Search results for: capacity curve
3747 An Experimental Study of the Parameters Affecting the Compression Index of Clay Soil
Authors: Rami Rami Mahmoud Bakr
Abstract:
The constant rate of strain (CRS) test is a rapid technique that effectively measures specific properties of cohesive soil, including the rate of consolidation, hydraulic conductivity, compressibility, and stress history. Its simple operation and frequent readings enable efficient definition, especially of the compression curve. However, its limitations include an inability to handle strain-rate-dependent soil behavior, initial transient conditions, and pore pressure evaluation errors. There are currently no effective techniques for interpreting CRS data. In this study, experiments were performed to evaluate the effects of different parameters on CRS results. Extensive tests were performed on two types of clay to analyze the soil behavior during strain consolidation at a constant rate. The results were used to evaluate the transient conditions and pore pressure system.Keywords: constant rate of strain (CRS), resedimented boston blue clay (RBBC), resedimented vicksburg buckshot clay (RVBC), compression index
Procedia PDF Downloads 423746 Influence of Strengthening with Perforated Steel Plates on the Behavior of Infill Walls and RC Frame
Authors: Eray Ozbek, Ilker Kalkan, S. Oguzhan Akbas, Sabahattin Aykac
Abstract:
The contribution of the infill walls to the overall earthquake response of a structure is limited and this contribution is generally ignored in the analyses. Strengthening of the infill walls through different techniques has been and is being studied extensively in the literature to increase this limited contribution and the ductilities and energy absorption capacities of the infill walls to create non-structural components where the earthquake-induced energy can be absorbed without damaging the bearing components of the structural frame. The present paper summarizes an extensive research project dedicated to investigate the effects of strengthening the brick infill walls of a reinforced concrete (RC) frame on its lateral earthquake response. Perforated steel plates were used in strengthening due to several reasons, including the ductility and high deformation capacity of these plates, the fire resistant, recyclable and non-cancerogenic nature of mild steel, and the ease of installation and removal of the plates to the wall with the help of anchor bolts only. Furthermore, epoxy, which increases the cost and amount of labor of the strengthening process, is not needed in this technique. The individual behavior of the strengthened walls under monotonic diagonal and lateral reversed cyclic loading was investigated within the scope of the study. Upon achieving brilliant results, RC frames with strengthened infill walls were tested and are being tested to examine the influence of this strengthening technique on the overall behavior of the RC frames. Tests on the wall and frame specimens indicated that the perforated steel plates contribute to the lateral strength, rigidity, ductility and energy absorption capacity of the wall and the infilled frame to a major extent.Keywords: infill wall, strengthening, external plate, earthquake behavior
Procedia PDF Downloads 4503745 Zero Valent Iron Algal Biocomposite for the Removal of Crystal Violet from Aqueous Solution: Box-Behnken Optimization and Fixed Bed Column Studies
Authors: M. Jerold, V. Sivasubramanian
Abstract:
In this study, nano zero valent iron Sargassum swartzii (nZVI-SS) biocomposite a marine algal based biosorbent was used for the removal of simulated crystal violet (CV) in batch and continuous fixed bed operation. The Box-Behnen design (BBD) experimental results revealed the biosoprtion was maximum at pH 7.5, biosorbent dosage 0.1 g/L and initial CV concentration of 100 mg/L. The effect of various column parameters like bed depth (3, 6 and 9 cm), flow rate (5, 10 and 15 mL/min) and influent CV concentration (5, 10 and 15 mg/L) were investigated. The exhaustion time increased with increase of bed depth, influent CV concentration and decrease of flow rate. Adam-Bohart, Thomas and Yoon-Nelson models were used to predict the breakthrough curve and to evaluate the model parameters. Out of these models, Thomas and Yoon-Nelson models well described the experimental data. Therefore, the result implies that nZVI-SS biocomposite is a cheap and most promising biosorbent for the removal of CV from wastewater.Keywords: algae, biosorption, zero-valent, dye, wastewater
Procedia PDF Downloads 1963744 Compact Dual-band 4-MIMO Antenna Elements for 5G Mobile Applications
Authors: Fayad Ghawbar
Abstract:
The significance of the Multiple Input Multiple Output (MIMO) system in the 5G wireless communication system is essential to enhance channel capacity and provide a high data rate resulting in a need for dual-polarization in vertical and horizontal. Furthermore, size reduction is critical in a MIMO system to deploy more antenna elements requiring a compact, low-profile design. A compact dual-band 4-MIMO antenna system has been presented in this paper with pattern and polarization diversity. The proposed single antenna structure has been designed using two antenna layers with a C shape in the front layer and a partial slot with a U-shaped cut in the ground to enhance isolation. The single antenna is printed on an FR4 dielectric substrate with an overall size of 18 mm×18 mm×1.6 mm. The 4-MIMO antenna elements were printed orthogonally on an FR4 substrate with a size dimension of 36 × 36 × 1.6 mm3 with zero edge-to-edge separation distance. The proposed compact 4-MIMO antenna elements resonate at 3.4-3.6 GHz and 4.8-5 GHz. The s-parameters measurement and simulation results agree, especially in the lower band with a slight frequency shift of the measurement results at the upper band due to fabrication imperfection. The proposed design shows isolation above -15 dB and -22 dB across the 4-MIMO elements. The MIMO diversity performance has been evaluated in terms of efficiency, ECC, DG, TARC, and CCL. The total and radiation efficiency were above 50 % across all parameters in both frequency bands. The ECC values were lower than 0.10, and the DG results were about 9.95 dB in all antenna elements. TARC results exhibited values lower than 0 dB with values lower than -25 dB in all MIMO elements at the dual-bands. Moreover, the channel capacity losses in the MIMO system were depicted using CCL with values lower than 0.4 Bits/s/Hz.Keywords: compact antennas, MIMO antenna system, 5G communication, dual band, ECC, DG, TARC
Procedia PDF Downloads 1433743 Innovative Fabric Integrated Thermal Storage Systems and Applications
Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison
Abstract:
In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.Keywords: fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration
Procedia PDF Downloads 1663742 Hepatic Regenerative Capacity after Acetaminophen-Induced Liver Injury in Mouse Model
Authors: N. F. Hamid, A. Kipar, J. Stewart, D. J. Antoine, B. K. Park, D. P. Williams
Abstract:
Acetaminophen (APAP) is a widely used analgesic that is safe at therapeutic doses. The mouse model of APAP has been extensively used for studies on pathogenesis and intervention of drug induced liver injury based on the CytP450 mediated formation of N-acetyl-p-benzo-quinoneimine and, more recently, as model for mechanism based biomarkers. Delay of the fasted CD1 mice to rebound to the basal level of hepatic GSH compare to fed mice is reported in this study. Histologically, 15 hours fasted mice prior to APAP treatment leading to overall more intense cell loss with no evidence of apoptosis as compared to non-fasted mice, where the apoptotic cells were clearly seen on cleaved caspase-3 immunostaining. After 15 hours post APAP administration, hepatocytes underwent stage of recovery with evidence of mitotic figures in fed mice and return to completely no histological difference to control at 24 hours. On the contrary, the evidence of ongoing cells damage and inflammatory cells infiltration are still present on fasted mice until the end of the study. To further measure the regenerative capacity of the hepatocytes, the inflammatory mediators of cytokines that involved in the progression or regression of the toxicity like TNF-α and IL-6 in liver and spleen using RT-qPCR were also included. Yet, quantification of proliferating cell nuclear antigen (PCNA) has demonstrated the time for hepatic regenerative in fasted is longer than that to fed mice. Together, these data would probably confirm that fasting prior to APAP treatment does not only modulate liver injury, but could have further effects to delay subsequent regeneration of the hepatocytes.Keywords: acetaminophen, liver, proliferating cell nuclear antigen, regeneration, apoptosis
Procedia PDF Downloads 4343741 The Seedlings Pea (Pisum Sativum L.) Have A High Potential To Be Used As A Promising Condidate For The Study Of Phytoremediation Mechanisms Following An Aromatic Polycyclic Hydrocarbon (Hap) Contamination Such As Naphtalene
Authors: Agoun-bahar Salima
Abstract:
The environmental variations to which plants are subjected require them to have a strong capacity for adaptation. Some plants are affected by pollutants and are used as pollution indicators; others have the capacity to block, extract, accumulate, transform or degrade the xenobiotic. The diversity of the legume family includes around 20 000 species and offers opportunities for exploitation through their agronomic, dietary and ecological interests. The lack of data on the bioavailability of the Aromatic Polycyclic Hydrocarbon (PAH) in polluted environments, as their passage in the food chains and on the effects of interaction with other pollutants, justifies priority research on this vast family of hydrocarbons. Naphthalene is a PAH formed from two aromatic rings, it is listed and classified as priority pollutant in the list of 16 PAH by the United States Environmental Protection Agency. The aim of this work was to determinate effect of naphthalene at different concentrations on morphological and physiological responses of pea seedlings. At the same time, the behavior of the pollutant in the soil and its fate at the different parts of plant (roots, stems, leaves and fruits) were also recorded by Gas Chromatography/ Mass Spectrometry (GC / MS). In it controlled laboratory studies, plants exposed to naphthalene were able to grow efficiently. From a quantitative analysis, 67% of the naphthalene was removed from the soil and then found on the leaves of the seedlings in just three weeks of cultivation. Interestingly, no trace of naphthalene or its derivatives were detected on the chromatograms corresponding to the dosage of the pollutant at the fruit level after ten weeks of cultivating the seedlings and this for all the pollutant concentrations used. The pea seedlings seem to tolerate the pollutant when it is applied to the soil. In conclusion, the pea represents an interesting biological model in the study of phytoremediation mechanisms.Keywords: naphtalene, PAH, Pea, phytoremediation, pollution
Procedia PDF Downloads 753740 Modelling of Geotechnical Data Using Geographic Information System and MATLAB for Eastern Ahmedabad City, Gujarat
Authors: Rahul Patel
Abstract:
Ahmedabad, a city located in western India, is experiencing rapid growth due to urbanization and industrialization. It is projected to become a metropolitan city in the near future, resulting in various construction activities. Soil testing is necessary before construction can commence, requiring construction companies and contractors to periodically conduct soil testing. The focus of this study is on the process of creating a spatial database that is digitally formatted and integrated with geotechnical data and a Geographic Information System (GIS). Building a comprehensive geotechnical (Geo)-database involves three steps: collecting borehole data from reputable sources, verifying the accuracy and redundancy of the data, and standardizing and organizing the geotechnical information for integration into the database. Once the database is complete, it is integrated with GIS, allowing users to visualize, analyze, and interpret geotechnical information spatially. Using a Topographic to Raster interpolation process in GIS, estimated values are assigned to all locations based on sampled geotechnical data values. The study area was contoured for SPT N-Values, Soil Classification, Φ-Values, and Bearing Capacity (T/m2). Various interpolation techniques were cross-validated to ensure information accuracy. This GIS map enables the calculation of SPT N-Values, Φ-Values, and bearing capacities for different footing widths and various depths. This study highlights the potential of GIS in providing an efficient solution to complex phenomena that would otherwise be tedious to achieve through other means. Not only does GIS offer greater accuracy, but it also generates valuable information that can be used as input for correlation analysis. Furthermore, this system serves as a decision support tool for geotechnical engineers.Keywords: ArcGIS, borehole data, geographic information system, geo-database, interpolation, SPT N-value, soil classification, Φ-Value, bearing capacity
Procedia PDF Downloads 743739 Speciation Analysis by Solid-Phase Microextraction and Application to Atrazine
Authors: K. Benhabib, X. Pierens, V-D Nguyen, G. Mimanne
Abstract:
The main hypothesis of the dynamics of solid phase microextraction (SPME) is that steady-state mass transfer is respected throughout the SPME extraction process. It considers steady-state diffusion is established in the two phases and fast exchange of the analyte at the solid phase film/water interface. An improved model is proposed in this paper to handle with the situation when the analyte (atrazine) is in contact with colloid suspensions (carboxylate latex in aqueous solution). A mathematical solution is obtained by substituting the diffusion coefficient by the mean of diffusion coefficient between analyte and carboxylate latex, and also thickness layer by the mean thickness in aqueous solution. This solution provides an equation relating the extracted amount of the analyte to the extraction a little more complicated than previous models. It also gives a better description of experimental observations. Moreover, the rate constant of analyte obtained is in satisfactory agreement with that obtained from the initial curve fitting.Keywords: pesticide, solid-phase microextraction (SPME) methods, steady state, analytical model
