Search results for: anaerobic modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4245

Search results for: anaerobic modeling

2835 CFD Modeling of Boiling in a Microchannel Based On Phase-Field Method

Authors: Rahim Jafari, Tuba Okutucu-Özyurt

Abstract:

The hydrodynamics and heat transfer characteristics of a vaporized elongated bubble in a rectangular microchannel have been simulated based on Cahn-Hilliard phase-field method. In the simulations, the initially nucleated bubble starts growing as it comes in contact with superheated water. The growing shape of the bubble compared with the available experimental data in the literature.

Keywords: microchannel, boiling, Cahn-Hilliard method, simulation

Procedia PDF Downloads 424
2834 Hydrodynamic Characteristics of Single and Twin Offshore Rubble Mound Breakwaters under Regular and Random Waves

Authors: M. Alkhalidi, S. Neelamani, Z. Al-Zaqah

Abstract:

This paper investigates the interaction of single and twin offshore rubble mound breakwaters with regular and random water waves through physical modeling to assess their reflection, transmission and energy dissipation characteristics. Various combinations of wave heights and wave periods were utilized in a series of experiments, along with three different water depths. The single and twin permeable breakwater models were both constructed with one layer of rubbles. Both models had the same total volume; however, the single breakwater was of trapezoidal type while the twin breakwaters were of triangular type. Physical modeling experiments were carried out in the wave flume of the coastal engineering laboratory of Kuwait Institute for Scientific Research (KISR). Measurements of the six wave probes which were fixed in the two-dimensional wave flume were collected and used to determine the generated incident wave heights, as well as the reflected and transmitted wave heights resulting from the wave-breakwater interaction. The possible factors affecting the wave attenuation efficiency of the breakwater models are the relative water depth (d/L), wave steepness (H/L), relative wave height ((h-d)/Hi), relative height of the breakwater (h/d), and relative clear spacing between the twin breakwaters (S/h). The results indicated that the single and double breakwaters show different responds to the change in their relative height as well as the relative wave height which demonstrates that the effect of the relative water depth on wave reflection, transmission, and energy dissipation is highly influenced by the change in the relative breakwater height, the relative wave height and the relative breakwater spacing. In general, within the range of the relative water depth tested in this study, and under both regular and random waves, it is found that the single breakwater allows for lower wave transmission and shows higher energy dissipation effect than both of the tested twin breakwaters, and hence has the best overall performance.

Keywords: random waves, regular waves, relative water depth, relative wave height, single breakwater, twin breakwater, wave steepness

Procedia PDF Downloads 327
2833 The Gasoil Hydrofining Kinetics Constants Identification

Authors: C. Patrascioiu, V. Matei, N. Nicolae

Abstract:

The paper describes the experiments and the kinetic parameters calculus of the gasoil hydrofining. They are presented experimental results of gasoil hidrofining using Mo and promoted with Ni on aluminum support catalyst. The authors have adapted a kinetic model gasoil hydrofining. Using this proposed kinetic model and the experimental data they have calculated the parameters of the model. The numerical calculus is based on minimizing the difference between the experimental sulf concentration and kinetic model estimation.

Keywords: hydrofining, kinetic, modeling, optimization

Procedia PDF Downloads 438
2832 Mathematical Modeling and Analysis of COVID-19 Pandemic

Authors: Thomas Wetere

Abstract:

Background: The coronavirus disease 2019 (COVID-19) pandemic (COVID-19) virus infection is a severe infectious disease with the highly transmissible variant, which become the global public health treat now. It has taken the life of more than 4 million people so far. What makes the disease the worst of all is no specific effective treatment available, its dynamics is not much researched and understood. Methodology: To end the global COVID-19 pandemic, implementation of multiple population-wide strategies, including vaccination, environmental factors, Government action, testing, and contact tracing, is required. In this article, a new mathematical model incorporating both temperature and government action to study the dynamics of the COVID-19 pandemic has been developed and comprehensively analysed. The model considers eight stages of infection: susceptible (S), infected Asymptomatic and Undetected(IAU ), infected Asymptomatic and detected(IAD), infected symptomatic and Undetected(ISU ), infected Symptomatic and detected(ISD), Hospitalized or threatened(H), Recovered(R) and Died(D). Results: The existence as well as non-negativity of the solution to the model is also verified, and the basic reproduction number is calculated. Besides, stability conditions are also checked, and finally, simulation results are compared with real data. The results demonstrates that effective government action will need to be combined with vaccination to end the ongoing COVID-19 pandemic. Conclusion: Vaccination and Government action are highly the crucial measures to control the COVID-19 pandemic. Besides, as the cost of vaccination might be high, we recommend an optimal control to reduce the cost and number of infected individuals. Moreover, in order to prevent COVID-19 pandemic, through the analysis of the model, the government must strictly manage the policy on COVID-19 and carry it out. This, in turn, helps for health campaigning and raising health literacy which plays a role to control the quick spread of the disease. We finally strongly believe that our study will play its own role in the current effort of controlling the pandemic.

Keywords: modeling, COVID-19, MCMC, stability

Procedia PDF Downloads 114
2831 A 3D Numerical Environmental Modeling Approach For Assessing Transport of Spilled Oil in Porous Beach Conditions under a Meso-Scale Tank Design

Authors: J. X. Dong, C. J. An, Z. Chen, E. H. Owens, M. C. Boufadel, E. Taylor, K. Lee

Abstract:

Shorelines are vulnerable to significant environmental impacts from oil spills. Stranded oil can cause potential short- to long-term detrimental effects along beaches that include injuries to the ecosystem, socio-economic and cultural resources. In this study, a three-dimensional (3D) numerical modeling approach is developed to evaluate the fate and transport of spilled oil for hypothetical oiled shoreline cases under various combinations of beach geomorphology and environmental conditions. The developed model estimates the spatial and temporal distribution of spilled oil for the various test conditions, using the finite volume method and considering the physical transport (dispersion and advection), sinks, and sorption processes. The model includes a user-friendly interface for data input on variables such as beach properties, environmental conditions, and physical-chemical properties of spilled oil. An experimental mesoscale tank design was used to test the developed model for dissolved petroleum hydrocarbon within shorelines. The simulated results for effects of different sediment substrates, oil types, and shoreline features for the transport of spilled oil are comparable to those obtained with a commercially available model. Results show that the properties of substrates and the oil removal by shoreline effects have significant impacts on oil transport in the beach area. Sensitivity analysis, through the application of the one-step-at-a-time method (OAT), for the 3D model identified hydraulic conductivity as the most sensitive parameter. The 3D numerical model allows users to examine the behavior of oil on and within beaches, assess potential environmental impacts, and provide technical support for decisions related to shoreline clean-up operations.

Keywords: dissolved petroleum hydrocarbons, environmental multimedia model, finite volume method, sensitivity analysis, total petroleum hydrocarbons

Procedia PDF Downloads 217
2830 Nanopack: A Nanotechnology-Based Antimicrobial Packaging Solution for Extension of Shelf Life and Food Safety

Authors: Andy Sand, Naama Massad – Ivanir, Nadav Nitzan, Elisa Valderrama, Alfred Wegenberger, Koranit Shlosman, Rotem Shemesh, Ester Segal

Abstract:

Microbial spoilage of food products is of great concern in the food industry due to the direct impact on the shelf life of foods and the risk of foodborne illness. Therefore, food packaging may serve as a crucial contribution to keep the food fresh and suitable for consumption. Active packaging solutions that have the ability to inhibit the development of microorganism in food products attract a lot of interest, and many efforts have been made to engineer and assimilate such solutions on various food products. NanoPack is an EU-funded international project aiming to develop state-of-the-art antimicrobial packaging systems for perishable foods. The project is based on natural essential oils which possess significant antimicrobial activity against many bacteria, yeasts and molds. The essential oils are encapsulated in natural aluminosilicate clays, halloysite nanotubes (HNT's), that serves as a carrier for the volatile essential oils and enable their incorporation into polymer films. During the course of the project, several polyethylene films with diverse essential oils combinations were designed based on the characteristics of their target food products. The antimicrobial activity of the produced films was examined in vitro on a broad spectrum of microorganisms including gram-positive and gram-negative bacteria, aerobic and anaerobic bacteria, yeasts and molds. The films that showed promising in vitro results were successfully assimilated on in vivo active packaging of several food products such as cheese, bread, fruits and raw meat. The results of the in vivo analyses showed significant inhibition of the microbial spoilage, indicating the strong contribution of the NanoPack packaging solutions on the extension of shelf life and reduction of food waste caused by early spoilage throughout the supply chain.

