Search results for: Fourier neural operator
1627 Cd2+ Ions Removal from Aqueous Solutions Using Alginite
Authors: Vladimír Frišták, Martin Pipíška, Juraj Lesný
Abstract:
Alginate has been evaluated as an efficient pollution control material. In this paper, alginate from maar Pinciná (SR) for removal of Cd2+ ions from aqueous solution was studied. The potential sorbent was characterized by X-Ray Fluorescence Analysis (RFA) analysis, Fourier Transform Infrared Spectral Analysis (FT-IR) and Specific Surface Area (SSA) was also determined. The sorption process was optimized from the point of initial cadmium concentration effect and effect of pH value. The Freundlich and Langmuir models were used to interpret the sorption behaviour of Cd2+ ions, and the results showed that experimental data were well fitted by the Langmuir equation. Alginate maximal sorption capacity (QMAX) for Cd2+ ions calculated from Langmuir isotherm was 34 mg/g. Sorption process was significantly affected by initial pH value in the range from 4.0-7.0. Alginate is a comparable sorbent with other materials for toxic metals removal.Keywords: alginates, Cd2+, sorption, QMAX
Procedia PDF Downloads 3581626 Functionalization of Single-Walled Nanotubes by Synthesied Pigments
Authors: Shahab Zomorodbakhsh, Hayron Nesa Motevasel
Abstract:
Water soluble compoundes were attached to single-walled carbon nanotubes (SWNTs) to form water-soluble nano pigments. functionalized SWNTs were then characterized by Fourier Transform Infrared spectroscopy (FT-IR), Raman spectroscopy, UV analysis, Transmission electron microscopy (TEM)and defunctionalization test and Representative results concerning the solubility. The product can be dissolved in water and High-resolution transmission electron microscope images showed that the SWNTs were efficiently functionalized, thus the p-stacking interaction between aromatic rings and COOH of SWNTs was considered responsible for the high solubility and High transmission electron in singlewall nanotubes.Keywords: functionalized CNTs, singlewalled carbon nanotubes, water soluble compoundes, nano pigments
Procedia PDF Downloads 3201625 Reduction of Physician's Radiation Dose during Cardiac Catheterization Procedures Using Lead-Free Sterile Radiation Shields
Authors: Mohammad O. Diab, Sahera A. Saleh, Mustapha M. Dichari, Nijez Aloulou, Omar Hamoui, Feras Chehade
Abstract:
This study sought to evaluate the efficiency of lead-free sterile radiation shield (Radionex) in the reduction of physician's exposure dose during interventional cardiology procedures. Cardiac catheterization procedures are often associated with high radiation doses and high levels of secondary radiation emitted by the patient's body. This study compares physician exposure dose rate during cardiac catheterization procedures done through the femoral artery with sterile radiation shielding to same procedures made without the shielding. The mean operator radiation dose rate without using the shield was found to be 18.4µSv/min compared to a mean dose rate of 5.1 µSv/min when using the shield, rendering a reduction of 72.5% of radiation received by the physician. Sterile radiation shielding is consequently an effective addition to a cardiac catheterization lab radiation protection system.Keywords: cardiac catheterization, physician exposure dose, sterile radiation shielding, lead-free sterile radiation shields
Procedia PDF Downloads 5131624 Machine Learning Techniques in Seismic Risk Assessment of Structures
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine
Procedia PDF Downloads 1061623 A Geospatial Consumer Marketing Campaign Optimization Strategy: Case of Fuzzy Approach in Nigeria Mobile Market
Authors: Adeolu O. Dairo
Abstract:
Getting the consumer marketing strategy right is a crucial and complex task for firms with a large customer base such as mobile operators in a competitive mobile market. While empirical studies have made efforts to identify key constructs, no geospatial model has been developed to comprehensively assess the viability and interdependency of ground realities regarding the customer, competition, channel and the network quality of mobile operators. With this research, a geo-analytic framework is proposed for strategy formulation and allocation for mobile operators. Firstly, a fuzzy analytic network using a self-organizing feature map clustering technique based on inputs from managers and literature, which depicts the interrelationships amongst ground realities is developed. The model is tested with a mobile operator in the Nigeria mobile market. As a result, a customer-centric geospatial and visualization solution is developed. This provides a consolidated and integrated insight that serves as a transparent, logical and practical guide for strategic, tactical and operational decision making.Keywords: geospatial, geo-analytics, self-organizing map, customer-centric