Procedia PDF Downloads 4893738 Nonlinear Response of Tall Reinforced Concrete Shear Wall Buildings under Wind Loads
Authors: Mahtab Abdollahi Sarvi, Siamak Epackachi, Ali Imanpour
Abstract:
Reinforced concrete shear walls are commonly used as the lateral load-resisting system of mid- to high-rise office or residential buildings around the world. Design of such systems is often governed by wind rather than seismic effects, in particular in low-to-moderate seismic regions. The current design philosophy as per the majority of building codes under wind loads require elastic response of lateral load-resisting systems including reinforced concrete shear walls when subjected to the rare design wind load, resulting in significantly large wall sections needed to meet strength requirements and drift limits. The latter can highly influence the design in upper stories due to stringent drift limits specified by building codes, leading to substantial added costs to the construction of the wall. However, such walls may offer limited to moderate over-strength and ductility due to their large reserve capacity provided that they are designed and detailed to appropriately develop such over-strength and ductility under extreme wind loads. This would significantly contribute to reducing construction time and costs, while maintaining structural integrity under gravity and frequently-occurring and less frequent wind events. This paper aims to investigate the over-strength and ductility capacity of several imaginary office buildings located in Edmonton, Canada with a glance at earthquake design philosophy. Selected models are 10- to 25-story buildings with three types of reinforced concrete shear wall configurations including rectangular, barbell, and flanged. The buildings are designed according to National Building Code of Canada. Then fiber-based numerical models of the walls are developed in Perform 3D and by conducting nonlinear static (pushover) analysis, lateral nonlinear behavior of the walls are evaluated. Ductility and over-strength of the structures are obtained based on the results of the pushover analyses. The results confirmed moderate nonlinear capacity of reinforced concrete shear walls under extreme wind loads. This is while lateral displacements of the walls pass the serviceability limit states defined in Pre standard for Performance-Based Wind Design (ASCE). The results indicate that we can benefit the limited nonlinear response observed in the reinforced concrete shear walls to economize the design of such systems under wind loads.Keywords: concrete shear wall, high-rise buildings, nonlinear static analysis, response modification factor, wind load
Procedia PDF Downloads 1073737 Effect of Irrigation Regime and Plant Density on Chickpea (Cicer arietinum L.) Yield in a Semi-Arid Environment
Authors: Atif Naim, Faisal E. Ahmed, Sershen
Abstract:
A field experiment was conducted for two consecutive winter seasons at the Demonstration Farm of the Faculty of Agriculture, University of Khartoum, Sudan, to study effects of different levels of irrigation regime and plant density on yield of introduced small seeded (desi type) chickpea cultivar (ILC 482). The experiment was laid out in a 3X3 factorial split-plot design with 4 replications. The treatments consisted of three irrigation regimes (designated as follows: I1 = optimum irrigation, I2 = moderate stress and I3 = severe stress; this corresponded with irrigation after drainage of 50%, 75% and 100% of available water based on 70%, 60% and 50% of field capacity, respectively) assigned as main plots and three plant densities (D₁=20, D₂= 40 and D₃= 60 plants/m²) assigned as subplots. The results indicated that the yield components (number of pods per plant, number of seeds per pod, 100 seed weight), seed yield per plant, harvest index and yield per unit area of chickpea were significantly (p < 0.05) affected by irrigation regime. Decreasing irrigation regime significantly (p < 0.05) decreased all measured parameters. Alternatively, increasing plant density significantly (p < 0.05) decreased the number of pods and seed yield per plant and increased seed yield per unit area. While number of seeds per pod and harvest index were not significantly (p > 0.05) affected by plant density. Interaction between irrigation regime and plant density was also significantly (p < 0.05) affected all measured parameters of yield, except for harvest index. It could be concluded that the best irrigation regime was full irrigation (after drainage of 50% available water at 70% field capacity) and the optimal plant density was 20 plants/m² under conditions of semi-arid regions.Keywords: irrigation regime, Cicer arietinum, chickpea, plant density
Procedia PDF Downloads 2253736 Research on Control Strategy of Differential Drive Assisted Steering of Distributed Drive Electric Vehicle
Authors: J. Liu, Z. P. Yu, L. Xiong, Y. Feng, J. He
Abstract:
According to the independence, accuracy and controllability of the driving/braking torque of the distributed drive electric vehicle, a control strategy of differential drive assisted steering was designed. Firstly, the assisted curve under different speed and steering wheel torque was developed and the differential torques were distributed to the right and left front wheels. Then the steering return ability assisted control algorithm was designed. At last, the joint simulation was conducted by CarSim/Simulink. The result indicated: the differential drive assisted steering algorithm could provide enough steering drive-assisted under low speed and improve the steering portability. Along with the increase of the speed, the provided steering drive-assisted decreased. With the control algorithm, the steering stiffness of the steering system increased along with the increase of the speed, which ensures the driver’s road feeling. The control algorithm of differential drive assisted steering could avoid the understeer under low speed effectively.Keywords: differential assisted steering, control strategy, distributed drive electric vehicle, driving/braking torque
Procedia PDF Downloads 4783735 Module Based Review over Current Regenerative Braking Landing Gear
Authors: Madikeri Rohit
Abstract:
As energy efficiency is the key concern in many aircraft manufacturing companies regenerative braking is a technique using which energy lost due to friction while braking can be regained. In the operation of an aircraft, significant energy is lost during deceleration or braking which occurs during its landing phase. This problem can be overcome using Regenerative Breaking System (RBS) in landing gear. The major problem faced is regarding the batteries and the overall efficiency gained in competence with the added weight. As the amount of energy required to store is huge we need batteries with high capacity for storage. Another obstacle by using high capacity batteries is the added weight which undermines the efficiency obtained using RBS. An approach to this problem is to either use the obtained energy immediately without storage or to store in other forms such as mechanical, pneumatic and hydraulic. Problem faced with mechanical systems is the weight of the flywheel needed to obtain required efficiency. Pneumatic and hydraulic systems are a better option at present. Using hydraulic systems for storing energy is efficient as it integrates into the overall hydraulic system present in the aircraft. Another obstacle is faced with the redundancy of this system. Conventional braking must be used along with RBS in order to provide redundancy. Major benefits obtained using RBS is with the help of the energy obtained during landing which can be used of engine less taxing. This reduces fuel consumption as well as noise and air pollution. Another added benefit of using RBS is to provide electrical supply to lighting systems, cabin pressurization system and can be used for emergency power supply in case of electric failure. This paper discusses about using RBS in landing gear, problems, prospects and new techniques being pursued to improve RBS.Keywords: regenerative braking, types of energy conversion, landing gear, energy storage
