Search results for: least square support vector machine
10101 Insecticide Resistance Detection on Dengue Vector, Aedes albopictus Obtained from Kapit, Kuching and Sibu Districts in Sarawak State, Malaysia
Authors: Koon Weng Lau, Chee Dhang Chen, Abdul Aziz Azidah, Mohd Sofian-Azirun
Abstract:
Recently, Sarawak state of Malaysia encounter an outbreak of dengue fever. Aedes albopictus has incriminated as one of the important vectors of dengue transmission. Without an effective vaccine, approaches to control or prevent dengue will be a focus on the vectors. The control of Aedes mosquitoes is still dependent on the use of chemical insecticides and insecticide resistance represents a threat to the effectiveness of vector control. This study was conducted to determine the resistance status of 11 active ingredients representing four major insecticide classes: DDT, dieldrin, malathion, fenitrothion, bendiocarb, propoxur, etofenprox, deltamethrin, lambda-cyhalothrin, cyfluthrin, and permethrin. Standard WHO test procedures were conducted to determine the insecticide susceptibility. Aedes albopictus collected from Kapit (resistance ratio, RR = 1.04–3.02), Kuching (RR = 1.17–4.61), and Sibu (RR = 1.06–3.59) exhibited low resistance toward all insecticides except dieldrin. This study reveled that dieldrin is still effective against Ae. albopictus, followed by fenitrothion, cyfluthrin, and deltamethrin. In conclusion, Ae. albopictus in Sarawak exhibited different resistance levels toward various insecticides and alternative solutions should be implemented to prevent further deterioration of the condition.Keywords: Aedes albopictus, dengue, insecticide resistance, Malaysia
Procedia PDF Downloads 35410100 Enhancing Precision Agriculture through Object Detection Algorithms: A Study of YOLOv5 and YOLOv8 in Detecting Armillaria spp.
Authors: Christos Chaschatzis, Chrysoula Karaiskou, Pantelis Angelidis, Sotirios K. Goudos, Igor Kotsiuba, Panagiotis Sarigiannidis
Abstract:
Over the past few decades, the rapid growth of the global population has led to the need to increase agricultural production and improve the quality of agricultural goods. There is a growing focus on environmentally eco-friendly solutions, sustainable production, and biologically minimally fertilized products in contemporary society. Precision agriculture has the potential to incorporate a wide range of innovative solutions with the development of machine learning algorithms. YOLOv5 and YOLOv8 are two of the most advanced object detection algorithms capable of accurately recognizing objects in real time. Detecting tree diseases is crucial for improving the food production rate and ensuring sustainability. This research aims to evaluate the efficacy of YOLOv5 and YOLOv8 in detecting the symptoms of Armillaria spp. in sweet cherry trees and determining their health status, with the goal of enhancing the robustness of precision agriculture. Additionally, this study will explore Computer Vision (CV) techniques with machine learning algorithms to improve the detection process’s efficiency.Keywords: Armillaria spp., machine learning, precision agriculture, smart farming, sweet cherries trees, YOLOv5, YOLOv8
Procedia PDF Downloads 11310099 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms
Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen
Abstract:
Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.Keywords: decision support, computed tomography, coronary artery, machine learning
Procedia PDF Downloads 22910098 Use of Geometrical Relationship in the Ancient Vihara Housing Reclining Buddha Remains of Thailand's Kamphaeng Phet World Heritage Site
Authors: Vacharee Svamivastu
Abstract:
This research investigates the application of geometrical relationship to the ancient religious assembly hall (Vihara) housing a reclining Buddha statue of Thailand's Kamphaeng Phet Historical Park. The study utilizes the archaeological and wooden roof structure remains of the Vihara as the prima facie evidence, supplemented with evidence from other active archaeological sites with architectural kinship as well as Buddhist ideology. At present, the wooden roofs of the Vihara fell prey to the elements and there remain only the base, columns and enclosing walls. Unlike typical Viharas whose floor plan are of rectangular shape, the floor plan of the Vihara housing the reclining Buddha is of square configuration of 25x25m. Further observation has revealed the utilization of large laterite boulders as the principal construction material of the assembly hall (Vihara) columns. The laterite columns are of square shape (1x1m) and various heights (H), ranging from 3.50m to 5.50m. The erection of the Vihara required a total of 36 laterite columns. The pattern of columns arrangement is of two rows of inner columns, two rows of outer columns and two rows of verandah columns. The space between pairs of the verandah columns was stacked with laterite blocks of varying sizes to form the Vihara walls with small openings for ventilation. Upon applying the geometrical relationship-grid system to the Vihara, the results reveal that the placement of the columns was deliberately and masterfully undertaken such that the center of the square-shaped Vihara is conspicuously spacious so as to accommodate the sacred reclining Buddha statue. The elegance of the Vihara demonstrates the ingenious application of geometrical relationship to transforming a space into a structure (i.e. Vihara) of architectural and religious significance.Keywords: geometrical relationship, the religious assembly hall, Vihara, Kamphaeng Phet School of Master Builder