Procedia PDF Downloads 1831622 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 931621 Implementation of Multi-Carrier Pulse Width Modulation Techniques in Multilevel Inverter
Authors: M. Suresh Kumar, K. Ramani
Abstract:
This paper proposed the Multi-Carrier Pulse Width Modulation for the minimization of Total Harmonic Distortion in Cascaded H-Bridge Multi-Level Inverter. Multicarrier Pulse Width Modulation method uses Alternate Position of Disposition scheme to determine the appropriate switching angle to Multi-Level Inverter. In this paper simulation results shows that the validation of Multi-Carrier Pulse Width Modulation method does capably eliminate a great number of precise harmonics and minimize the Total Harmonic Distortion value in output voltage waveform.Keywords: alternate position, fast fourier analysis, multi-carrier pulse width modulation, multi-level inverter, total harmonic distortion
Procedia PDF Downloads 6471620 Catalytic Deoxygenation of Propionic Acid in the Vapour Phase
Authors: Hossein Bayahia, Mohammed Saad Motlaq Al-Gahmdi
Abstract:
The gas-phase deoxygenation of propionic acid was investigated in the presence of Co-Mo catalysts in N2 or H2 flow at 200-400 °C. In the presence of N2 the main product was 3-pentanone with other deoxygenates and some light gases: ethane and ethene. Using H2 flow, the catalyst was active for decarboxylation and decarbonylation of acid and the yields of ethane and ethene. The decarboxylation and decarbonylation reactions increased with increasing temperature. Cobalt-molybdenum supported on alumina showed better performance than bulk catalyst, especially at 400 °C in the presence of N2 for the ketonisation of propionic acid to form 3-pentanone as the main product. Bulk and supported catalysts were characterized by surface area porosity (BET), thermogravimetric analysis (TGA) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) of pyridine adsorption.Keywords: deoxygenation, propionic acid, gas-phase, catalyst
Procedia PDF Downloads 2871619 Synthesis and Characterization of Amino-Functionalized Polystyrene Nanoparticles as Reactive Filler
Authors: Yaseen Elhebshi, Abdulkareem Hamid, Nureddin Bin Issa, Xiaonong Chen
Abstract:
A convenient method of preparing ultrafine polystyrene latex nano-particles with amino groups on the surface is developed. Polystyrene latexes in the size range 50–400 nm were prepared via emulsion polymerization, using sodium dodecyl sulfate (SDS) as surfactant. Polystyrene with amino groups on the surface will be fine to use as organic filler to modify rubber. Transmission electron microscopy (TEM) was used to observe the morphology of silicon dioxide and functionalized polystyrene nano-particles. The nature of bonding between the polymer and the reactive groups on the filler surfaces was analyzed using Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) was employed to examine the filler surface.Keywords: reactive filler, emulsion polymerization, particle size, polystyrene nanoparticles
Procedia PDF Downloads 3501618 Biosynthesis of Silver-Phosphate Nanoparticles Using the Extracellular Polymeric Substance of Sporosarcina pasteurii
Authors: Mohammadhosein Rahimi, Mohammad Raouf Hosseini, Mehran Bakhshi, Alireza Baghbanan
Abstract:
Silver ions (Ag+) and their compounds are consequentially toxic to microorganisms, showing biocidal effects on many species of bacteria. Silver-phosphate (or silver orthophosphate) is one of these compounds, which is famous for its antimicrobial effect and catalysis application. In the present study, a green method was presented to synthesis silver-phosphate nanoparticles using Sporosarcina pasteurii. The composition of the biosynthesized nanoparticles was identified as Ag3PO4 using X-ray Diffraction (XRD) and Energy Dispersive Spectroscopy (EDS). Also, Fourier Transform Infrared (FTIR) spectroscopy showed that Ag3PO4 nanoparticles was synthesized in the presence of biosurfactants, enzymes, and proteins. In addition, UV-Vis adsorption of the produced colloidal suspension approved the results of XRD and FTIR analyses. Finally, Transmission Electron Microscope (TEM) images indicated that the size of the nanoparticles was about 20 nm.Keywords: bacteria, biosynthesis, silver-phosphate, Sporosarcina pasteurii, nanoparticle
Procedia PDF Downloads 4511617 Synthesis of Mg/B Containing Compound in a Modified Microwave Oven
Authors: Gülşah Çelik Gül, Figen Kurtuluş
Abstract:
Magnesium containing boron compounds with hexagonal structure have been drawn much attention due to their superconductive nature. The main target of this work is new modified microwave oven by on our own has an ability about passing through a gas in the oven medium for attainment of oxygen-free compounds such as c-BN. Mg containing boride was synthesized by modified-microwave method under nitrogen atmosphere using amorphous boron and magnesium source in appropriate molar ratio. Microwave oven with oxygen free environment has been modified to aimed to obtain magnesium boride without oxygen. Characterizations were done by powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Mg containing boride, generally named magnesium boride, with amorphous character without oxygen is obtained via designed microwave oven system.Keywords: magnesium containing boron compounds, modified microwave synthesis, powder X-ray diffraction, FTIR