Keywords: food safety, food packaging, essential oils, nanotechnology

Procedia PDF Downloads 138
2829 Numerical Modeling of Turbulent Natural Convection in a Square Cavity

Authors: Mohammadreza Sedighi, Mohammad Said Saidi, Hesamoddin Salarian

Abstract:

A numerical study has been performed to investigate the effect of using different turbulent models on natural convection flow field and temperature distributions in partially heated square cavity compare to benchmark. The temperature of the right vertical wall is lower than that of heater while other walls are insulated. The commercial CFD codes are used to model. Standard k-w model provided good agreement with the experimental data.

Keywords: Buoyancy, Cavity, CFD, Heat Transfer, Natural Convection, Turbulence

Procedia PDF Downloads 341
2828 Statistical Modeling and by Artificial Neural Networks of Suspended Sediment Mina River Watershed at Wadi El-Abtal Gauging Station (Northern Algeria)

Authors: Redhouane Ghernaout, Amira Fredj, Boualem Remini

Abstract:

Suspended sediment transport is a serious problem worldwide, but it is much more worrying in certain regions of the world, as is the case in the Maghreb and more particularly in Algeria. It continues to take disturbing proportions in Northern Algeria due to the variability of rains in time and in space and constant deterioration of vegetation. Its prediction is essential in order to identify its intensity and define the necessary actions for its reduction. The purpose of this study is to analyze the concentration data of suspended sediment measured at Wadi El-Abtal Hydrometric Station. It also aims to find and highlight regressive power relationships, which can explain the suspended solid flow by the measured liquid flow. The study strives to find models of artificial neural networks linking the flow, month and precipitation parameters with solid flow. The obtained results show that the power function of the solid transport rating curve and the models of artificial neural networks are appropriate methods for analysing and estimating suspended sediment transport in Wadi Mina at Wadi El-Abtal Hydrometric Station. They made it possible to identify in a fairly conclusive manner the model of neural networks with four input parameters: the liquid flow Q, the month and the daily precipitation measured at the representative stations (Frenda 013002 and Ain El-Hadid 013004 ) of the watershed. The model thus obtained makes it possible to estimate the daily solid flows (interpolate and extrapolate) even beyond the period of observation of solid flows (1985/86 to 1999/00), given the availability of the average daily liquid flows and daily precipitation since 1953/1954.

Keywords: suspended sediment, concentration, regression, liquid flow, solid flow, artificial neural network, modeling, mina, algeria

Procedia PDF Downloads 103
2827 Optimization of Marine Waste Collection Considering Dynamic Transport and Ship’s Wake Impact

Authors: Guillaume Richard, Sarra Zaied

Abstract:

Marine waste quantities increase more and more, 5 million tons of plastic waste enter the ocean every year. Their spatiotemporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment, as well as the size and location of the waste. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. In this context, diverse studies have been dedicated to describing waste behavior in order to identify its accumulation in ocean areas. None of the existing tools which track objects at sea had the objective of tracking down a slick of waste. Moreover, the applications related to marine waste are in the minority compared to rescue applications or oil slicks tracking applications. These approaches are able to accurately simulate an object's behavior over time but not during the collection mission of a waste sheet. This paper presents numerical modeling of a boat’s wake impact on the floating marine waste behavior during a collection mission. The aim is to predict the trajectory of a marine waste slick to optimize its collection using meteorological data of ocean currents, wind, and possibly waves. We have made the choice to use Ocean Parcels which is a Python library suitable for trajectoring particles in the ocean. The modeling results showed the important role of advection and diffusion processes in the spatiotemporal distribution of floating plastic litter. The performance of the proposed method was evaluated on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). The results of the evaluation in Cape of Good Hope (South Africa) prove that the proposed approach can effectively predict the position and velocity of marine litter during collection, which allowed for optimizing time and more than $90\%$ of the amount of collected waste.