Procedia PDF Downloads 27510097 The Needs of People with a Diagnosis of Dementia and Their Carers and Families
Authors: James Boag
Abstract:
The needs of people with a diagnosis of dementia and their carers and families are physical, psychosocial, and psychological and begin at the time of diagnosis. There is frequently a lack of emotional support and counselling. Care- giving support is required from the presentation of the first symptoms of dementia until death. Alzheimer's disease begins decades before the clinical symptoms begin to appear, and in many cases, it remains undiagnosed, or diagnosed too late for any possible interventions to have any effect. However, if an incorrect diagnosis is given, it may result in a person being treated, without effect, for a type of dementia they do not have and delaying the interventions they should have received. Being diagnosed with dementia can cause emotional distress to the person, and physical and emotional support is needed, which will become more important as the disease progresses. The severity of the patient's dementia and their symptoms has a bearing of the impact on the carer and the support needed. A lack of insight and /or a denial of the diagnosis, grief, reacting to anticipated future losses, and coping methods to maximise the disease outcome, are things that should be addressed. Because of the stigma, it is important for carers not to lose contact with family and others because social isolation leads to depression and burnout. The impact on a carer's well- being and quality of life can be influenced by the severity of the illness, its type of dementia, its symptoms, healthcare support, financial and social status, career, age, health, residential setting, and relationship to the patient. Carer burnout due to lack of support leads to people diagnosed with dementia being put into residential care prematurely. Often dementia is not recognised as a terminal illness, limiting the ability of the person diagnosed with dementia and their carers to work on advance care planning and getting access to palliative and other support. Many carers have been satisfied with the physical support they were given in their everyday life, however, it was agreed that there was an immense unmet need for psychosocial support, especially after diagnosis and approaching end of life. Providing continuity and coordination of care is important. Training is necessary for providers to understand that every case is different, and they should understand the complexities. Grief, the emotional response to loss, is suffered during the progression of the disease and long afterwards, and carers should continue to be supported after the death of the person they were caring for.Keywords: dementia, caring, challenges, needs
Procedia PDF Downloads 9810096 Estimation of Population Mean Using Characteristics of Poisson Distribution: An Application to Earthquake Data
Authors: Prayas Sharma
Abstract:
This paper proposed a generalized class of estimators, an exponential class of estimators based on the adaption of Sharma and Singh (2015) and Solanki and Singh (2013), and a simple difference estimator for estimating unknown population mean in the case of Poisson distributed population in simple random sampling without replacement. The expressions for mean square errors of the proposed classes of estimators are derived from the first order of approximation. It is shown that the adapted version of Solanki and Singh (2013), the exponential class of estimator, is always more efficient than the usual estimator, ratio, product, exponential ratio, and exponential product type estimators and equally efficient to simple difference estimator. Moreover, the adapted version of Sharma and Singh's (2015) estimator is always more efficient than all the estimators available in the literature. In addition, theoretical findings are supported by an empirical study to show the superiority of the constructed estimators over others with an application to earthquake data of Turkey.Keywords: auxiliary attribute, point bi-serial, mean square error, simple random sampling, Poisson distribution
Procedia PDF Downloads 15610095 Design and Simulation High Sensitive MEMS Capacitive Pressure Sensor with Small Size for Glaucoma Treatment
Authors: Yadollah Hezarjaribi, Mahdie Yari Esboi
Abstract:
In this paper, a novel MEMS capacitive pressure sensor with small size and high sensitivity is presented. This sensor has the separated clamped square diaphragm and the movable plate. The diaphragm material is polysilicon. The movable and fixed plates and mechanical coupling are gold. The substrate and diaphragm are pyrex glass and polysilicon, respectively. In capacitive sensor the sensitivity is proportional to deflection and capacitance changes with pressure for this reason with this design is improved the capacitance and sensitivity with small size. This sensor is designed for low pressure between 0-60 mmHg that is used for medical application such as treatment of an incurable disease called glaucoma. The size of this sensor is 350×350 µm2 and the thickness of the diaphragm is 2µm with 1μ air gap. This structure is designed by intellisuite software. In this MEMS capacitive pressure sensor the sensor sensitivity, diaphragm mechanical sensitivity for polysilicon diaphragm are 0.0469Pf/mmHg, 0.011 μm/mmHg, respectively. According to the simulating results for low pressure, the structure with polysilicon diaphragm has more change of the displacement and capacitance, this leads to high sensitivity than other diaphragms.Keywords: glaucoma, MEMS capacitive pressure sensor, square clamped diaphragm, polysilicon