Procedia PDF Downloads 3741616 Simulation of 1D Dielectric Barrier Discharge in Argon Mixtures
Authors: Lucas Wilman Crispim, Patrícia Hallack, Maikel Ballester
Abstract:
This work aims at modeling electric discharges in gas mixtures. The mathematical model mimics the ignition process in a commercial spark-plug when a high voltage is applied to the plug terminals. A longitudinal unidimensional Cartesian domain is chosen for the simulation region. Energy and mass transfer are considered for a macroscopic fluid representation, while energy transfer in molecular collisions and chemical reactions are contemplated at microscopic level. The macroscopic model is represented by a set of uncoupled partial differential equations. Microscopic effects are studied within a discrete model for electronic and molecular collisions in the frame of ZDPlasKin, a plasma modeling numerical tool. The BOLSIG+ solver is employed in solving the electronic Boltzmann equation. An operator splitting technique is used to separate microscopic and macroscopic models. The simulation gas is a mixture of atomic Argon neutral, excited and ionized. Spatial and temporal evolution of such species and temperature are presented and discussed.Keywords: CFD, electronic discharge, ignition, spark plug
Procedia PDF Downloads 1621615 Comparative Study on Daily Discharge Estimation of Soolegan River
Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu
Abstract:
Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming
Procedia PDF Downloads 5611614 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis
Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin
Abstract:
Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis
Procedia PDF Downloads 2031613 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach
Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar
Abstract:
Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI
Procedia PDF Downloads 1531612 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis
Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan
Abstract:
Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis
Procedia PDF Downloads 881611 Highly Transparent, Hydrophobic and Self-Cleaning ZnO-Durazane Based Hybrid Organic-Inorganic Coatings
Authors: Abderrahmane Hamdi, Julie Chalon, Benoit Dodin, Philippe Champagne
Abstract:
In this report, we present a simple route to realize robust, hydrophobic, and highly transparent coatings using organic polysilazane (durazane) and zinc oxide nanoparticles (ZnO). These coatings were deposited by spraying the mixture solution on glass slides. Thus, the properties of the films were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), UV–vis-NIR spectrophotometer, and water contact angle method. This sprayable polymer mixed with ZnO nanoparticles shows high transparency for visible light > 90%, a hydrophobic character (CA > 90°), and good mechanical and chemical stability. The coating also demonstrates excellent self-cleaning properties, which makes it a promising candidate for commercial use.Keywords: coatings, durability, hydrophobicity, organic polysilazane, self-cleaning, transparence, zinc oxide nanoparticles
Procedia PDF Downloads 1701610 Structural Changes Induced in Graphene Oxide Film by Low Energy Ion Beam Irradiation
Authors: Chetna Tyagi, Ambuj Tripathi, Devesh Avasthi
Abstract:
Graphene oxide consists of sp³ hybridization along with sp² hybridization due to the presence of different oxygen-containing functional groups on its edges and basal planes. However, its sp³ / sp² hybridization can be tuned by various methods to utilize it in different applications, like transistors, solar cells and biosensors. Ion beam irradiation can also be one of the methods to optimize sp² and sp³ hybridization ratio for its desirable properties. In this work, graphene oxide films were irradiated with 100 keV Argon ions at different fluences varying from 10¹³ to 10¹⁶ ions/cm². Synchrotron X-ray diffraction measurements showed an increase in crystallinity at the low fluence of 10¹³ ions/cm². Raman spectroscopy performed on irradiated samples determined the defects induced by the ion beam qualitatively. Also, identification of different groups and their removal with different fluences was done using Fourier infrared spectroscopy technique.Keywords: graphene oxide, ion beam irradiation, spectroscopy, X-ray diffraction
Procedia PDF Downloads 1361609 Neural Network Based Control Algorithm for Inhabitable Spaces Applying Emotional Domotics
Authors: Sergio A. Navarro Tuch, Martin Rogelio Bustamante Bello, Leopoldo Julian Lechuga Lopez
