Search results for: flexible remuneration systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10309

Search results for: flexible remuneration systems

8899 Effects of Screen Time on Children from a Systems Engineering Perspective

Authors: Misagh Faezipour

Abstract:

This paper explores the effects of screen time on children from a systems engineering perspective. We reviewed literature from several related works on the effects of screen time on children to explore all factors and interrelationships that would impact children that are subjected to using long screen times. Factors such as kids' age, parent attitudes, parent screen time influence, amount of time kids spend with technology, psychosocial and physical health outcomes, reduced mental imagery, problem-solving and adaptive thinking skills, obesity, unhealthy diet, depressive symptoms, health problems, disruption in sleep behavior, decrease in physical activities, problematic relationship with mothers, language, social, emotional delays, are examples of some factors that could be either a cause or effect of screen time. A systems engineering perspective is used to explore all the factors and factor relationships that were discovered through literature. A causal model is used to illustrate a graphical representation of these factors and their relationships. Through the causal model, the factors with the highest impacts can be realized. Future work would be to develop a system dynamics model to view the dynamic behavior of the relationships and observe the impact of changes in different factors in the model. The different changes on the input of the model, such as a healthier diet or obesity rate, would depict the effect of the screen time in the model and portray the effect on the children’s health and other factors that are important, which also works as a decision support tool.

Keywords: children, causal model, screen time, systems engineering, system dynamics

Procedia PDF Downloads 144
8898 Knowledge Based Behaviour Modelling and Execution in Service Robotics

Authors: Suraj Nair, Aravindkumar Vijayalingam, Alexander Perzylo, Alois Knoll

Abstract:

In the last decade robotics research and development activities have grown rapidly, especially in the domain of service robotics. Integrating service robots into human occupied spaces such as homes, offices, hospitals, etc. has become increasingly worked upon. The primary motive is to ease daily lives of humans by taking over some of the household/office chores. However, several challenges remain in systematically integrating such systems in human shared work-spaces. In addition to sensing and indoor-navigation challenges, programmability of such systems is a major hurdle due to the fact that the potential user cannot be expected to have knowledge in robotics or similar mechatronic systems. In this paper, we propose a cognitive system for service robotics which allows non-expert users to easily model system behaviour in an underspecified manner through abstract tasks and objects associated with them. The system uses domain knowledge expressed in the form of an ontology along with logical reasoning mechanisms to infer all the missing pieces of information required for executing the tasks. Furthermore, the system is also capable of recovering from failed tasks arising due to on-line disturbances by using the knowledge base and inferring alternate methods to execute the same tasks. The system is demonstrated through a coffee fetching scenario in an office environment using a mobile robot equipped with sensors and software capabilities for autonomous navigation and human-interaction through natural language.

Keywords: cognitive robotics, reasoning, service robotics, task based systems

Procedia PDF Downloads 243
8897 Application of Analytical Method for Placement of DG Unit for Loss Reduction in Distribution Systems

Authors: G. V. Siva Krishna Rao, B. Srinivasa Rao

Abstract:

The main aim of the paper is to implement a technique using distributed generation in distribution systems to reduce the distribution system losses and to improve voltage profiles. The fuzzy logic technique is used to select the proper location of DG and an analytical method is proposed to calculate the size of DG unit at any power factor. The optimal sizes of DG units are compared with optimal sizes obtained using the genetic algorithm. The suggested method is programmed under Matlab software and is tested on IEEE 33 bus system and the results are presented.

Keywords: DG Units, sizing of DG units, analytical methods, optimum size

Procedia PDF Downloads 474
8896 Soil Bioremediation Monitoring Systems Powered by Microbial Fuel Cells

Authors: András Fülöp, Lejla Heilmann, Zsolt Szabó, Ákos Koós

Abstract:

Microbial fuel cells (MFCs) present a sustainable biotechnological solution to future energy demands. The aim of this study was to construct soil based, single cell, membrane-less MFC systems, operated without treatment to continuously power on-site monitoring and control systems during the soil bioremediation processes. Our Pseudomonas aeruginosa 541 isolate is an ideal choice for MFCs, because it is able to produce pyocyanin which behaves as electron-shuttle molecule, furthermore, it also has a significant antimicrobial effect. We tested several materials and structural configurations to obtain long term high power output. Comparing different configurations, a proton exchange membrane-less, 0.6 m long with 0.05 m diameter MFC tubes offered the best long-term performances. The long-term electricity production were tested from starch, yeast extract (YE), carboxymethyl cellulose (CMC) with humic acid (HA) as a mediator. In all cases, 3 kΩ external load have been used. The two best-operated systems were the Pseudomonas aeruginosa 541 containing MFCs with 1 % carboxymethyl cellulose and the MFCs with 1% yeast extract in the anode area and 35% hydrogel in the cathode chamber. The first had 3.3 ± 0.033 mW/m2 and the second had 4.1 ± 0.065 mW/m2 power density values. These systems have operated for 230 days without any treatment. The addition of 0.2 % HA and 1 % YE referred to the volume of the anode area resulted in 1.4 ± 0.035 mW/m2 power densities. The mixture of 1% starch with 0.2 % HA gave 1.82 ± 0.031 mW/m2. Using CMC as retard carbon source takes effect in the long-term bacterial survivor, thus enable the expression of the long term power output. The application of hydrogels in the cathode chamber significantly increased the performance of the MFC units due to their good water retention capacity.

Keywords: microbial fuel cell, bioremediation, Pseudomonas aeruginosa, biotechnological solution

Procedia PDF Downloads 291
8895 Evaluation of Urban Transportation Systems: Comparing and Selecting the Most Efficient Transportation Solutions

Authors: E. Azizi Asiyabar

Abstract:

The phenomenon of migration to larger cities has brought about a range of consequences, including increased travel demand and the necessity for smooth traffic flow to expedite transportation. Regrettably, insufficient urban transportation infrastructure has given rise to various issues, including air pollution, heightened fuel consumption, and wasted time. To address traffic-related problems and the economic, social, and environmental challenges that ensue, a well-equipped, efficient, fast, cost-effective, and high-capacity transportation system is imperative, with a focus on reliability. This study undertakes a comprehensive examination of rail transportation systems and subsequently compares their advantages and limitations. The findings of this investigation reveal that hybrid monorails exhibit lower maintenance requirements and associated costs when compared to other types of monorails, standard trains, and urban light rail systems. Given their favorable attributes in terms of pollution reduction, increased transportation speed, and enhanced quality of service, hybrid monorails emerge as a highly recommended and suitable option.

Keywords: comparing, most efficient, selecting, urban transportation

Procedia PDF Downloads 81
8894 Barriers and Opportunities for Implementing Electronic Prescription Software in Public Libyan Hospitals

Authors: Abdelbaset M. Elghriani, Abdelsalam M. Maatuk, Isam Denna, Amira Abdulla Werfalli

Abstract:

Electronic prescription software (e-prescribing) benefits patients and physicians by preventing handwriting errors and giving accurate prescriptions. E-prescribing allows prescriptions to be written and sent to pharmacies electronically instead of using handwritten notes. Significant factors that may affect the adoption of e-prescription systems include lacking technical support, financial resources to operate the systems, and change resistance from some clinicians, which have been identified as barriers to the implementation of e-prescription systems. This study aims to explore the trends and opinions of physicians and pharmacists about e-prescriptions and to identify the obstacles and benefits of the application of e-prescriptions in the health care system. A cross-sectional descriptive study was conducted at three Libyan public hospitals. Data were collected through a self-constructed questionnaire to assess the opinions regarding potential constraining factors and benefits of implementing an e-prescribing system in hospitals. Data presented as mean, frequency distribution table, cross-tabulation, and bar charts. Data analysis was performed, and the results show that technical, financial, and organizational obstacles are the most important obstacles that prevent the application of e-prescribing systems in Libyan hospitals. In addition, there was awareness of the benefits of e-prescribing, especially reducing medication dispensing errors, and a desire of physicians and pharmacists to use electronic prescriptions.

Keywords: physicians, e-prescribing, health care system, pharmacists

Procedia PDF Downloads 126
8893 Experimental Study of Solar Drying of Verbena in Three Types of Solar Dryers

Authors: Llham Lhoume, Rachid Tadili, Nora Arbaoui

Abstract:

One of the most crucial ways to combat food insecurity is to minimize crop losses, food drying is one of the most organic, effective, low-cost and energy-efficient food preservation methods. In this regard, we undertake in this study an experimental evaluation and analysis of the thermal performance of different natural convection drying systems: a solar greenhouse dryer, an indirect solar dryer with a single compartment and a solar dryer with two compartments. These systems have been implemented at the Solar Energy and Environment Laboratory of Mohammed V University (Morocco). The objective of this work is to study the feasibility of converting a solar greenhouse into a solar dryer for use during the summer. On the other hand, to study the thermal performances of this greenhouse dryer by comparing it with other solar dryers. The experimental study showed that the drying of verbena leaves took 6 hours in the indirect dryer 1, 3 hours in the indirect dryer, 2 and 4 hours in the greenhouse dryer, but the amortization period of the solar greenhouse dryer is lower than the other two solar dryers. The results of this study provide key information on the implementation and performance of these systems for drying a food of great global interest.