Procedia PDF Downloads 31910094 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception
Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu
Abstract:
Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish
Procedia PDF Downloads 14610093 Relationship between Pain, Social Support and Socio-Economic Indicators in Individuals with Spinal Cord Injury
Authors: Zahra Khazaeipour, Ehsan Ahmadipour, Vafa Rahimi-Movaghar, Fereshteh Ahmadipour
Abstract:
Research Objectives: Chronic pain is one of the common problems associated with spinal cord injuries (SCI), which causes many complications. Therefore, this study intended to evaluate the relationship between pain and demographic, injury characteristics, socio-economic and social support in individuals with spinal cord Injury in Iran. Design: Descriptive cross-sectional study. Setting: Brain and Spinal Cord Injury Research Center (BASIR), Tehran University of Medical Sciences, Tehran, Iran, between 2012 and 2013. Participants: The participants were 140 individuals with SCI, 101 (72%) men and 39 (28%) women, with mean age of 29.4 ±7.9 years. Main Outcome Measure: The Persian version of the Brief Pain Inventory (BPI) was used to measure the pain, and the Multidimensional Scale of Perceived Social Support (MSPSS) was used to measure social support. Results: About 50.7% complained about having pain, which 79.3% had bilateral pain. The most common locations of pain were lower limbs and back. The most quality of pain was described as aching (41.4%), and tingling (32.9%). Patients with a medium level of education had the least pain compared to high and low level of education. SCI individuals with good economic situation reported higher frequency of having pain. There was no significant relationship between pain and social support. There was positive correlation between pain and impairment of mood, normal work, relations with other people and lack of sleep (P < 0.001). Conclusion: These findings revealed the importance of socioeconomic factors such as economic situation and educational level in understanding chronic pain in people with SCI and provide further support for the bio-psychosocial model. Hence, multidisciplinary evaluations and treatment strategies are advocated, including biomedical, psychological, and psycho-social interventions.Keywords: pain, social support, socio-economic indicators, spinal cord injury
Procedia PDF Downloads 29610092 Applying Genetic Algorithm in Exchange Rate Models Determination
Authors: Mehdi Rostamzadeh
Abstract:
Genetic Algorithms (GAs) are an adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. In this study, we apply GAs for fundamental and technical models of exchange rate determination in exchange rate market. In this framework, we estimated absolute and relative purchasing power parity, Mundell-Fleming, sticky and flexible prices (monetary models), equilibrium exchange rate and portfolio balance model as fundamental models and Auto Regressive (AR), Moving Average (MA), Auto-Regressive with Moving Average (ARMA) and Mean Reversion (MR) as technical models for Iranian Rial against European Union’s Euro using monthly data from January 1992 to December 2014. Then, we put these models into the genetic algorithm system for measuring their optimal weight for each model. These optimal weights have been measured according to four criteria i.e. R-Squared (R2), mean square error (MSE), mean absolute percentage error (MAPE) and root mean square error (RMSE).Based on obtained Results, it seems that for explaining of Iranian Rial against EU Euro exchange rate behavior, fundamental models are better than technical models.Keywords: exchange rate, genetic algorithm, fundamental models, technical models
Procedia PDF Downloads 27310091 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data
Authors: Ruchika Malhotra, Megha Khanna
Abstract:
The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics
Procedia PDF Downloads 41810090 Optimisation of Metrological Inspection of a Developmental Aeroengine Disc
Authors: Suneel Kumar, Nanda Kumar J. Sreelal Sreedhar, Suchibrata Sen, V. Muralidharan,
Abstract:
Fan technology is very critical and crucial for any aero engine technology. The fan disc forms a critical part of the fan module. It is an airworthiness requirement to have a metrological qualified quality disc. The current study uses a tactile probing and scanning on an articulated measuring machine (AMM), a bridge type coordinate measuring machine (CMM) and Metrology software for intermediate and final dimensional and geometrical verification during the prototype development of the disc manufactured through forging and machining process. The circumferential dovetails manufactured through the milling process are evaluated based on the evaluated and analysed metrological process. To perform metrological optimization a change of philosophy is needed making quality measurements available as fast as possible to improve process knowledge and accelerate the process but with accuracy, precise and traceable measurements. The offline CMM programming for inspection and optimisation of the CMM inspection plan are crucial portions of the study and discussed. The dimensional measurement plan as per the ASME B 89.7.2 standard to reach an optimised CMM measurement plan and strategy are an important requirement. The probing strategy, stylus configuration, and approximation strategy effects on the measurements of circumferential dovetail measurements of the developmental prototype disc are discussed. The results were discussed in the form of enhancement of the R &R (repeatability and reproducibility) values with uncertainty levels within the desired limits. The findings from the measurement strategy adopted for disc dovetail evaluation and inspection time optimisation are discussed with the help of various analyses and graphical outputs obtained from the verification process.Keywords: coordinate measuring machine, CMM, aero engine, articulated measuring machine, fan disc