Abstract:
In recent years, Mexico’s population has seen a rise of different physiological and mental negative states. Two main consequences of this problematic are deficient work performance and high levels of stress generating and important impact on a person’s physical, mental and emotional health. Several approaches, such as the use of audiovisual stimulus to induce emotions and modify a person’s emotional state, can be applied in an effort to decreases these negative effects. With the use of different non-invasive physiological sensors such as EEG, luminosity and face recognition we gather information of the subject’s current emotional state. In a controlled environment, a subject is shown a series of selected images from the International Affective Picture System (IAPS) in order to induce a specific set of emotions and obtain information from the sensors. The raw data obtained is statistically analyzed in order to filter only the specific groups of information that relate to a subject’s emotions and current values of the physical variables in the controlled environment such as, luminosity, RGB light color, temperature, oxygen level and noise. Finally, a neural network based control algorithm is given the data obtained in order to feedback the system and automate the modification of the environment variables and audiovisual content shown in an effort that these changes can positively alter the subject’s emotional state. During the research, it was found that the light color was directly related to the type of impact generated by the audiovisual content on the subject’s emotional state. Red illumination increased the impact of violent images and green illumination along with relaxing images decreased the subject’s levels of anxiety. Specific differences between men and women were found as to which type of images generated a greater impact in either gender. The population sample was mainly constituted by college students whose data analysis showed a decreased sensibility to violence towards humans. Despite the early stage of the control algorithm, the results obtained from the population sample give us a better insight into the possibilities of emotional domotics and the applications that can be created towards the improvement of performance in people’s lives. The objective of this research is to create a positive impact with the application of technology to everyday activities; nonetheless, an ethical problem arises since this can also be applied to control a person’s emotions and shift their decision making.Keywords: data analysis, emotional domotics, performance improvement, neural network
Procedia PDF Downloads 1401608 Forecast Financial Bubbles: Multidimensional Phenomenon
Authors: Zouari Ezzeddine, Ghraieb Ikram
Abstract:
From the results of the academic literature which evokes the limitations of previous studies, this article shows the reasons for multidimensionality Prediction of financial bubbles. A new framework for modeling study predicting financial bubbles by linking a set of variable presented on several dimensions dictating its multidimensional character. It takes into account the preferences of financial actors. A multicriteria anticipation of the appearance of bubbles in international financial markets helps to fight against a possible crisis.Keywords: classical measures, predictions, financial bubbles, multidimensional, artificial neural networks
Procedia PDF Downloads 5781607 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network
Authors: Hozaifa Zaki, Ghada Soliman
Abstract:
In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.Keywords: computer vision, deep learning, image processing, character recognition
Procedia PDF Downloads 821606 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs
Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu
Abstract:
This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network
Procedia PDF Downloads 631605 Piezoelectric and Dielectric Properties of Poly(Vinylideneflouride-Hexafluoropropylene)/ZnO Nanocomposites
Authors: P. Hemalatha, Deepalekshmi Ponnamma, Mariam Al Ali Al-Maadeed
Abstract:
The Poly(vinylideneflouride-hexafluoropropylene) (PVDF-HFP)/ zinc oxide (ZnO) nanocomposites films were successfully prepared by mixing the fine ZnO particles into PVDF-HFP solution followed by film casting and sandwich techniques. Zinc oxide nanoparticles were synthesized by hydrothermal method. Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structure and properties of the obtained nanocomposites. The dielectric properties of the PVDF-HFP/ZnO nanocomposites were analyzed in detail. In comparison with pure PVDF-HFP, the dielectric constant of the nanocomposite (1wt% ZnO) was significantly improved. The piezoelectric co-efficients of the nanocomposites films were measured. Experimental results revealed the influence of filler on the properties of PVDF-HFP and enhancement in the output performance and dielectric properties reflects the ability for energy storage capabilities.Keywords: dielectric constant, hydrothermal, nanoflowers, organic compounds