Procedia PDF Downloads 2623734 Highly Robust Crosslinked BIAN-based Binder to Stabilize High-Performance Silicon Anode in Lithium-Ion Secondary Battery
Authors: Agman Gupta, Rajashekar Badam, Noriyoshi Matsumi
Abstract:
Introduction: Recently, silicon has been recognized as one of the potential alternatives as anode active material in Li-ion batteries (LIBs) to replace the conventionally used graphite anodes. Silicon is abundantly present in the nature, it can alloy with lithium metal, and has a higher theoretical capacity (~4200 mAhg-1) that is approximately 10 times higher than graphite. However, because of a large volume expansion (~400%) upon repeated de-/alloying, the pulverization of Si particles causes the exfoliation of electrode laminate leading to the loss of electrical contact and adversely affecting the formation of solid-electrolyte interface (SEI).1 Functional polymers as binders have emerged as a competitive strategy to mitigate these drawbacks and failure mechanism of silicon anodes.1 A variety of aqueous/non-aqueous polymer binders like sodium carboxy-methyl cellulose (CMC-Na), styrene butadiene rubber (SBR), poly(acrylic acid), and other variants like mussel inspired binders have been investigated to overcome these drawbacks.1 However, there are only a few reports that mention the attempt of addressing all the drawbacks associated with silicon anodes effectively using a single novel functional polymer system as a binder. In this regard, here, we report a novel highly robust n-type bisiminoacenaphthenequinone (BIAN)-paraphenylene-based crosslinked polymer as a binder for Si anodes in lithium-ion batteries (Fig. 1). On its application, crosslinked-BIAN binder was evaluated to provide mechanical robustness to the large volume expansion of Si particles, maintain electrical conductivity within the electrode laminate, and facilitate in the formation of a thin SEI by restricting the extent of electrolyte decomposition on the surface of anode. The fabricated anodic half-cells were evaluated electrochemically for their rate capability, cyclability, and discharge capacity. Experimental: The polymerized BIAN (P-BIAN) copolymer was synthesized as per the procedure reported by our group.2 The synthesis of crosslinked P-BIAN: a solution of P-BIAN copolymer (1.497 g, 10 mmol) in N-methylpyrrolidone (NMP) (150 ml) was set-up to stir under reflux in nitrogen atmosphere. To this, 1,6-dibromohexane (5 mmol, 0.77 ml) was added dropwise. The resultant reaction mixture was stirred and refluxed at 150 °C for 24 hours followed by refrigeration for 3 hours at 5 °C. The product was obtained by evaporating the NMP solvent under reduced pressure and drying under vacuum at 120 °C for 12 hours. The obtained product was a black colored sticky compound. It was characterized by 1H-NMR, XPS, and FT-IR techniques. Results and Discussion: The N 1s XPS spectrum of the crosslinked BIAN polymer showed two characteristic peaks corresponding to the sp2 hybridized nitrogen (-C=N-) at 399.6 eV of the diimine backbone in the BP and quaternary nitrogen at 400.7 eV corresponding to the crosslinking of BP via dibromohexane. The DFT evaluation of the crosslinked BIAN binder showed that it has a low lying lowest unoccupied molecular orbital (LUMO) that enables it to get doped in the reducing environment and influence the formation of a thin (SEI). Therefore, due to the mechanically robust crosslinked matrices as well as its influence on the formation of a thin SEI, the crosslinked BIAN binder stabilized the Si anode-based half-cell for over 1000 cycles with a reversible capacity of ~2500 mAhg-1 and ~99% capacity retention as shown in Fig. 2. The dynamic electrochemical impedance spectroscopy (DEIS) characterization of crosslinked BIAN-based anodic half-cell confirmed that the SEI formed was thin in comparison with the conventional binder-based anodes. Acknowledgement: We are thankful to the financial support provided by JST-Mirai Program, Grant Number: JP18077239Keywords: self-healing binder, n-type binder, thin solid-electrolyte interphase (SEI), high-capacity silicon anodes, low-LUMO
Procedia PDF Downloads 1703733 Investigation of the Effects of the Whey Addition on the Biogas Production of a Reactor Using Cattle Manure for Biogas Production
Authors: Behnam Mahdiyan Nasl
Abstract:
In a lab-scale research, the effects of feeding whey into the biogas system and how to solve the probable problems arising were analysed. In the study a semi-continuous glass reactor, having a total capacity of 13 liters and having a working capacity of 10 liters, was placed in an incubator, and the temperature was tried to be held at 38 °C. At first, the reactor was operated by adding 5 liters of animal manure and water with a ratio of 1/1. By passing time, the production rate of the gas reduced intensively that on the fourth day there was no production of gas and the system stopped working. In this condition, the pH was adjusted and by adding NaOH, it was increased from 5.4 to 7. On 48th day, the first gas measurement was done and an amount of 12.07 % of CH₄ was detected. After making buffer in the ambient, the number of bacteria existing in the cattle’s manure and contributing to the gas production was thought to be not adequate, and up to 20 % of its volume 2 liters of mud was added to the reactor. 7 days after adding the anaerobic mud, second gas measurement was carried out, and biogas including 43 % CH₄ was obtained. From the 61st day of the study, the cheese whey with the animal manure was started to be added with an amount of 40 mL per day. However, by passing time, the raising of the microorganisms existed in the whey (especially Ni and Co), the percent of methane in the biogas decreased. In fact, 2 weeks after adding PAS, the gas measurement was done and 36,97 % CH₄ was detected. 0,06 mL Ni-Co (to gain a concentration of 0.05 mg/L in the reactor’s mixture) solution was added to the system for 15 days. To find out the effect of the solution on archaea, 7 days after stopping addition of the solution, methane gas was found to have a 9,03 % increase and reach 46 %. Lastly, the effects of adding molasses to the reactor were investigated. The effects of its activity on the bacteria was analysed by adding 4 grams of it to the system. After adding molasses in 10 days, according to the last measurement, the amount of methane gas reached up to 49%.Keywords: biogas, cheese whey, cattle manure, energy
Procedia PDF Downloads 3343732 Phenolic Compounds and Antioxidant Capacity of Nine Genotypes of Thai Rice (Oryza sativa L.)