Procedia PDF Downloads 10710089 Effect of Rotation Speed on Microstructure and Microhardness of AA7039 Rods Joined by Friction Welding
Authors: H. Karakoc, A. Uzun, G. Kırmızı, H. Çinici, R. Çitak
Abstract:
The main objective of this investigation was to apply friction welding for joining of AA7039 rods produced by powder metallurgy. Friction welding joints were carried out using a rotational friction welding machine. Friction welds were obtained under different rotational speeds between (2700 and 2900 rpm). The friction pressure of 10 MPa and friction time of 30 s was kept constant. The cross sections of joints were observed by optical microscopy. The microstructures were analyzed using scanning electron microscope/energy dispersive X-ray spectroscopy. The Vickers micro hardness measurement of the interface was evaluated using a micro hardness testing machine. Finally the results obtained were compared and discussed.Keywords: Aluminum alloy, powder metallurgy, friction welding, microstructure
Procedia PDF Downloads 36310088 Black-Box-Optimization Approach for High Precision Multi-Axes Forward-Feed Design
Authors: Sebastian Kehne, Alexander Epple, Werner Herfs
Abstract:
A new method for optimal selection of components for multi-axes forward-feed drive systems is proposed in which the choice of motors, gear boxes and ball screw drives is optimized. Essential is here the synchronization of electrical and mechanical frequency behavior of all axes because even advanced controls (like H∞-controls) can only control a small part of the mechanical modes – namely only those of observable and controllable states whose value can be derived from the positions of extern linear length measurement systems and/or rotary encoders on the motor or gear box shafts. Further problems are the unknown processing forces like cutting forces in machine tools during normal operation which make the estimation and control via an observer even more difficult. To start with, the open source Modelica Feed Drive Library which was developed at the Laboratory for Machine Tools, and Production Engineering (WZL) is extended from one axis design to the multi axes design. It is capable to simulate the mechanical, electrical and thermal behavior of permanent magnet synchronous machines with inverters, different gear boxes and ball screw drives in a mechanical system. To keep the calculation time down analytical equations are used for field and torque producing equivalent circuit, heat dissipation and mechanical torque at the shaft. As a first step, a small machine tool with a working area of 635 x 315 x 420 mm is taken apart, and the mechanical transfer behavior is measured with an impulse hammer and acceleration sensors. With the frequency transfer functions, a mechanical finite element model is built up which is reduced with substructure coupling to a mass-damper system which models the most important modes of the axes. The model is modelled with Modelica Feed Drive Library and validated by further relative measurements between machine table and spindle holder with a piezo actor and acceleration sensors. In a next step, the choice of possible components in motor catalogues is limited by derived analytical formulas which are based on well-known metrics to gain effective power and torque of the components. The simulation in Modelica is run with different permanent magnet synchronous motors, gear boxes and ball screw drives from different suppliers. To speed up the optimization different black-box optimization methods (Surrogate-based, gradient-based and evolutionary) are tested on the case. The objective that was chosen is to minimize the integral of the deviations if a step is given on the position controls of the different axes. Small values are good measures for a high dynamic axes. In each iteration (evaluation of one set of components) the control variables are adjusted automatically to have an overshoot less than 1%. It is obtained that the order of the components in optimization problem has a deep impact on the speed of the black-box optimization. An approach to do efficient black-box optimization for multi-axes design is presented in the last part. The authors would like to thank the German Research Foundation DFG for financial support of the project “Optimierung des mechatronischen Entwurfs von mehrachsigen Antriebssystemen (HE 5386/14-1 | 6954/4-1)” (English: Optimization of the Mechatronic Design of Multi-Axes Drive Systems).Keywords: ball screw drive design, discrete optimization, forward feed drives, gear box design, linear drives, machine tools, motor design, multi-axes design
Procedia PDF Downloads 28710087 Paddy/Rice Singulation for Determination of Husking Efficiency and Damage Using Machine Vision
Authors: M. Shaker, S. Minaei, M. H. Khoshtaghaza, A. Banakar, A. Jafari
Abstract:
In this study a system of machine vision and singulation was developed to separate paddy from rice and determine paddy husking and rice breakage percentages. The machine vision system consists of three main components including an imaging chamber, a digital camera, a computer equipped with image processing software. The singulation device consists of a kernel holding surface, a motor with vacuum fan, and a dimmer. For separation of paddy from rice (in the image), it was necessary to set a threshold. Therefore, some images of paddy and rice were sampled and the RGB values of the images were extracted using MATLAB software. Then mean and standard deviation of the data were determined. An Image processing algorithm was developed using MATLAB to determine paddy/rice separation and rice breakage and paddy husking percentages, using blue to red ratio. Tests showed that, a threshold of 0.75 is suitable for separating paddy from rice kernels. Results from the evaluation of the image processing algorithm showed that the accuracies obtained with the algorithm were 98.36% and 91.81% for paddy husking and rice breakage percentage, respectively. Analysis also showed that a suction of 45 mmHg to 50 mmHg yielding 81.3% separation efficiency is appropriate for operation of the kernel singulation system.Keywords: breakage, computer vision, husking, rice kernel
Procedia PDF Downloads 38110086 An Investigation on Smartphone-Based Machine Vision System for Inspection
Authors: They Shao Peng
Abstract:
Machine vision system for inspection is an automated technology that is normally utilized to analyze items on the production line for quality control purposes, it also can be known as an automated visual inspection (AVI) system. By applying automated visual inspection, the existence of items, defects, contaminants, flaws, and other irregularities in manufactured products can be easily detected in a short time and accurately. However, AVI systems are still inflexible and expensive due to their uniqueness for a specific task and consuming a lot of set-up time and space. With the rapid development of mobile devices, smartphones can be an alternative device for the visual system to solve the existing problems of AVI. Since the smartphone-based AVI system is still at a nascent stage, this led to the motivation to investigate the smartphone-based AVI system. This study is aimed to provide a low-cost AVI system with high efficiency and flexibility. In this project, the object detection models, which are You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD) model, are trained, evaluated, and integrated with the smartphone and webcam devices. The performance of the smartphone-based AVI is compared with the webcam-based AVI according to the precision and inference time in this study. Additionally, a mobile application is developed which allows users to implement real-time object detection and object detection from image storage.Keywords: automated visual inspection, deep learning, machine vision, mobile application
Procedia PDF Downloads 12410085 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques
Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas
Abstract:
This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.Keywords: hit song science, product life cycle, machine learning, radio
Procedia PDF Downloads 15610084 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling
Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas
Abstract:
Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.Keywords: flood forecasting, machine learning, multilayer perceptron network, regression
Procedia PDF Downloads 17210083 Early Help Family Group Conferences: An Analysis of Family Plans
Authors: Kate Parkinson
Abstract:
A Family Group Conference (FGC) is a family-led decision-making process through which a family/kinship group, rather than the professionals involved, is asked to develop a plan for the care or the protection of children in the family. In England and Wales, FGCs are used in 76% of local authorities and in recent years, have tended to be used in cases where the local authority are considering the court process to remove children from their immediate family, to explore kinship alternatives to local authority care. Some local authorities offer the service much earlier, when families first come to the attention of children's social care, in line with research that suggests the earlier an FGC is held, the more likely they are to be successful. Family plans that result from FGCs are different from professional plans in that they are unique to a family and, as a result, reflect the diversity of families. Despite the fact that FGCs are arguable the most researched area of social work globally, there is a dearth of research that examines the nature of family plans and their substance. This paper presents the findings of a documentary analysis of 42 Early Help FGC plans from local authorities in England, with the aim of exploring the level and type of support that family members offer at a FGC. A thematic analysis identified 5 broad areas of support: Practical Support, Building Relationships, Child-care Support, Emotional Support and Social Support. In the majority of cases, family members did not want or ask for any formal support from the local authority or other agencies. Rather, the families came together to agree a plan of support, which was within the parameters of the resources that they as a family could provide. Perhaps then the role of the Early Help professional should be one of a facilitating and enabling role, to support families to develop plans that address their own specific difficulties, rather than the current default option, which is to either close the case because the family do not meet service thresholds or refer to formal support if they do, which may offer very specific support, have rigid referral criteria, long waiting lists and may not reflect the diverse and unique nature of families. FGCs are argued to be culturally appropriate social work practices in that they are appropriate for families from a range of cultural backgrounds and can be adapted to meet particular cultural needs. Furthermore, research on the efficacy of FGCs at an Early Help Level has demonstrated that Early Help FGCs have the potential to address difficulties in family life and prevent the need for formal support services, which are potentially stigmatising and do not reflect the uniqueness and diversity of families. The paper concludes with a recommendation for the use of FGCs across Early Help Services in England and Wales.Keywords: family group conferences, family led decision making, early help, prevention