Keywords: solar energy, drying, agriculture, biotechnologie

Procedia PDF Downloads 80
8892 The Effect of Computerized Systems of Office Automation on Employees' Productivity Efficiency

Authors: Mohammad Hemmati, Mohammad Taban, Ali Yasini

Abstract:

One of the factors that can play an important role in increasing productivity is the optimal use of information technology, which in this area today has a significant role to play in computer systems of office automation in organizations and companies. Therefore, this research has been conducted with the aim of investigating the effect of the relationship between computerized systems of office automation and the productivity of employees in the municipality of Ilam city. The statistical population of this study was 110 people. Using Cochran formula, the minimum sample size is 78 people. The present research is a descriptive-looking research in terms of the type of objective view. A questionnaire was used to collect data. To assess the reliability of variables, Cornbrash’s alpha coefficient was used, which was equal to 0.85; SPSS19 and Pearson test were used to analyze the data and test the hypothesis of the research. In this research, three hypotheses of the relationship between office automation with efficiency, performance, and effectiveness were investigated. The results showed a direct and positive relationship between the office automation system and the increase in the efficiency, effectiveness, and efficiency of employees, and there was no reason to reject these hypotheses.

Keywords: efficiency, performance, effectiveness, automation

Procedia PDF Downloads 216
8891 Effect of Retention Time on Kitchen Wastewater Treatment Using Mixed Algal-Bacterial Consortia

Authors: Keerthi Katam, Abhinav B. Tirunaghari, Vinod Vadithya, Toshiyuki Shimizu, Satoshi Soda, Debraj Bhattacharyya

Abstract:

Researchers worldwide are increasingly focusing on the removal of carbon and nutrient from wastewater using algal-bacterial hybrid systems. Algae produce oxygen during photosynthesis, which is taken up by heterotrophic bacteria for mineralizing organic carbon to carbon dioxide. This phenomenon reduces the net mechanical aeration requirement of aerobic biological wastewater treatment processes. Consequently, the treatment cost is also reduced. Microalgae also participate in the treatment process by taking up nutrient (N, P) from wastewater. Algal biomass, if harvested, can generate value-added by-products. The aim of the present study was to compare the performance of two systems - System A (mixed microalgae and bacteria) and System B (diatoms and bacteria) in treating kitchen wastewater (KWW). The test reactors were operated at five different solid retention times (SRTs) -2, 4, 6, 8, and 10-days in draw-and-fill mode. The KWW was collected daily from the dining hall-kitchen area of the Indian Institute of Technology Hyderabad. The influent and effluent samples were analyzed for total organic carbon (TOC), total nitrogen (TN) using TOC-L analyzer. A colorimetric method was used to analyze anionic surfactant. Phosphorus (P) and chlorophyll were measured by following standard methods. The TOC, TN, and P of KWW were in the range of 113.5 to 740 mg/L, 2 to 22.8 mg/L, and 1 to 4.5 mg/L, respectively. Both the systems gave similar results with 85% of TOC removal and 60% of TN removal at 10-d SRT. However, the anionic surfactant removal in System A was 99% and 60% in System B. The chlorophyll concentration increased with an increase in SRT in both the systems. At 2-d SRT, no chlorophyll was observed in System B, whereas 0.5 mg/L was observed in System A. At 10-d SRT, the chlorophyll concentration in System A was 7.5 mg/L, whereas it was 4.5 mg/L in System B. Although both the systems showed similar performance in treatment, the increase in chlorophyll concentration suggests that System A demonstrated a better algal-bacterial symbiotic relationship in treating KWW than System B.

Keywords: diatoms, microalgae, retention time, wastewater treatment

Procedia PDF Downloads 129
8890 Mining Riding Patterns in Bike-Sharing System Connecting with Public Transportation

Authors: Chong Zhang, Guoming Tang, Bin Ge, Jiuyang Tang

Abstract:

With the fast growing road traffic and increasingly severe traffic congestion, more and more citizens choose to use the public transportation for daily travelling. Meanwhile, the shared bike provides a convenient option for the first and last mile to the public transit. As of 2016, over one thousand cities around the world have deployed the bike-sharing system. The combination of these two transportations have stimulated the development of each other and made significant contribution to the reduction of carbon footprint. A lot of work has been done on mining the riding behaviors in various bike-sharing systems. Most of them, however, treated the bike-sharing system as an isolated system and thus their results provide little reference for the public transit construction and optimization. In this work, we treat the bike-sharing and public transit as a whole and investigate the customers’ bike-and-ride behaviors. Specifically, we develop a spatio-temporal traffic delivery model to study the riding patterns between the two transportation systems and explore the traffic characteristics (e.g., distributions of customer arrival/departure and traffic peak hours) from the time and space dimensions. During the model construction and evaluation, we make use of large open datasets from real-world bike-sharing systems (the CitiBike in New York, GoBike in San Francisco and BIXI in Montreal) along with corresponding public transit information. The developed two-dimension traffic model, as well as the mined bike-and-ride behaviors, can provide great help to the deployment of next-generation intelligent transportation systems.

Keywords: riding pattern mining, bike-sharing system, public transportation, bike-and-ride behavior

Procedia PDF Downloads 783
8889 Hybrid Renewable Energy Systems for Electricity and Hydrogen Production in an Urban Environment

Authors: Same Noel Ngando, Yakub Abdulfatai Olatunji

Abstract:

Renewable energy micro-grids, such as those powered by solar or wind energy, are often intermittent in nature. This means that the amount of energy generated by these systems can vary depending on weather conditions or other factors, which can make it difficult to ensure a steady supply of power. To address this issue, energy storage systems have been developed to increase the reliability of renewable energy micro-grids. Battery systems have been the dominant energy storage technology for renewable energy micro-grids. Batteries can store large amounts of energy in a relatively small and compact package, making them easy to install and maintain in a micro-grid setting. Additionally, batteries can be quickly charged and discharged, allowing them to respond quickly to changes in energy demand. However, the process involved in recycling batteries is quite costly and difficult. An alternative energy storage system that is gaining popularity is hydrogen storage. Hydrogen is a versatile energy carrier that can be produced from renewable energy sources such as solar or wind. It can be stored in large quantities at low cost, making it suitable for long-distance mass storage. Unlike batteries, hydrogen does not degrade over time, so it can be stored for extended periods without the need for frequent maintenance or replacement, allowing it to be used as a backup power source when the micro-grid is not generating enough energy to meet demand. When hydrogen is needed, it can be converted back into electricity through a fuel cell. Energy consumption data is got from a particular residential area in Daegu, South Korea, and the data is processed and analyzed. From the analysis, the total energy demand is calculated, and different hybrid energy system configurations are designed using HOMER Pro (Hybrid Optimization for Multiple Energy Resources) and MATLAB software. A techno-economic and environmental comparison and life cycle assessment (LCA) of the different configurations using battery and hydrogen as storage systems are carried out. The various scenarios included PV-hydrogen-grid system, PV-hydrogen-grid-wind, PV-hydrogen-grid-biomass, PV-hydrogen-wind, PV-hydrogen-biomass, biomass-hydrogen, wind-hydrogen, PV-battery-grid-wind, PV- battery -grid-biomass, PV- battery -wind, PV- battery -biomass, and biomass- battery. From the analysis, the least cost system for the location was the PV-hydrogen-grid system, with a net present cost of about USD 9,529,161. Even though all scenarios were environmentally friendly, taking into account the recycling cost and pollution involved in battery systems, all systems with hydrogen as a storage system produced better results. In conclusion, hydrogen is becoming a very prominent energy storage solution for renewable energy micro-grids. It is easier to store compared with electric power, so it is suitable for long-distance mass storage. Hydrogen storage systems have several advantages over battery systems, including flexibility, long-term stability, and low environmental impact. The cost of hydrogen storage is still relatively high, but it is expected to decrease as more hydrogen production, and storage infrastructure is built. With the growing focus on renewable energy and the need to reduce greenhouse gas emissions, hydrogen is expected to play an increasingly important role in the energy storage landscape.

Keywords: renewable energy systems, microgrid, hydrogen production, energy storage systems

Procedia PDF Downloads 94
8888 Solutions to Probabilistic Constrained Optimal Control Problems Using Concentration Inequalities

Authors: Tomoaki Hashimoto

Abstract:

Recently, optimal control problems subject to probabilistic constraints have attracted much attention in many research field. Although probabilistic constraints are generally intractable in optimization problems, several methods haven been proposed to deal with probabilistic constraints. In most methods, probabilistic constraints are transformed to deterministic constraints that are tractable in optimization problems. This paper examines a method for transforming probabilistic constraints into deterministic constraints for a class of probabilistic constrained optimal control problems.