Authors: Pitchaon Maisuthisakul, Ladawan Changchub
Abstract:
Rice (Oryza sativa L.) is a staple diet in Thailand. Rice cultivation is traditional occupation of Thailand which passed down through generations. The 1 Rai 1 san project is new agricultural theory according to sufficient economy using green technology without using chemical substances. This study was conducted to evaluate total phenolics using HPLC and colorimetric methods including total anthocyanin content of Thai rice extracting by simulated gastric and intestinal condition and to estimate antioxidant capacity using DPPH and thiocyanate methods. Color and visible spectrum of rice grains were also investigated. Rice grains were classified into three groups according to their color appearance. The light brown grain genotypes are Sin Lek, Jasmine 105, Lao Tek and Hawm Ubon. The red group is Sang Yod and Red Jasmine. Genotypes Kum, Hawm Kanya and Hawm Nil are black rice grains. Cyanidin-3-O-glucoside was found in only black rice genotypes, whereas chlorogenic acid was found in all rice grains. The black rice had higher phenolic content than red and light brown samples. Phenolic acids constitute a small portion of phenolic compounds after digestion in human and contribute to the antioxidant activity of Thai rice grains. Anthocyanin contents of all rice extracts ranged from 45.9 to 442.1 mg CGE/kg. All rice extracts showed the antioxidant efficiency lower than ferulic acid. Genotype Kum and Hawm nil exhibited the ability of antioxidant efficiency higher than α-tocopherol. Interestingly, the visible spectrum of only black rice genotypes showed the maximum peak at 530-540 nm. The results suggest that consumption of black rice gives more health benefits of grain to consumer.Keywords: rice, phenolic, antioxidant, anthocyanin
Procedia PDF Downloads 3593731 Microencapsulation of Phenobarbital by Ethyl Cellulose Matrix
Authors: S. Bouameur, S. Chirani
Abstract:
The aim of this study was to evaluate the potential use of EthylCellulose in the preparation of microspheres as a Drug Delivery System for sustained release of phenobarbital. The microspheres were prepared by solvent evaporation technique using ethylcellulose as polymer matrix with a ratio 1:2, dichloromethane as solvent and Polyvinyl alcohol 1% as processing medium to solidify the microspheres. Size, shape, drug loading capacity and entrapement efficiency were studied.Keywords: phenobarbital, microspheres, ethylcellulose, polyvinylacohol
Procedia PDF Downloads 3613730 Adhesion of Staphylococcus epidermidis and Staphylococcus aureus to Intravascular cannulae
Authors: Ghadah Abusalim, Suliman Alharbi, Hesham Khalil, Milton Wainwright, Mohammad A. Khiyami
Abstract:
The use of implantable foreign devices in medicine has recently increased dramatically. Intravascular cannulae and catheters are used to administer fluids, medications, parenteral nutrition, and blood products in order to monitor hemodynamic status and also to provide hemodialysis. The early and late failure of inserted or implanted devices is largely the result of bacterial infection and may lead to the disruption of integration between the device and the tissues which surround it. Staphylococcus aureus and Staphylococcus epidermidis are widely considered to be the most common organisms causing device-related infection. Our study showed that S. aureus and S. epidermidis adhered to intravascular cannulae made up of PTFE, SPTFE and vialon. Adhesion of S. epidermidis and S. aureus to intravascular cannulae varied significantly depending upon the type of material used and the presence of coating materials. Both bacteria adhered less to PTFE followed by Vialon and SPTFE and the adhesion capacity of S. aureus and S. epidermidis increased over time. Coating intravascular cannulae with human serum albumin inhibited the adhesion of S. aureus and S. epidermidis to these cannulae, and pretreatment of cannulae with fibronectin inhibited the adhesion of S. epidermidis but increased the adhesion of S. aureus to all types of cannulae. Pretreatment of cannulae surface with potassium chloride or calcium chloride increased the adhesion of S. aureus and S. epidermidis to cannulae, suggesting a role for electrostatic forces in the mechanism of such adhesion. This study will hopefully clarify the mechanism of adhesion and provide possible means of preventing such adhesion either by the use of better material coatings or by interfering with the process of adhesion by targeting bacterial structures responsible for it. Currently we recommend the use of PTFE cannulae as they exhibit a lower bacterial adhesion capacity compared to the other tested cannulae.Keywords: Staphylococcus epidermidis, Staphylococcus aureus, adhesion, cannulae, PTFE, Vialon
Procedia PDF Downloads 3493729 Isotherm Study for Phenol Removal onto GAC
Authors: Lallan Singh Yadav, Bijay Kumar Mishra, Manoj Kumar Mahapatra, Arvind Kumar
Abstract:
Adsorption data for phenol removal onto granular activated carbon were fitted to Langmuir and Freundlich isotherms. The adsorption capacity of phenol was estimated to be 16.12 mg/g at initial pH=5.7. The thermodynamics of adsorption process has also been determined in the present work.Keywords: adsorption, phenol, granular activated carbon, bioinformatics, biomedicine
Procedia PDF Downloads 6153728 Experimental Analysis of the Performance of a System for Freezing Fish Products Equipped with a Modulating Vapour Injection Scroll Compressor
Authors: Domenico Panno, Antonino D’amico, Hamed Jafargholi
Abstract:
This paper presents an experimental analysis of the performance of a system for freezing fish products equipped with a modulating vapour injection scroll compressor operating with R448A refrigerant. Freezing is a critical process for the preservation of seafood products, as it influences quality, food safety, and environmental sustainability. The use of a modulating scroll compressor with vapour injection, associated with the R448A refrigerant, is proposed as a solution to optimize the performance of the system, reducing energy consumption and mitigating the environmental impact. The stream injection modulating scroll compressor represents an advanced technology that allows you to adjust the compressor capacity based on the actual cooling needs of the system. Vapour injection allows the optimization of the refrigeration cycle, reducing the evaporation temperature and improving the overall efficiency of the system. The use of R448A refrigerant, with a low Global Warming Potential (GWP), is part of an environmental sustainability perspective, helping to reduce the climate impact of the system. The aim of this research was to evaluate the performance of the system through a series of experiments conducted on a pilot plant for the freezing of fish products. Several operational variables were monitored and recorded, including evaporation temperature, condensation temperature, energy consumption, and freezing time of seafood products. The results of the experimental analysis highlighted the benefits deriving from the use of the modulating vapour injection scroll compressor with the R448A refrigerant. In particular, a significant reduction in energy consumption was recorded compared to conventional systems. The modulating capacity of the compressor made it possible to adapt the cold production to variations in the thermal load, ensuring optimal operation of the system and reducing energy waste. Furthermore, the use of an electronic expansion valve highlighted greater precision in the control of the evaporation temperature, with minimal deviation from the desired set point. This helped ensure better quality of the final product, reducing the risk of damage due to temperature changes and ensuring uniform freezing of the fish products. The freezing time of seafood has been significantly reduced thanks to the configuration of the entire system, allowing for faster production and greater production capacity of the plant. In conclusion, the use of a modulating vapour injection scroll compressor operating with R448A has proven effective in improving the performance of a system for freezing fish products. This technology offers an optimal balance between energy efficiency, temperature control, and environmental sustainability, making it an advantageous choice for food industries.Keywords: scroll compressor, vapor injection, refrigeration system, EER