Keywords: marine litter, advection-diffusion equation, sea current, numerical model

Procedia PDF Downloads 87
2826 Mitigating Nitrous Oxide Production from Nitritation/Denitritation: Treatment of Centrate from Pig Manure Co-Digestion as a Model

Authors: Lai Peng, Cristina Pintucci, Dries Seuntjens, José Carvajal-Arroyo, Siegfried Vlaeminck

Abstract:

Economic incentives drive the implementation of short-cut nitrogen removal processes such as nitritation/denitritation (Nit/DNit) to manage nitrogen in waste streams devoid of biodegradable organic carbon. However, as any biological nitrogen removal process, the potent greenhouse gas nitrous oxide (N2O) could be emitted from Nit/DNit. Challenges remain in understanding the fundamental mechanisms and development of engineered mitigation strategies for N2O production. To provide answers, this work focuses on manure as a model, the biggest wasted nitrogen mass flow through our economies. A sequencing batch reactor (SBR; 4.5 L) was used treating the centrate (centrifuge supernatant; 2.0 ± 0.11 g N/L of ammonium) from an anaerobic digester processing mainly pig manure, supplemented with a co-substrate. Glycerin was used as external carbon source, a by-product of vegetable oil. Out-selection of nitrite oxidizing bacteria (NOB) was targeted using a combination of low dissolved oxygen (DO) levels (down to 0.5 mg O2/L), high temperature (35ºC) and relatively high free ammonia (FA) (initially 10 mg NH3-N/L). After reaching steady state, the process was able to remove 100% of ammonium with minimum nitrite and nitrate in the effluent, at a reasonably high nitrogen loading rate (0.4 g N/L/d). Substantial N2O emissions (over 15% of the nitrogen loading) were observed at the baseline operational condition, which were even increased under nitrite accumulation and a low organic carbon to nitrogen ratio. Yet, higher DO (~2.2 mg O2/L) lowered aerobic N2O emissions and weakened the dependency of N2O on nitrite concentration, suggesting a shift of N2O production pathway at elevated DO levels. Limiting the greenhouse gas emissions (environmental protection) from such a system could be substantially minimized by increasing the external carbon dosage (a cost factor), but also through the implementation of an intermittent aeration and feeding strategy. Promising steps forward have been presented in this abstract, yet at the conference the insights of ongoing experiments will also be shared.

Keywords: mitigation, nitrous oxide, nitritation/denitritation, pig manure

Procedia PDF Downloads 249
2825 Constructing a Probabilistic Ontology from a DBLP Data

Authors: Emna Hlel, Salma Jamousi, Abdelmajid Ben Hamadou

Abstract:

Every model for knowledge representation to model real-world applications must be able to cope with the effects of uncertain phenomena. One of main defects of classical ontology is its inability to represent and reason with uncertainty. To remedy this defect, we try to propose a method to construct probabilistic ontology for integrating uncertain information in an ontology modeling a set of basic publications DBLP (Digital Bibliography & Library Project) using a probabilistic model.