Keywords: optimal control, stochastic systems, discrete-time systems, probabilistic constraints

Procedia PDF Downloads 278
8887 Circular Polarized and Surface Compatible Microstrip Array Antenna Design for Image and Telemetric Data Transfer in UAV and Armed UAV Systems

Authors: Kübra Taşkıran, Bahattin Türetken

Abstract:

In this paper, a microstrip array antenna with circular polarization at 2.4 GHz frequency has been designed using the in order to provide image and telemetric data transmission in Unmanned Aerial Vehicle and Armed Unmanned Aerial Vehicle Systems. In addition to the antenna design, the power divider design was made and the antennas were fed in phase. As a result of the analysis, it was observed that the antenna operates at a frequency of 2.4016 GHz with 12.2 dBi directing gain. In addition, this designed array antenna was transformed into a form compatible with the rocket surface used in A-UAV Systems, and analyzes were made. As a result of these analyzes, it has been observed that the antenna operates on the surface of the missile at a frequency of 2.372 GHz with a directivity gain of 10.2 dBi.

Keywords: cicrostrip array antenna, circular polarization, 2.4 GHz, image and telemetric data, transmission, surface compatible, UAV and armed UAV

Procedia PDF Downloads 104
8886 Maximum Efficiency of the Photovoltaic Cells Using a Genetic Algorithm

Authors: Latifa Sabri, Mohammed Benzirar, Mimoun Zazoui

Abstract:

The installation of photovoltaic systems is one of future sources to generate electricity without emitting pollutants. The photovoltaic cells used in these systems have demonstrated enormous efficiencies and advantages. Several researches have discussed the maximum efficiency of these technologies, but only a few experiences have succeeded to right weather conditions to get these results. In this paper, two types of cells were selected: crystalline and amorphous silicon. Using the method of genetic algorithm, the results show that for an ambient temperature of 25°C and direct irradiation of 625 W/m², the efficiency of crystalline silicon is 12% and 5% for amorphous silicon.

Keywords: PV, maximum efficiency, solar cell, genetic algorithm

Procedia PDF Downloads 424
8885 Rotor Dynamic Analysis for a Shaft Train by Using Finite Element Method

Authors: M. Najafi

Abstract:

In the present paper, a large turbo-generator shaft train including a heavy-duty gas turbine engine, a coupling, and a generator is established. The method of analysis is based on finite element simplified model for lateral and torsional vibration calculation. The basic elements of rotor are the shafts and the disks which are represented as circular cross section flexible beams and rigid body elements, respectively. For more accurate results, the gyroscopic effect and bearing dynamics coefficients and function of rotation are taken into account, and for the influence of shear effect, rotor has been modeled in the form of Timoshenko beam. Lateral critical speeds, critical speed map, damped mode shapes, Campbell diagram, zones of instability, amplitudes, phase angles response due to synchronous forces of excitation and amplification factor are calculated. Also, in the present paper, the effect of imbalanced rotor and effects of changing in internal force and temperature are studied.

Keywords: rotor dynamic analysis, finite element method, shaft train, Campbell diagram

Procedia PDF Downloads 136
8884 Planning Method Study on the Ecological Restrained Construction Area from the Perspective of Governance: A Case from Yangzijin, Yangzhou, China

Authors: Rushi Tan, Yilun Xu, Xiaohui Wang

Abstract:

The restrained construction zoning, an important part in the urban master plan, is a necessary planning tool to control the city sprawl, to guarantee the reservation implementation of the various types of protective elements, and to realize the storage of the essential urban spatial resources. Simultaneously, owing to the diverse constitutes of restrained construction area and the various stakeholders involved in, its planning requires an overall consideration of all elements from the perspective of coordination, balance and practicability to deal with the problems and conflicts in this process. Taking Yangzijin Ecological Restrained Construction Area in Yangzhou as an example, this study analyzes all the potential actors, agencies and stakeholders in this restrained construction area, as well as the relevant conflicts between each other. Besides, this study tries to build up a planning procedure based on the framework of governance theory, and proposes a possible planning method that combines "rigidity" and "flexibility" to protect the ecological limitation boundary, to take every interest into account, and to promote economic development in a harmonious society.