Procedia PDF Downloads 453727 Acceleration of Adsorption Kinetics by Coupling Alternating Current with Adsorption Process onto Several Adsorbents
Authors: A. Kesraoui, M. Seffen
Abstract:
Applications of adsorption onto activated carbon for water treatment are well known. The process has been demonstrated to be widely effective for removing dissolved organic substances from wastewaters, but this treatment has a major drawback is the high operating cost. The main goal of our research work is to improve the retention capacity of Tunisian biomass for the depollution of industrial wastewater and retention of pollutants considered toxic. The biosorption process is based on the retention of molecules and ions onto a solid surface composed of biological materials. The evaluation of the potential use of these materials is important to propose as an alternative to the adsorption process generally expensive, used to remove organic compounds. Indeed, these materials are very abundant in nature and are low cost. Certainly, the biosorption process is effective to remove the pollutants, but it presents a slow kinetics. The improvement of the biosorption rates is a challenge to make this process competitive with respect to oxidation and adsorption onto lignocellulosic fibers. In this context, the alternating current appears as a new alternative, original and a very interesting phenomenon in the acceleration of chemical reactions. Our main goal is to increase the retention acceleration of dyes (indigo carmine, methylene blue) and phenol by using a new alternative: alternating current. The adsorption experiments have been performed in a batch reactor by adding some of the adsorbents in 150 mL of pollutants solution with the desired concentration and pH. The electrical part of the mounting comprises a current source which delivers an alternating current voltage of 2 to 15 V. It is connected to a voltmeter that allows us to read the voltage. In a 150 mL capacity cell, we plunged two zinc electrodes and the distance between two Zinc electrodes has been 4 cm. Thanks to alternating current, we have succeeded to improve the performance of activated carbon by increasing the speed of the indigo carmine adsorption process and reducing the treatment time. On the other hand, we have studied the influence of the alternating current on the biosorption rate of methylene blue onto Luffa cylindrica fibers and the hybrid material (Luffa cylindrica-ZnO). The results showed that the alternating current accelerated the biosorption rate of methylene blue onto the Luffa cylindrica and the Luffa cylindrica-ZnO hybrid material and increased the adsorbed amount of methylene blue on both adsorbents. In order to improve the removal of phenol, we performed the coupling between the alternating current and the biosorption onto two adsorbents: Luffa cylindrica and the hybrid material (Luffa cylindrica-ZnO). In fact, the alternating current has succeeded to improve the performance of adsorbents by increasing the speed of the adsorption process and the adsorption capacity and reduce the processing time.Keywords: adsorption, alternating current, dyes, modeling
Procedia PDF Downloads 1603726 A Study of Soft Soil Improvement by Using Lime Grit
Authors: Ashim Kanti Dey, Briti Sundar Bhowmik
Abstract:
This paper presents an idea to improve the soft soil by using lime grits which are normally produced as waste product in the paper manufacturing industries. This waste material cannot be used as a construction material because of its light weight, uniform size and poor compaction control. With scarcity in land, effective disposal of lime grit is a major concern of all paper manufacturing industries. Considering its non-plasticity and high permeability characteristics the lime grit may suitably be used as a drainage material for speedy consolidation of cohesive soil. It can also be used to improve the bearing capacity of soft clay. An attempt has been made in this paper to show the usefulness of lime grit in improving the bearing capacity of shallow foundation resting on soft clayey soil. A series of undrained unconsolidated cyclic triaxial tests performed at different area ratios and at three different water contents shows that dynamic shear modulus and damping ratio can be substantially improved with lime grit. Improvement is observed to be more in case of higher area ratio and higher water content. Static triaxial tests were also conducted on lime grit reinforced clayey soil after application of 50 load cycles to determine the effect of lime grit columns on cyclically loaded clayey soils. It is observed that the degradation is less for lime grit stabilized soil. A study of model test with different area ratio of lime column installation is also included to see the field behaviour of lime grit reinforced soil.Keywords: lime grit column, area ratio, shear modulus, damping ratio, strength ratio, improvement factor, degradation factor
Procedia PDF Downloads 5033725 Relocation of Plastic Hinge of Interior Beam Column Connections with Intermediate Bars in Reinforced Concrete and T-Section Steel Inserts in Precast Concrete Frames
Authors: P. Wongmatar, C. Hansapinyo, C. Buachart
Abstract:
Failure of typical seismic frames has been found by plastic hinge occurring on beams section near column faces. Past researches shown that the seismic capacity of the frames can be enhanced if the plastic hinges of the beams are shifted away from the column faces. This paper presents detailing of reinforcements in the interior beam–column connections aiming to relocate the plastic hinge of reinforced concrete and precast concrete frames. Four specimens were tested under quasi-static cyclic load including two monolithic specimens and two precast specimens. For one monolithic specimen, typical seismic reinforcement was provided and considered as a reference specimen named M1. The other reinforced concrete frame M2 contained additional intermediate steel in the connection area compared with the specimen M1. For the precast specimens, embedded T-section steels in joint were provided, with and without diagonal bars in the connection area for specimen P1 and P2, respectively. The test results indicated the ductile failure with beam flexural failure in monolithic specimen M1 and the intermediate steel increased strength and improved joint performance of specimen M2. For the precast specimens, cracks generated at the end of the steel inserts. However, slipping of reinforcing steel lapped in top of the beams was seen before yielding of the main bars leading to the brittle failure. The diagonal bars in precast specimens P2 improved the connection stiffness and the energy dissipation capacity.Keywords: relocation, plastic hinge, intermediate bar, T-section steel, precast concrete frame