Keywords: classical ontology, probabilistic ontology, uncertainty, Bayesian network

Procedia PDF Downloads 347
2824 Determination of Stress-Strain Curve of Duplex Stainless Steel Welds

Authors: Carolina Payares-Asprino

Abstract:

Dual-phase duplex stainless steel comprised of ferrite and austenite has shown high strength and corrosion resistance in many aggressive environments. Joining duplex alloys is challenging due to several embrittling precipitates and metallurgical changes during the welding process. The welding parameters strongly influence the quality of a weld joint. Therefore, it is necessary to quantify the weld bead’s integral properties as a function of welding parameters, especially when part of the weld bead is removed through a machining process due to aesthetic reasons or to couple the elements in the in-service structure. The present study uses the existing stress-strain model to predict the stress-strain curves for duplex stainless-steel welds under different welding conditions. Having mathematical expressions that predict the shape of the stress-strain curve is advantageous since it reduces the experimental work in obtaining the tensile test. In analysis and design, such stress-strain modeling simplifies the time of operations by being integrated into calculation tools, such as the finite element program codes. The elastic zone and the plastic zone of the curve can be defined by specific parameters, generating expressions that simulate the curve with great precision. There are empirical equations that describe the stress-strain curves. However, they only refer to the stress-strain curve for the stainless steel, but not when the material is under the welding process. It is a significant contribution to the applications of duplex stainless steel welds. For this study, a 3x3 matrix with a low, medium, and high level for each of the welding parameters were applied, giving a total of 27 weld bead plates. Two tensile specimens were manufactured from each welded plate, resulting in 54 tensile specimens for testing. When evaluating the four models used to predict the stress-strain curve in the welded specimens, only one model (Rasmussen) presented a good correlation in predicting the strain stress curve.

Keywords: duplex stainless steels, modeling, stress-stress curve, tensile test, welding

Procedia PDF Downloads 167
2823 Modeling of Leaks Effects on Transient Dispersed Bubbly Flow

Authors: Mohand Kessal, Rachid Boucetta, Mourad Tikobaini, Mohammed Zamoum

Abstract:

Leakage problem of two-component fluids flow is modeled for a transient one-dimensional homogeneous bubbly flow and developed by taking into account the effect of a leak located at the middle point of the pipeline. The corresponding three conservation equations are numerically resolved by an improved characteristic method. The obtained results are explained and commented in terms of physical impact on the flow parameters.

Keywords: fluid transients, pipelines leaks, method of characteristics, leakage problem

Procedia PDF Downloads 479
2822 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations

Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang

Abstract:

Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.

Keywords: source identification, ordinary differential equations, label propagation, complex networks

Procedia PDF Downloads 20
2821 A Hybrid-Evolutionary Optimizer for Modeling the Process of Obtaining Bricks

Authors: Marius Gavrilescu, Sabina-Adriana Floria, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Natural sciences provide a wide range of experimental data whose related problems require study and modeling beyond the capabilities of conventional methodologies. Such problems have solution spaces whose complexity and high dimensionality require correspondingly complex regression methods for proper characterization. In this context, we propose an optimization method which consists in a hybrid dual optimizer setup: a global optimizer based on a modified variant of the popular Imperialist Competitive Algorithm (ICA), and a local optimizer based on a gradient descent approach. The ICA is modified such that intermediate solution populations are more quickly and efficiently pruned of low-fitness individuals by appropriately altering the assimilation, revolution and competition phases, which, combined with an initialization strategy based on low-discrepancy sampling, allows for a more effective exploration of the corresponding solution space. Subsequently, gradient-based optimization is used locally to seek the optimal solution in the neighborhoods of the solutions found through the modified ICA. We use this combined approach to find the optimal configuration and weights of a fully-connected neural network, resulting in regression models used to characterize the process of obtained bricks using silicon-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. Thus, the purpose of our approach is to determine by simulation the working conditions, including the manufacturing mix recipe with the addition of different materials, to minimize the emissions represented by CO and CH4. Our approach determines regression models which perform significantly better than those found using the traditional ICA for the aforementioned problem, resulting in better convergence and a substantially lower error.