Keywords: restrained construction area, governance, stakeholder, flexible stratagem, China

Procedia PDF Downloads 413
8883 An Adaptive Virtual Desktop Service in Cloud Computing Platform

Authors: Shuen-Tai Wang, Hsi-Ya Chang

Abstract:

Cloud computing is becoming more and more matured over the last few years and consequently the demands for better cloud services is increasing rapidly. One of the research topics to improve cloud services is the desktop computing in virtualized environment. This paper aims at the development of an adaptive virtual desktop service in cloud computing platform based on our previous research on the virtualization technology. We implement cloud virtual desktop and application software streaming technology that make it possible for providing Virtual Desktop as a Service (VDaaS). Given the development of remote desktop virtualization, it allows shifting the user’s desktop from the traditional PC environment to the cloud-enabled environment, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. Users no longer need to burden the platform maintenances and drastically reduces the overall cost of hardware and software licenses. Moreover, this flexible remote desktop service represents the next significant step to the mobile workplace, and it lets users access their desktop environments from virtually anywhere.

Keywords: cloud computing, virtualization, virtual desktop, VDaaS

Procedia PDF Downloads 285
8882 Two Kinds of Self-Oscillating Circuits Mechanically Demonstrated

Authors: Shiang-Hwua Yu, Po-Hsun Wu

Abstract:

This study introduces two types of self-oscillating circuits that are frequently found in power electronics applications. Special effort is made to relate the circuits to the analogous mechanical systems of some important scientific inventions: Galileo’s pendulum clock and Coulomb’s friction model. A little touch of related history and philosophy of science will hopefully encourage curiosity, advance the understanding of self-oscillating systems and satisfy the aspiration of some students for scientific literacy. Finally, the two self-oscillating circuits are applied to design a simple class-D audio amplifier.

Keywords: self-oscillation, sigma-delta modulator, pendulum clock, Coulomb friction, class-D amplifier

Procedia PDF Downloads 356
8881 Impact of Flexibility on Residential Buildings in Egypt

Authors: Aly Mohamed El Husseiny, Azza Ezz Abdelkader

Abstract:

There is a critical thin line between freedom of choice and randomness. The distance between imagination and perception and between perception and execution varies depending on numerous factors. While in developed areas residents have the opportunity and abilities to build flexible homes, residents in developing areas create their own dwellings in informal settlements, even though none of them is comfortable at home in the long run. This paper explores three factors: What residents really need, what they do with limited flexibility, and what they do when there are no limits, as in the case of informal settlements. This paper studies alteration to residential buildings and how they connect to the changes in people’s lifecycle in all past cases. This study also examines all approaches to flexibility, focusing on a social approach. The results of this study are based on three practical studies: Interviews with residents in an informal settlement (Eshash Mahfouz in Minya in Egypt), a civil study of buildings in a middle-class district, and a survey of residents from many countries, including Egypt, and interviews with a number of them to determine residents’ needs and the extent of renovations they made or would like to make to their homes.

Keywords: flexibility, housing, freedom of choice, social, changes, residents

Procedia PDF Downloads 300
8880 Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods

Authors: Abdelghani Chahmi

Abstract:

This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases.

Keywords: induction motor, modeling, bearing damage, airgap eccentricity, torque variation

Procedia PDF Downloads 139
8879 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market

Authors: Cristian Păuna

Abstract:

After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction

Procedia PDF Downloads 184
8878 Concurrent Engineering Challenges and Resolution Mechanisms from Quality Perspectives

Authors: Grmanesh Gidey Kahsay

Abstract:

In modern technical engineering applications, quality is defined in two ways. The first one is that quality is the parameter that measures a product or service’s characteristics to meet and satisfy the pre-stated or fundamental needs (reliability, durability, serviceability). The second one is the quality of a product or service free of any defect or deficiencies. The American Society for Quality (ASQ) describes quality as a pursuit of optimal solutions to confirm successes and fulfillment to be accountable for the product or service's requirements and expectations. This article focuses on quality engineering tools in modern industrial applications. Quality engineering is a field of engineering that deals with the principles, techniques, models, and applications of the product or service to guarantee quality. Including the entire activities to analyze the product’s design and development, quality engineering emphasizes how to make sure that products and services are designed and developed to meet consumers’ requirements. This episode acquaints with quality tools such as quality systems, auditing, product design, and process control. The finding presents thoughts that aim to improve quality engineering proficiency and effectiveness by introducing essential quality techniques and tools in some selected industries.

Keywords: essential quality tools, quality systems and models, quality management systems, and quality assurance

Procedia PDF Downloads 152
8877 Two Degree of Freedom Spherical Mechanism Design for Exact Sun Tracking

Authors: Osman Acar

Abstract:

Sun tracking systems are the systems following the sun ray by a right angle or by predetermined certain angle. In this study, we used theoretical trajectory of sun for latitude of central Anatolia in Turkey. A two degree of freedom spherical mechanism was designed to have a large workspace able to follow the sun's theoretical motion by the right angle during the whole year. An inverse kinematic analysis was generated to find the positions of mechanism links for the predicted trajectory. Force and torque analysis were shown for the first day of the year.