Procedia PDF Downloads 2733724 Parameter and Lose Effect Analysis of Beta Stirling Cycle Refrigerating Machine
Authors: Muluken Z. Getie, Francois Lanzetta, Sylvie Begot, Bimrew T. Admassu
Abstract:
This study is aimed at the numerical analysis of the effects of phase angle and losses (shuttle heat loss and gas leakage to the crankcase) that could have an impact on the pressure and temperature of working fluid for a β-type Stirling cycle refrigerating machine. First, the developed numerical model incorporates into the ideal adiabatic analysis, the shuttle heat transfer (heat loss from compression space to expansion space), and gas leakage from the working space to the buffer space into the crankcase. The other losses that may not have a direct effect on the temperature and pressure of working fluid are simply incorporated in a simple analysis. The model is then validated by reversing the model to the engine model and compared with other literature results using (GPU-3) engine. After validating the model with other engine model and experiment results, analysis of the effect of phase angle, shuttle heat lose and gas leakage on temperature, pressure, and performance (power requirement, cooling capacity and coefficient of performance) of refrigerating machine considering the FEMTO 60 Stirling engine as a case study have been conducted. Shuttle heat loss has a greater effect on the temperature of working gas; gas leakage to the crankcase has more effect on the pressure of working spaces and hence both have a considerable impact on the performance of the Stirling cycle refrigerating machine. The optimum coefficient of performance exists between phase angles of 900-950, and optimum cooling capacity could be found between phase angles of 950-980.Keywords: beta configuration, engine model, moderate cooling, stirling refrigerator, and validation
Procedia PDF Downloads 1023723 Magnetized Cellulose Nanofiber Extracted from Natural Resources for the Application of Hexavalent Chromium Removal Using the Adsorption Method
Authors: Kebede Gamo Sebehanie, Olu Emmanuel Femi, Alberto Velázquez Del Rosario, Abubeker Yimam Ali, Gudeta Jafo Muleta
Abstract:
Water pollution is one of the most serious worldwide issues today. Among water pollution, heavy metals are becoming a concern to the environment and human health due to their non-biodegradability and bioaccumulation. In this study, a magnetite-cellulose nanocomposite derived from renewable resources is employed for hexavalent chromium elimination by adsorption. Magnetite nanoparticles were synthesized directly from iron ore using solvent extraction and co-precipitation technique. Cellulose nanofiber was extracted from sugarcane bagasse using the alkaline treatment and acid hydrolysis method. Before and after the adsorption process, the MNPs-CNF composites were evaluated using X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared (FTIR), and Vibrator sample magnetometer (VSM), and Thermogravimetric analysis (TGA). The impacts of several parameters such as pH, contact time, initial pollutant concentration, and adsorbent dose on adsorption efficiency and capacity were examined. The kinetic and isotherm adsorption of Cr (VI) was also studied. The highest removal was obtained at pH 3, and it took 80 minutes to establish adsorption equilibrium. The Langmuir and Freundlich isotherm models were used, and the experimental data fit well with the Langmuir model, which has a maximum adsorption capacity of 8.27 mg/g. The kinetic study of the adsorption process using pseudo-first-order and pseudo-second-order equations revealed that the pseudo-second-order equation was more suited for representing the adsorption kinetic data. Based on the findings, pure MNPs and MNPs-CNF nanocomposites could be used as effective adsorbents for the removal of Cr (VI) from wastewater.Keywords: magnetite-cellulose nanocomposite, hexavalent chromium, adsorption, sugarcane bagasse
Procedia PDF Downloads 1293722 Synthesis of LiMₓMn₂₋ₓO₄ Doped Co, Ni, Cr and Its Characterization as Lithium Battery Cathode
Authors: Dyah Purwaningsih, Roto Roto, Hari Sutrisno
Abstract:
Manganese dioxide (MnO₂) and its derivatives are among the most widely used materials for the positive electrode in both primary and rechargeable lithium batteries. The MnO₂ derivative compound of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is one of the leading candidates for positive electrode materials in lithium batteries as it is abundant, low cost and environmentally friendly. Over the years, synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) has been carried out using various methods including sol-gel, gas condensation, spray pyrolysis, and ceramics. Problems with these various methods persist including high cost (so commercially inapplicable) and must be done at high temperature (environmentally unfriendly). This research aims to: (1) synthesize LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) by reflux technique; (2) develop microstructure analysis method from XRD Powder LiMₓMn₂₋ₓO₄ data with the two-stage method; (3) study the electrical conductivity of LiMₓMn₂₋ₓO₄. This research developed the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) with reflux. The materials consisting of Mn(CH₃COOH)₂. 4H₂O and Na₂S₂O₈ were refluxed for 10 hours at 120°C to form β-MnO₂. The doping of Co, Ni and Cr were carried out using solid-state method with LiOH to form LiMₓMn₂₋ₓO₄. The instruments used included XRD, SEM-EDX, XPS, TEM, SAA, TG/DTA, FTIR, LCR meter and eight-channel battery analyzer. Microstructure analysis of LiMₓMn₂₋ₓO₄ was carried out on XRD powder data by two-stage method using FullProf program integrated into WinPlotR and Oscail Program as well as on binding energy data from XPS. The morphology of LiMₓMn₂₋ₓO₄ was studied with SEM-EDX, TEM, and SAA. The thermal stability test was performed with TG/DTA, the electrical conductivity was studied from the LCR meter data. The specific capacity of LiMₓMn₂₋ₓO₄ as lithium battery cathode was tested using an eight-channel battery analyzer. The results showed that the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) was successfully carried out by reflux. The optimal temperature of calcination is 750°C. XRD characterization shows that LiMn₂O₄ has a cubic crystal structure with Fd3m space group. By using the CheckCell in the WinPlotr, the increase of Li/Mn mole ratio does not result in changes in the LiMn₂O₄ crystal structure. The doping of Co, Ni and Cr on LiMₓMn₂₋ₓO₄ (x = 0.02; 0.04; 0; 0.6; 0.08; 0.10) does not change the cubic crystal structure of Fd3m. All the formed crystals are polycrystals with the size of 100-450 nm. Characterization of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) microstructure by two-stage method shows the shrinkage of lattice parameter and cell volume. Based on its range of capacitance, the conductivity obtained at LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is an ionic conductivity with varying capacitance. The specific battery capacity at a voltage of 4799.7 mV for LiMn₂O₄; Li₁.₀₈Mn₁.₉₂O₄; LiCo₀.₁Mn₁.₉O₄; LiNi₀.₁Mn₁.₉O₄ and LiCr₀.₁Mn₁.₉O₄ are 88.62 mAh/g; 2.73 mAh/g; 89.39 mAh/g; 85.15 mAh/g; and 1.48 mAh/g respectively.Keywords: LiMₓMn₂₋ₓO₄, solid-state, reflux, two-stage method, ionic conductivity, specific capacity
Procedia PDF Downloads 1933721 The Modification of the Mixed Flow Pump with Respect to Stability of the Head Curve
Authors: Roman Klas, František Pochylý, Pavel Rudolf
Abstract:
This paper is focused on the CFD simulation of the radiaxial pump (i.e. mixed flow pump) with the aim to detect the reasons of Y-Q characteristic instability. The main reasons of pressure pulsations were detected by means of the analysis of velocity and pressure fields within the pump combined with the theoretical approach. Consequently, the modifications of spiral case and pump suction area were made based on the knowledge of flow conditions and the shape of dissipation function. The primary design of pump geometry was created as the base model serving for the comparison of individual modification influences. The basic experimental data are available for this geometry. This approach replaced the more complicated and with respect to convergence of all computational tasks more difficult calculation for the compressible liquid flow. The modification of primary pump consisted in inserting the three fins types. Subsequently, the evaluation of pressure pulsations, specific energy curves and visualization of velocity fields were chosen as the criterion for successful design.Keywords: CFD, radiaxial pump, spiral case, stability
Procedia PDF Downloads 3973720 Uptake of Copper by Dead Biomass of Burkholderia cenocepacia Isolated from a Metal Mine in Pará, Brazil
Authors: Ingrid R. Avanzi, Marcela dos P. G. Baltazar, Louise H. Gracioso, Luciana J. Gimenes, Bruno Karolski, Elen A. Perpetuo, Claudio Auguto Oller do Nascimento
Abstract:
In this study was developed a natural process using a biological system for the uptake of Copper and possible removal of copper from wastewater by dead biomass of the strain Burkholderia cenocepacia. Dead and live biomass of Burkholderia cenocepacia was used to analyze the equilibrium and kinetics of copper biosorption by this strain in function of the pH. Living biomass exhibited the highest biosorption capacity of copper, 50 mg g−1, which was achieved within 5 hours of contact, at pH 7.0, temperature of 30°C, and agitation speed of 150 rpm. The dead biomass of Burkholderia cenocepacia may be considered an efficiently bioprocess, being fast and low-cost to production of copper and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process. In this study was developed a natural process using a biological system for the uptake of Copper and possible removal of copper from wastewater by dead biomass of the strain Burkholderia cenocepacia. Dead and live biomass of Burkholderia cenocepacia was used to analyze the equilibrium and kinetics of copper biosorption by this strain in function of the pH. Living biomass exhibited the highest biosorption capacity of copper, 50 mg g−1, which was achieved within 5 hours of contact, at pH 7.0, temperature of 30°C, and agitation speed of 150 rpm. The dead biomass of Burkholderia cenocepacia may be considered an efficiently bioprocess, being fast and low-cost to production of copper and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process.Keywords: biosorption, dead biomass, biotechnology, copper recovery
Procedia PDF Downloads 3373719 Loudspeaker Parameters Inverse Problem for Improving Sound Frequency Response Simulation
Authors: Y. T. Tsai, Jin H. Huang
Abstract:
The sound pressure level (SPL) of the moving-coil loudspeaker (MCL) is often simulated and analyzed using the lumped parameter model. However, the SPL of a MCL cannot be simulated precisely in the high frequency region, because the value of cone effective area is changed due to the geometry variation in different mode shapes, it is also related to affect the acoustic radiation mass and resistance. Herein, the paper presents the inverse method which has a high ability to measure the value of cone effective area in various frequency points, also can estimate the MCL electroacoustic parameters simultaneously. The proposed inverse method comprises the direct problem, adjoint problem, and sensitivity problem in collaboration with nonlinear conjugate gradient method. Estimated values from the inverse method are validated experimentally which compared with the measured SPL curve result. Results presented in this paper not only improve the accuracy of lumped parameter model but also provide the valuable information on loudspeaker cone design.Keywords: inverse problem, cone effective area, loudspeaker, nonlinear conjugate gradient method
Procedia PDF Downloads 3033718 Synchrotron Based Techniques for the Characterization of Chemical Vapour Deposition Overgrowth Diamond Layers on High Pressure, High Temperature Substrates
Authors: T. N. Tran Thi, J. Morse, C. Detlefs, P. K. Cook, C. Yıldırım, A. C. Jakobsen, T. Zhou, J. Hartwig, V. Zurbig, D. Caliste, B. Fernandez, D. Eon, O. Loto, M. L. Hicks, A. Pakpour-Tabrizi, J. Baruchel
Abstract:
The ability to grow boron-doped diamond epilayers of high crystalline quality is a prerequisite for the fabrication of diamond power electronic devices, in particular high voltage diodes and metal-oxide-semiconductor (MOS) transistors. Boron and intrinsic diamond layers are homoepitaxially overgrown by microwave assisted chemical vapour deposition (MWCVD) on single crystal high pressure, high temperature (HPHT) grown bulk diamond substrates. Various epilayer thicknesses were grown, with dopant concentrations ranging from 1021 atom/cm³ at nanometer thickness in the case of 'delta doping', up 1016 atom/cm³ and 50µm thickness or high electric field drift regions. The crystalline quality of these overgrown layers as regards defects, strain, distortion… is critical for the device performance through its relation to the final electrical properties (Hall mobility, breakdown voltage...). In addition to the optimization of the epilayer growth conditions in the MWCVD reactor, other important questions related to the crystalline quality of the overgrown layer(s) are: 1) what is the dependence on the bulk quality and surface preparation methods of the HPHT diamond substrate? 2) how do defects already present in the substrate crystal propagate into the overgrown layer; 3) what types of new defects are created during overgrowth, what are their growth mechanisms, and how can these defects be avoided? 4) how can we relate in a quantitative manner parameters related to the measured crystalline quality of the boron doped layer to the electronic properties of final processed devices? We describe synchrotron-based techniques developed to address these questions. These techniques allow the visualization of local defects and crystal distortion which complements the data obtained by other well-established analysis methods such as AFM, SIMS, Hall conductivity…. We have used Grazing Incidence X-ray Diffraction (GIXRD) at the ID01 beamline of the ESRF to study lattice parameters and damage (strain, tilt and mosaic spread) both in diamond substrate near surface layers and in thick (10–50 µm) overgrown boron doped diamond epi-layers. Micro- and nano-section topography have been carried out at both the BM05 and ID06-ESRF) beamlines using rocking curve imaging techniques to study defects which have propagated from the substrate into the overgrown layer(s) and their influence on final electronic device performance. These studies were performed using various commercially sourced HPHT grown diamond substrates, with the MWCVD overgrowth carried out at the Fraunhofer IAF-Germany. The synchrotron results are in good agreement with low-temperature (5°K) cathodoluminescence spectroscopy carried out on the grown samples using an Inspect F5O FESEM fitted with an IHR spectrometer.Keywords: synchrotron X-ray diffaction, crystalline quality, defects, diamond overgrowth, rocking curve imaging
Procedia PDF Downloads 261