Procedia PDF Downloads 2861604 Effect of Vegetable Oil Based Nanofluids on Machining Performance: An Experimental Investigation
Authors: Krishna Mohana Rao Gurram, R. Padmini, P. Vamsi Krishna
Abstract:
As a part of extensive research for ecologically safe and operator friendly cutting fluids, this paper presents the experimental investigations on the performance of eco-friendly vegetable oil based nanofluids in turning operation. In order to assess the quality of nano cutting fluids used during machining, cutting temperatures, cutting forces and surface roughness under constant cutting conditions are measured. The influence of two types of nanofluids prepared from nano boric acid and CNT particles mixed separately with coconut oil, on machining performance during turning operation is examined. Comparative analysis of the results obtained is done under dry and lubricant environments. Results obtained using cutting fluids prepared from vegetable oil based nanofluids are encouraging and more pronouncing by the application of CCCNT at machining zone. The extent of improvement in reduction of cutting temperatures, main cutting force, tool wear and surface roughness is tracked to be 13%, 37.5%, 44% and 40% respectively by the application of CCCNT compared to dry machining.Keywords: nanoparticles, vegetable oil, machining, MQL, surface roughness
Procedia PDF Downloads 3591603 Multifunctional Coating of Nylon Using Nano-Si, Nano-Ti and SiO2-TiO2 Nancomposite :Properties of Colorimetric and Flammability
Authors: E. Fereydouni, Laleh Maleknia , M. E. Olya
Abstract:
The present research, nylon fabric dyed by pressure method with nano-Si, nano-Ti particles and SiO2-TiO2 nancomposite. The influence of the amount of Si, Ti and SiO2-TiO2 on the performance of nylon fabric was investigated by the use of Fourier transform infrared spectrophotometer (FTIR), horizontal flammability apparatus (HFA), scanning electron microscope (SEM), electron dispersive X-ray spectroscope (EDX), water contact angle tester (WCA) and CIE LAB colorimetric system. The possible interactions between particles and nylon fiber were elucidated by the FTIR spectroscopy. Results indicated that the stabilized nanoparticles and nanocomposite enhances flame retardancy of nylon fabrics. Also, the prominet features of nanoparticles and nanocomposite treatment can note increase of adsorption and fixation of dye.Keywords: nano-Si, nano- Ti, SiO2-TiO2 nancomposite, nylon fabric, flame retardant nylon
Procedia PDF Downloads 3611602 Improvement in Ni (II) Adsorption Capacity by Using Fe-Nano Zeolite
Authors: Pham-Thi Huong, Byeong-Kyu Lee, Jitae Kim, Chi-Hyeon Lee
Abstract:
Fe-nano zeolite adsorbent was used for removal of Ni (II) ions from aqueous solution. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and the surface area Brunauer–Emmett–Teller (BET) using for analysis of functional groups, morphology and surface area. Bath adsorption experiments were analyzed on the effect of pH, time, adsorbent doses and initial Ni (II) concentration. The optimum pH for Ni (II) removal using Fe-nano zeolite was found at 5.0 and 90 min of reaction time. The maximum adsorption capacity of Ni (II) was 231.68 mg/g based on the Langmuir isotherm. The kinetics data for the adsorption process was fitted with the pseudo-second-order model. The desorption of Ni (II) from Ni-loaded Fe-nano zeolite was analyzed and even after 10 cycles 72 % desorption was achieved. These finding supported that Fe-nano zeolite with high adsorption capacity, high reuse ability would be utilized for Ni (II) removal from water.Keywords: Fe-nano zeolite, adsorption, Ni (II) removal, regeneration
Procedia PDF Downloads 2321601 Neural Correlates of Diminished Humor Comprehension in Schizophrenia: A Functional Magnetic Resonance Imaging Study
Authors: Przemysław Adamczyk, Mirosław Wyczesany, Aleksandra Domagalik, Artur Daren, Kamil Cepuch, Piotr Błądziński, Tadeusz Marek, Andrzej Cechnicki
Abstract:
The present study aimed at evaluation of neural correlates of humor comprehension impairments observed in schizophrenia. To investigate the nature of this deficit in schizophrenia and to localize cortical areas involved in humor processing we used functional magnetic resonance imaging (fMRI). The study included chronic schizophrenia outpatients (SCH; n=20), and sex, age and education level matched healthy controls (n=20). The task consisted of 60 stories (setup) of which 20 had funny, 20 nonsensical and 20 neutral (not funny) punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible (yes/no) and how funny it was (1-9 Likert-type scale). fMRI was performed on a 3T scanner (Magnetom Skyra, Siemens) using 32-channel head coil. Three contrasts in accordance with the three stages of humor processing