Keywords: sun tracking, theoretical sun trajectory, spherical mechanism, inverse kinematic analysis

Procedia PDF Downloads 419
8876 Experimental Study of Solar Drying of Verbena in Different Dryers

Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui

Abstract:

One of the most crucial ways to combat food insecurity is to minimize crop losses; food drying is one of the most organic, efficient, low-cost, and energy-saving food preservation methods. In this regard, we undertake in this study an experimental evaluation and analysis of the thermal performance of different natural convection drying systems: a solar greenhouse dryer, an indirect solar dryer with a single compartment, and a solar dryer with two compartments. These systems have been implemented at the Solar Energy and Environment Laboratory of Mohammed V University (Morocco). The objective of this work is to study the feasibility of converting a solar greenhouse into a solar dryer for use during the summer. On the other hand, to study the thermal performances of this greenhouse dryer by comparing it with other solar dryers. The experimental study showed that the drying of verbena leaves took 6 hours in the indirect dryer 1, 3 hours in the indirect dryer, and 2 and 4 hours in the greenhouse dryer, but the amortization period of the solar greenhouse dryer is lower than the other two solar dryers. The results of this study provide key information on the implementation and performance of these systems for drying food of great global interest.

Keywords: indirect solar dryer, solar energy, agricultural greenhouse, green energy

Procedia PDF Downloads 93
8875 Vibrotactility: Exploring and Prototyping the Aesthetics and Technology of Vibrotactility

Authors: Elsa Kosmack Vaara, Cheryl Akner Koler, Yusuf Mulla, Parivash Ranjbar, Anneli Nöu

Abstract:

This transdisciplinary research weaves together an aesthetic perspective with a technical one to develop human sensitivity for vibration and construct flexible, wearable devices that are miniature, lightweight, and energy efficient. By applying methods from artistic research, performative arts, audio science, nanotechnology, and interaction design, we created working prototypes with actuators that were specifically positioned in various places on the body. The vibrotactile prototypes were tested by our research team, design students, and people with deafblindness and blindness, each with different intentions. Some tests supported connoisseurship for vibrotactile musical expression. Others aimed for precise navigational instructions. Our results and discussion concern problems in establishing standards for vibrotactility because standards minimize diversity and narrow possible ways vibration can be experienced. Human bodies vary significantly in ‘where’ vibrotactile signals can be sensed and ‘how’ they awaken emotions. We encourage others to embrace the dynamic exchange between new haptic technology and aesthetic complexity.

Keywords: aesthetics, vibration, music, interaction design, deafblindness

Procedia PDF Downloads 86
8874 A Medical Vulnerability Scoring System Incorporating Health and Data Sensitivity Metrics

Authors: Nadir A. Carreon, Christa Sonderer, Aakarsh Rao, Roman Lysecky

Abstract:

With the advent of complex software and increased connectivity, the security of life-critical medical devices is becoming an increasing concern, particularly with their direct impact on human safety. Security is essential, but it is impossible to develop completely secure and impenetrable systems at design time. Therefore, it is important to assess the potential impact on the security and safety of exploiting a vulnerability in such critical medical systems. The common vulnerability scoring system (CVSS) calculates the severity of exploitable vulnerabilities. However, for medical devices it does not consider the unique challenges of impacts to human health and privacy. Thus, the scoring of a medical device on which human life depends (e.g., pacemakers, insulin pumps) can score very low, while a system on which human life does not depend (e.g., hospital archiving systems) might score very high. In this paper, we propose a medical vulnerability scoring system (MVSS) that extends CVSS to address the health and privacy concerns of medical devices. We propose incorporating two new parameters, namely health impact, and sensitivity impact. Sensitivity refers to the type of information that can be stolen from the device, and health represents the impact on the safety of the patient if the vulnerability is exploited (e.g., potential harm, life-threatening). We evaluate fifteen different known vulnerabilities in medical devices and compare MVSS against two state-of-the-art medical device-oriented vulnerability scoring systems and the foundational CVSS.