Keywords: optimization, biologically inspired algorithm, regression models, bricks, emissions

Procedia PDF Downloads 82
2820 A Temporal QoS Ontology For ERTMS/ETCS

Authors: Marc Sango, Olimpia Hoinaru, Christophe Gransart, Laurence Duchien

Abstract:

Ontologies offer a means for representing and sharing information in many domains, particularly in complex domains. For example, it can be used for representing and sharing information of System Requirement Specification (SRS) of complex systems like the SRS of ERTMS/ETCS written in natural language. Since this system is a real-time and critical system, generic ontologies, such as OWL and generic ERTMS ontologies provide minimal support for modeling temporal information omnipresent in these SRS documents. To support the modeling of temporal information, one of the challenges is to enable representation of dynamic features evolving in time within a generic ontology with a minimal redesign of it. The separation of temporal information from other information can help to predict system runtime operation and to properly design and implement them. In addition, it is helpful to provide a reasoning and querying techniques to reason and query temporal information represented in the ontology in order to detect potential temporal inconsistencies. Indeed, a user operation, such as adding a new constraint on existing planning constraints can cause temporal inconsistencies, which can lead to system failures. To address this challenge, we propose a lightweight 3-layer temporal Quality of Service (QoS) ontology for representing, reasoning and querying over temporal and non-temporal information in a complex domain ontology. Representing QoS entities in separated layers can clarify the distinction between the non QoS entities and the QoS entities in an ontology. The upper generic layer of the proposed ontology provides an intuitive knowledge of domain components, specially ERTMS/ETCS components. The separation of the intermediate QoS layer from the lower QoS layer allows us to focus on specific QoS Characteristics, such as temporal or integrity characteristics. In this paper, we focus on temporal information that can be used to predict system runtime operation. To evaluate our approach, an example of the proposed domain ontology for handover operation, as well as a reasoning rule over temporal relations in this domain-specific ontology, are given.

Keywords: system requirement specification, ERTMS/ETCS, temporal ontologies, domain ontologies

Procedia PDF Downloads 422
2819 Free and Open Source Software for BIM Workflow of Steel Structure Design

Authors: Danilo Di Donato

Abstract:

The continuous new releases of free and open source software (FOSS) and the high costs of proprietary software -whose monopoly is characterized by closed codes and the low level of implementation and customization of software by end-users- impose a reflection on possible tools that can be chosen and adopted for the design and the representation of new steel constructions. The paper aims to show experimentation carried out to verify the actual potential and the effective applicability of FOSS supports to the BIM modeling of steel structures, particularly considering the goal of a possible workflow in order to achieve high level of development (LOD); allow effective interchange methods between different software. To this end, the examined software packages are those with open source or freeware licenses, in order to evaluate their use in architectural praxis. The test has primarily involved the experimentation of Freecad -the only Open Source software that allows a complete and integrated BIM workflow- and then the results have been compared with those of two proprietary software, Sketchup and TeklaBim Sight, which are released with a free version, but not usable for commercial purposes. The experiments carried out on Open Source, and freeware software was then compared with the outcomes that are obtained by two proprietary software, Sketchup Pro and Tekla Structure which has special modules particularly addressed to the design of steel structures. This evaluation has concerned different comparative criteria, that have been defined on the basis of categories related to the reliability, the efficiency, the potentiality, achievable LOD and user-friendliness of the analyzed software packages. In order to verify the actual outcomes of FOSS BIM for the steel structure projects, these results have been compared with a simulation related to a real case study and carried out with a proprietary software BIM modeling. Therefore, the same design theme, the project of a shelter of public space, has been developed using different software. Therefore the purpose of the contribution is to assess what are the developments and potentialities inherent in FOSS BIM, in order to estimate their effective applicability to professional practice, their limits and new fields of research they propose.

Keywords: BIM, steel buildings, FOSS, LOD

Procedia PDF Downloads 174
2818 Mathematical Modeling of the AMCs Cross-Contamination Removal in the FOUPs: Finite Element Formulation and Application in FOUP’s Decontamination

Authors: N. Santatriniaina, J. Deseure, T. Q. Nguyen, H. Fontaine, C. Beitia, L. Rakotomanana

Abstract:

Nowadays, with the increasing of the wafer's size and the decreasing of critical size of integrated circuit manufacturing in modern high-tech, microelectronics industry needs a maximum attention to challenge the contamination control. The move to 300 mm is accompanied by the use of Front Opening Unified Pods for wafer and his storage. In these pods an airborne cross contamination may occur between wafers and the pods. A predictive approach using modeling and computational methods is very powerful method to understand and qualify the AMCs cross contamination processes. This work investigates the required numerical tools which are employed in order to study the AMCs cross-contamination transfer phenomena between wafers and FOUPs. Numerical optimization and finite element formulation in transient analysis were established. Analytical solution of one dimensional problem was developed and the calibration process of physical constants was performed. The least square distance between the model (analytical 1D solution) and the experimental data are minimized. The behavior of the AMCs intransient analysis was determined. The model framework preserves the classical forms of the diffusion and convection-diffusion equations and yields to consistent form of the Fick's law. The adsorption process and the surface roughness effect were also traduced as a boundary condition using the switch condition Dirichlet to Neumann and the interface condition. The methodology is applied, first using the optimization methods with analytical solution to define physical constants, and second using finite element method including adsorption kinetic and the switch of Dirichlet to Neumann condition.

Keywords: AMCs, FOUP, cross-contamination, adsorption, diffusion, numerical analysis, wafers, Dirichlet to Neumann, finite elements methods, Fick’s law, optimization

Procedia PDF Downloads 507
2817 Integration of LCA and BIM for Sustainable Construction

Authors: Laura Álvarez Antón, Joaquín Díaz

Abstract:

The construction industry is turning towards sustainability. It is a well-known fact that sustainability is based on a balance between environmental, social and economic aspects. In order to achieve sustainability efficiently, these three criteria should be taken into account in the initial project phases, since that is when a project can be influenced most effectively. Thus the aim must be to integrate important tools like BIM and LCA at an early stage in order to make full use of their potential. With the synergies resulting from the integration of BIM and LCA, a wider approach to sustainability becomes possible, covering the three pillars of sustainability.

Keywords: building information modeling (BIM), construction industry, design phase, life cycle assessment (LCA), sustainability

Procedia PDF Downloads 451
2816 Exercise in Extreme Conditions: Leg Cooling and Fat/Carbohydrate Utilization

Authors: Anastasios Rodis

Abstract:

Background: Case studies of walkers, climbers, and campers exposed to cold and wet conditions without limb water/windproof protection revealed experiences of muscle weakness and fatigue. It is reasonable to assume that a part of the fatigue could occur due to an alteration in substrate utilization, since reduction of performance in extreme cold conditions, may partially be explained by higher anaerobic glycolysis, reflecting higher carbohydrate oxidation and an increase accumulation rate of blood lactate. The aim of this study was to assess the effects of pre-exercise lower limb cooling on substrate utilization rate during sub-maximal exercise. Method: Six male university students (mean (SD): age, 21.3 (1.0) yr; maximal oxygen uptake (V0₂ max), 49.6 (3.6) ml.min⁻¹; and percentage of body fat, 13.6 (2.5) % were examined in random order after either 30min cold water (12°C) immersion utilized as the cooling strategy up to the gluteal fold, or under control conditions (no precooling), with tests separated by minimum of 7 days. Exercise consisted of 60min cycling at 50% V0₂ max, in a thermoneutral environment of 20°C. Subjects were also required to record a diet diary over the 24hrs prior to the each trial. Means (SD) for the three macronutrients during the 1 day prior to each trial (expressed as a percentage of total energy) 52 (3) % carbohydrate, 31 (4) % fat, and 17 (± 2) % protein. Results: The following responses to lower limb cooling relative to control trial during exercise were: 1) Carbohydrate (CHO) oxidation, and blood lactate (Bₗₐc) concentration were significantly higher (P < 0.05); 2) rectal temperature (Tᵣₑc) was significantly higher (P < 0.05), but skin temperature was significantly lower (P < 0.05); no significant differences were found in blood glucose (Bg), heart rate (HR) and oxygen consumption (V0₂). Discussion: These data suggested that lower limb cooling prior to submaximal exercise will shift metabolic processes from Fat oxidation to CHO oxidation. This shift from Fat to CHO oxidation will probably have important implications in the surviving scenario, since people facing accidental localized cooling of their limbs either through wading/falling in cold water or snow even if they do not perform high intensity activity, they have to rely on CHO availability.