were analyzed in both groups: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution; funny vs neutral - elaboration. Additionally, parametric modulation analysis was performed using both subjective ratings separately in order to further differentiate the areas involved in incongruity resolution processing. Statistical analysis for behavioral data used U Mann-Whitney test and Bonferroni’s correction, fMRI data analysis utilized whole-brain voxel-wise t-tests with 10-voxel extent threshold and with Family Wise Error (FWE) correction at alpha = 0.05, or uncorrected at alpha = 0.001. Between group comparisons revealed that the SCH subjects had attenuated activation in: the right superior temporal gyrus in case of irresolvable incongruity processing of nonsensical puns (nonsensical > neutral); the left medial frontal gyrus in case of incongruity resolution processing of funny puns (funny > nonsensical) and the interhemispheric ACC in case of elaboration of funny puns (funny > neutral). Additionally, the SCH group revealed weaker activation during funniness ratings in the left ventro-medial prefrontal cortex, the medial frontal gyrus, the angular and the supramarginal gyrus, and the right temporal pole. In comprehension ratings the SCH group showed suppressed activity in the left superior and medial frontal gyri. Interestingly, these differences were accompanied by protraction of time in both types of rating responses in the SCH group, a lower level of comprehension for funny punchlines and a higher funniness for absurd punchlines. Presented results indicate that, in comparison to healthy controls, schizophrenia is characterized by difficulties in humor processing revealed by longer reaction times, impairments of understanding jokes and finding nonsensical punchlines more funny. This is accompanied by attenuated brain activations, especially in the left fronto-parietal and the right temporal cortices. Disturbances of the humor processing seem to be impaired at the all three stages of the humor comprehension process, from incongruity detection, through its resolution to elaboration. The neural correlates revealed diminished neural activity of the schizophrenia brain, as compared with the control group. The study was supported by the National Science Centre, Poland (grant no 2014/13/B/HS6/03091).Keywords: communication skills, functional magnetic resonance imaging, humor, schizophrenia
Procedia PDF Downloads 2131600 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals
Authors: Linghui Meng, James Atlas, Deborah Munro
Abstract:
There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers
Procedia PDF Downloads 311599 Synthesizing and Fabrication of Pani-(SnO₂, ZnO)/rGO by Sol-Gel Method to Develop a Biosensor Thin-Films on Top Glass Substrate
Authors: Mohammad Arifin, Huda Abdullah, Norshafadzila Mohammad Naim
Abstract:
The fabricated PANI-(SnO₂, ZnO)/rGO nanocomposite thin films for the E. coli bacteria sensor were investigated. The nanocomposite thin films were prepared by the sol-gel method and deposited on the glass substrate using the spin-coating technique. The internal structure and surface morphology of the thin films have been analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). The optical properties of the films were investigated by UV-Vis spectroscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The sensitivity performance was identified by measuring the changing conductivity before and after the incubation of E. coli bacteria using current-voltage (I-V) and cyclic voltammetry (C-V) measurements.Keywords: PANI-(SnO₂, ZnO)/rGO, nanocomposite, bacteria sensor, thin films
Procedia PDF Downloads 1181598 Photo-Degradation of a Pharmaceutical Product in the Presence of a Catalyst Supported on a Silicoaluminophosphate Solid
Authors: I. Ben Kaddour, S. Larbaoui
Abstract:
Since their first synthesis in 1984, silicoaluminophosphates have proven their effectiveness as a good adsorbent and catalyst in several environmental and energy applications. In this work, the photocatalytic reaction of the photo-degradation of a pharmaceutical product in water was carried out in the presence of a series of materials based on titanium oxide, anatase phase, supported on the microporous framework of the SAPO4-5 at different levels, under ultraviolet light. These photo-catalysts were characterized by different physicochemical analysis methods in order to determine their structural, textural, and morphological properties, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), microscopy scanning electronics (SEM), nitrogen adsorption measurements, UV-visible diffuse reflectance spectroscopy (UV-Vis-DRS). In this study, liquid chromatography coupled with spectroscopy of mass (LC-MS) was used to determine the nature of the intermediate products formed during the photocatalytic degradation of DCF.Keywords: photocatalysis, titanium dioxide, SAPO-5, diclofenac
Procedia PDF Downloads 68