Keywords: common vulnerability system, medical devices, medical device security, vulnerabilities

Procedia PDF Downloads 166
8873 Identification of Nonlinear Systems Structured by Hammerstein-Wiener Model

Authors: A. Brouri, F. Giri, A. Mkhida, A. Elkarkri, M. L. Chhibat

Abstract:

Standard Hammerstein-Wiener models consist of a linear subsystem sandwiched by two memoryless nonlinearities. Presently, the linear subsystem is allowed to be parametric or not, continuous- or discrete-time. The input and output nonlinearities are polynomial and may be noninvertible. A two-stage identification method is developed such the parameters of all nonlinear elements are estimated first using the Kozen-Landau polynomial decomposition algorithm. The obtained estimates are then based upon in the identification of the linear subsystem, making use of suitable pre-ad post-compensators.

Keywords: nonlinear system identification, Hammerstein-Wiener systems, frequency identification, polynomial decomposition

Procedia PDF Downloads 511
8872 The System-Dynamic Model of Sustainable Development Based on the Energy Flow Analysis Approach

Authors: Inese Trusina, Elita Jermolajeva, Viktors Gopejenko, Viktor Abramov

Abstract:

Global challenges require a transition from the existing linear economic model to a model that will consider nature as a life support system for the development of the way to social well-being in the frame of the ecological economics paradigm. The objective of the article is to present the results of the analysis of socio-economic systems in the context of sustainable development using the systems power (energy flows) changes analyzing method and structural Kaldor's model of GDP. In accordance with the principles of life's development and the ecological concept was formalized the tasks of sustainable development of the open, non-equilibrium, stable socio-economic systems were formalized using the energy flows analysis method. The methodology of monitoring sustainable development and level of life were considered during the research of interactions in the system ‘human - society - nature’ and using the theory of a unified system of space-time measurements. Based on the results of the analysis, the time series consumption energy and economic structural model were formulated for the level, degree and tendencies of sustainable development of the system and formalized the conditions of growth, degrowth and stationarity. In order to design the future state of socio-economic systems, a concept was formulated, and the first models of energy flows in systems were created using the tools of system dynamics. During the research, the authors calculated and used a system of universal indicators of sustainable development in the invariant coordinate system in energy units. In order to design the future state of socio-economic systems, a concept was formulated, and the first models of energy flows in systems were created using the tools of system dynamics. In the context of the proposed approach and methods, universal sustainable development indicators were calculated as models of development for the USA and China. The calculations used data from the World Bank database for the period from 1960 to 2019. Main results: 1) In accordance with the proposed approach, the heterogeneous energy resources of countries were reduced to universal power units, summarized and expressed as a unified number. 2) The values of universal indicators of the life’s level were obtained and compared with generally accepted similar indicators.3) The system of indicators in accordance with the requirements of sustainable development can be considered as a basis for monitoring development trends. This work can make a significant contribution to overcoming the difficulties of forming socio-economic policy, which is largely due to the lack of information that allows one to have an idea of the course and trends of socio-economic processes. The existing methods for the monitoring of the change do not fully meet this requirement since indicators have different units of measurement from different areas and, as a rule, are the reaction of socio-economic systems to actions already taken and, moreover, with a time shift. Currently, the inconsistency or inconsistency of measures of heterogeneous social, economic, environmental, and other systems is the reason that social systems are managed in isolation from the general laws of living systems, which can ultimately lead to a systemic crisis.

Keywords: sustainability, system dynamic, power, energy flows, development

Procedia PDF Downloads 58
8871 A New Distributed Computing Environment Based On Mobile Agents for Massively Parallel Applications

Authors: Fatéma Zahra Benchara, Mohamed Youssfi, Omar Bouattane, Hassan Ouajji, Mohamed Ouadi Bensalah

Abstract:

In this paper, we propose a new distributed environment for High Performance Computing (HPC) based on mobile agents. It allows us to perform parallel programs execution as distributed one over a flexible grid constituted by a cooperative mobile agent team works. The distributed program to be performed is encapsulated on team leader agent which deploys its team workers as Agent Virtual Processing Unit (AVPU). Each AVPU is asked to perform its assigned tasks and provides the computational results which make the data and team works tasks management difficult for the team leader agent and that influence the performance computing. In this work we focused on the implementation of the Mobile Provider Agent (MPA) in order to manage the distribution of data and instructions and to ensure a load balancing model. It grants also some interesting mechanisms to manage the others computing challenges thanks to the mobile agents several skills.

Keywords: image processing, distributed environment, mobile agents, parallel and distributed computing

Procedia PDF Downloads 410
8870 A Combined Error Control with Forward Euler Method for Dynamical Systems

Authors: R. Vigneswaran, S. Thilakanathan

Abstract:

Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results.

Keywords: adaptivity, fixed point, long time simulations, stability, linear system

Procedia PDF Downloads 312