consumption of the wireless combustible gas sensor node was decreased from 80 mA to less than 2 mA and the power consumption from more than 220 mW to 4.6 mW. These values provide autonomous lifetime of the node more than one year.Keywords: Gas sensors, power management, wireless sensor network
Procedia PDF Downloads 724