Procedia PDF Downloads 9210082 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision
Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias
Abstract:
Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.Keywords: healthcare, fall detection, transformer, transfer learning
Procedia PDF Downloads 14810081 A Case Study on Machine Learning-Based Project Performance Forecasting for an Urban Road Reconstruction Project
Authors: Soheila Sadeghi
Abstract:
In construction projects, predicting project performance metrics accurately is essential for effective management and successful delivery. However, conventional methods often depend on fixed baseline plans, disregarding the evolving nature of project progress and external influences. To address this issue, we introduce a distinct approach based on machine learning to forecast key performance indicators, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category within an urban road reconstruction project. Our proposed model leverages time series forecasting techniques, namely Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance by analyzing historical data and project progress. Additionally, the model incorporates external factors, including weather patterns and resource availability, as features to improve forecast accuracy. By harnessing the predictive capabilities of machine learning, our performance forecasting model enables project managers to proactively identify potential deviations from the baseline plan and take timely corrective measures. To validate the effectiveness of the proposed approach, we conduct a case study on an urban road reconstruction project, comparing the model's predictions with actual project performance data. The outcomes of this research contribute to the advancement of project management practices in the construction industry by providing a data-driven solution for enhancing project performance monitoring and control.Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, schedule variance, earned value management
Procedia PDF Downloads 3910080 Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing
Authors: Rida Kanwal, Wang Yuhui, Song Weiguo
Abstract:
Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management.Keywords: wildfires, machine learning, remote sensing, wind speed, GIS, wildfire behavior
Procedia PDF Downloads 2010079 The Role of Family Support and Work Life Balance of Women Entrepreneurs in Jaffna District
Authors: Thevaranchany Sivaskaran
Abstract:
Women entrepreneurs are the key players in the society and their contributions is highly highlighted to enhance economic stability in the country. In Sri Lanka, especially in North and East provinces people badly affected by war. Most of them are widows and women headed families. Due to this changing environment, Educational opportunities, and the support of NGO’s Most of the women have started their business and become entrepreneurs. Even though existing family setup and social setup entrepreneurial women are overburdened and difficult to balance their business and family roles. The research has been conducted on the experiences of women entrepreneurs with the family role support and work-life balance within the small and micro- enterprise sector in Jaffna, Srilanka. This study aims to identify that what extent the role of family support will be the tool to balancing work and life effectively and, secondly, the main challenges they face in achieving work-life balance. This is done by drawing on literatures including those on work-life balance, small-and micro enterprises, and entrepreneurship theories. To find out this objective, the data were collected from 50 entrepreneurs among the members of Jaffna women chamber in each GS division basis (cluster random sampling). A qualitative methodological technique and semi-structured interviews were used to collect the data for the case study on these entrepreneurs. The results indicate that the majority of entrepreneurs do not enjoy a sense of work-life balance because most of them are women headed family and they need to work hard to generate financial profit for the benefit of family. The motivation for them to work in this way is to provide basic needs. Results confirmed for others that support of husbands is very important. Mostly, emotional support (belief and empowerment) is exposed; however, getting financial contribution seems to be highly appreciated. More responsibilities which spouses were ready to take over regarding the home responsibilities (that is, childcare) should also not be neglected in the system of support to their entrepreneurial wives. Although, more important for all, women with children appreciated other members and spouses help and assistance to a higher extent. Results showed that majority of women who started their own business feel that in the first year of ope-ration the emotional support of family members was more important.Keywords: family support, work life balance, women entrepreneurs, Jaffna District, Sri Lanka
Procedia PDF Downloads 45910078 An Implementation Direct Torque Control Strategy of Induction Machine Using DSPACE TMS 320F2812
Authors: Hamid Chaikhy, Mouna Essaadi, Aziz El Afia
Abstract:
This paper presents an experimental implementation of a new direct torque control strategy of induction machine called twelve sectors direct torque control strategy (12_DTC) using DSPACE TMS 320F2812.The aim of this work is to give an experimental performance analysis of 12_DTC in term of torque, currents distortions and stator flux, to validate simulation results obtained in previous works.Keywords: 12_DTC, DSPACE TMS 320F2812 torque, stator flux, currents distortions, experimental performance analysis
Procedia PDF Downloads 39410077 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm
Authors: Amir Hossein Hejazi, Nima Amjady
Abstract:
In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm
Procedia PDF Downloads 57210076 Exploring Strategies Used by Victims of Intimate Partner Violence to Increase Sense of Safety: A Systematic Review and Quantitative Study
Authors: Thomas Nally, Jane Ireland, Roxanne Khan, Philip Birch
Abstract:
Intimate Partner Violence (IPV), a significant societal problem, affects individuals worldwide. However, the strategies victims use to keep safe are under-researched. IPV is significantly under-reported, and services often are not able to be accessed by all victims. Thus they are likely to use their own strategies to manage their victimization before being able to seek support. Two studies were completed to understand these strategies. A systematic review of the literature and study completed with professionals who work with victims was undertaken to understand this area. In study one, a systematic review of the literature (n=61 papers), were analyzed using Thematic Analysis. The results indicated that victims use a large array of behaviors to increase their sense of safety and coping with emotions but also experience significant barriers to help-seeking. In study 2, sixty-nine professionals completed a measure exploring the likelihood and effectiveness of various victim strategies regarding increasing their sense of safety. Strategies included in the measure were obtained from those identified in study 1. Findings indicated that professionals perceived victims of IPV to be more likely to employ safety strategies and coping behaviors that may be ineffective but not help-seeking behaviors. Further, the responses were analyzed using Cluster Analysis. Safety strategies resulted in five clusters; perpetrator-directed strategies, prevention strategies, cognitive reappraisal, safety planning and avoidance strategies. Help-Seeking resulted in six clusters; information or practical support, abuse-related support, emotional support, secondary support and informal support. Finally, coping resulted in four clusters; emotional coping, self-directed coping, thought recording/change and cognitive coping. Both studies indicate that victims may use a variety of strategies to manage their safety besides seeking help. Professionals working with victims, using a strength-based approach, should understand what is used and is effective for victims who are unable to leave the relationships or access external support.Keywords: intimate partner violence, help-seeking, professional support, victims, victim coping, victim safety
Procedia PDF Downloads 18610075 Quality Evaluation of Backfill Grout in Tunnel Boring Machine Tail Void Using Impact-Echo (IE): Short-Time Fourier Transform (STFT) Numerical Analysis
Authors: Ju-Young Choi, Ki-Il Song, Kyoung-Yul Kim
Abstract:
During Tunnel Boring Machine (TBM) tunnel excavation, backfill grout should be injected after the installation of segment lining to ensure the stability of the tunnel and to minimize ground deformation. If grouting is not sufficient to fill the gap between the segments and rock mass, hydraulic pressures occur in the void, which can negatively influence the stability of the tunnel. Recently the tendency to use TBM tunnelling method to replace the drill and blast(NATM) method is increasing. However, there are only a few studies of evaluation of backfill grout. This study evaluates the TBM tunnel backfill state using Impact-Echo(IE). 3-layers, segment-grout-rock mass, are simulated by FLAC 2D, FDM-based software. The signals obtained from numerical analysis and IE test are analyzed by Short-Time Fourier Transform(STFT) in time domain, frequency domain, and time-frequency domain. The result of this study can be used to evaluate the quality of backfill grouting in tail void.Keywords: tunnel boring machine, backfill grout, impact-echo method, time-frequency domain analysis, finite difference method
Procedia PDF Downloads 26610074 Offline Signature Verification Using Minutiae and Curvature Orientation
Authors: Khaled Nagaty, Heba Nagaty, Gerard McKee
Abstract:
A signature is a behavioral biometric that is used for authenticating users in most financial and legal transactions. Signatures can be easily forged by skilled forgers. Therefore, it is essential to verify whether a signature is genuine or forged. The aim of any signature verification algorithm is to accommodate the differences between signatures of the same person and increase the ability to discriminate between signatures of different persons. This work presented in this paper proposes an automatic signature verification system to indicate whether a signature is genuine or not. The system comprises four phases: (1) The pre-processing phase in which image scaling, binarization, image rotation, dilation, thinning, and connecting ridge breaks are applied. (2) The feature extraction phase in which global and local features are extracted. The local features are minutiae points, curvature orientation, and curve plateau. The global features are signature area, signature aspect ratio, and Hu moments. (3) The post-processing phase, in which false minutiae are removed. (4) The classification phase in which features are enhanced before feeding it into the classifier. k-nearest neighbors and support vector machines are used. The classifier was trained on a benchmark dataset to compare the performance of the proposed offline signature verification system against the state-of-the-art. The accuracy of the proposed system is 92.3%.Keywords: signature, ridge breaks, minutiae, orientation
Procedia PDF Downloads 14610073 Intersection of Racial and Gender Microaggressions: Social Support as a Coping Strategy among Indigenous LGBTQ People in Taiwan
Authors: Ciwang Teyra, A. H. Y. Lai
Abstract:
Introduction: Indigenous LGBTQ individuals face with significant life stress such as racial and gender discrimination and microaggressions, which may lead to negative impacts of their mental health. Although studies relevant to Taiwanese indigenous LGBTQpeople gradually increase, most of them are primarily conceptual or qualitative in nature. This research aims to fulfill the gap by offering empirical quantitative evidence, especially investigating the impact of racial and gender microaggressions on mental health among Taiwanese indigenous LGBTQindividuals with an intersectional perspective, as well as examine whether social support can help them to cope with microaggressions. Methods: Participants were (n=200; mean age=29.51; Female=31%, Male=61%, Others=8%). A cross-sectional quantitative design was implemented using data collected in the year 2020. Standardised measurements was used, including Racial Microaggression Scale (10 items), Gender Microaggression Scale (9 items), Social Support Questionnaire-SF(6 items); Patient Health Questionnaire(9-item); and Generalised Anxiety Disorder(7-item). Covariates were age, gender, and perceived economic hardships. Structural equation modelling (SEM) was employed using Mplus 8.0 with the latent variables of depression and anxiety as outcomes. A main effect SEM model was first established (Model1).To test the moderation effects of perceived social support, an interaction effect model (Model 2) was created with interaction terms entered into Model1. Numerical integration was used with maximum likelihood estimation to estimate the interaction model. Results: Model fit statistics of the Model 1:X2(df)=1308.1 (795), p<.05; CFI/TLI=0.92/0.91; RMSEA=0.06; SRMR=0.06. For Model, the AIC and BIC values of Model 2 improved slightly compared to Model 1(AIC =15631 (Model1) vs. 15629 (Model2); BIC=16098 (Model1) vs. 16103 (Model2)). Model 2 was adopted as the final model. In main effect model 1, racialmicroaggressionand perceived social support were associated with depression and anxiety, but not sexual orientation microaggression(Indigenous microaggression: b = 0.27 for depression; b=0.38 for anxiety; Social support: b=-0.37 for depression; b=-0.34 for anxiety). Thus, an interaction term between social support and indigenous microaggression was added in Model 2. In the final Model 2, indigenous microaggression and perceived social support continues to be statistically significant predictors of both depression and anxiety. Social support moderated the effect of indigenous microaggression of depression (b=-0.22), but not anxiety. All covariates were not statistically significant. Implications: Results indicated that racial microaggressions have a significant impact on indigenous LGBTQ people’s mental health. Social support plays as a crucial role to buffer the negative impact of racial microaggression. To promote indigenous LGBTQ people’s wellbeing, it is important to consider how to support them to develop social support network systems.Keywords: microaggressions, intersectionality, indigenous population, mental health, social support
Procedia PDF Downloads 14610072 A Multi-criteria Decision Support System for Migrating Legacies into Open Systems
Authors: Nasser Almonawer
Abstract:
Timely reaction to an evolving global business environment and volatile market conditions necessitates system and process flexibility, which in turn demands agile and adaptable architecture and a steady infusion of affordable new technologies. On the contrary, a large number of organizations utilize systems characterized by inflexible and obsolete legacy architectures. To effectively respond to the dynamic contemporary business environments, such architectures must be migrated to robust and modular open architectures. To this end, this paper proposes an integrated decision support system for a seamless migration to open systems. The proposed decision support system (DSS) integrates three well-established quantitative and qualitative decision-making models—namely, the Delphi method, Analytic Hierarchy Process (AHP) and Goal Programming (GP) to (1) assess risks and establish evaluation criteria; (2) formulate migration strategy and rank candidate systems; and (3) allocate resources among the selected systems.Keywords: decision support systems, open systems architecture, analytic hierarchy process (AHP), goal programming (GP), delphi method
Procedia PDF Downloads 47