Keywords: exercise in wet conditions, leg cooling, outdoors exercise, substrate utilization

Procedia PDF Downloads 440
2815 River Habitat Modeling for the Entire Macroinvertebrate Community

Authors: Pinna Beatrice., Laini Alex, Negro Giovanni, Burgazzi Gemma, Viaroli Pierluigi, Vezza Paolo

Abstract:

Habitat models rarely consider macroinvertebrates as ecological targets in rivers. Available approaches mainly focus on single macroinvertebrate species, not addressing the ecological needs and functionality of the entire community. This research aimed to provide an approach to model the habitat of the macroinvertebrate community. The approach is based on the recently developed Flow-T index, together with a Random Forest (RF) regression, which is employed to apply the Flow-T index at the meso-habitat scale. Using different datasets gathered from both field data collection and 2D hydrodynamic simulations, the model has been calibrated in the Trebbia river (2019 campaign), and then validated in the Trebbia, Taro, and Enza rivers (2020 campaign). The three rivers are characterized by a braiding morphology, gravel riverbeds, and summer low flows. The RF model selected 12 mesohabitat descriptors as important for the macroinvertebrate community. These descriptors belong to different frequency classes of water depth, flow velocity, substrate grain size, and connectivity to the main river channel. The cross-validation R² coefficient (R²𝒸ᵥ) of the training dataset is 0.71 for the Trebbia River (2019), whereas the R² coefficient for the validation datasets (Trebbia, Taro, and Enza Rivers 2020) is 0.63. The agreement between the simulated results and the experimental data shows sufficient accuracy and reliability. The outcomes of the study reveal that the model can identify the ecological response of the macroinvertebrate community to possible flow regime alterations and to possible river morphological modifications. Lastly, the proposed approach allows extending the MesoHABSIM methodology, widely used for the fish habitat assessment, to a different ecological target community. Further applications of the approach can be related to flow design in both perennial and non-perennial rivers, including river reaches in which fish fauna is absent.

Keywords: ecological flows, macroinvertebrate community, mesohabitat, river habitat modeling

Procedia PDF Downloads 94
2814 Insights into the Annotated Genome Sequence of Defluviitoga tunisiensis L3 Isolated from a Thermophilic Rural Biogas Producing Plant

Authors: Irena Maus, Katharina Gabriella Cibis, Andreas Bremges, Yvonne Stolze, Geizecler Tomazetto, Daniel Wibberg, Helmut König, Alfred Pühler, Andreas Schlüter

Abstract:

Within the agricultural sector, the production of biogas from organic substrates represents an economically attractive technology to generate bioenergy. Complex consortia of microorganisms are responsible for biomass decomposition and biogas production. Recently, species belonging to the phylum Thermotogae were detected in thermophilic biogas-production plants utilizing renewable primary products for biomethanation. To analyze adaptive genome features of representative Thermotogae strains, Defluviitoga tunisiensis L3 was isolated from a rural thermophilic biogas plant (54°C) and completely sequenced on an Illumina MiSeq system. Sequencing and assembly of the D. tunisiensis L3 genome yielded a circular chromosome with a size of 2,053,097 bp and a mean GC content of 31.38%. Functional annotation of the complete genome sequence revealed that the thermophilic strain L3 encodes several genes predicted to facilitate growth of this microorganism on arabinose, galactose, maltose, mannose, fructose, raffinose, ribose, cellobiose, lactose, xylose, xylan, lactate and mannitol. Acetate, hydrogen (H2) and carbon dioxide (CO2) are supposed to be end products of the fermentation process. The latter gene products are metabolites for methanogenic archaea, the key players in the final step of the anaerobic digestion process. To determine the degree of relatedness of dominant biogas community members within selected digester systems to D. tunisiensis L3, metagenome sequences from corresponding communities were mapped on the L3 genome. These fragment recruitments revealed that metagenome reads originating from a thermophilic biogas plant covered 95% of D. tunisiensis L3 genome sequence. In conclusion, availability of the D. tunisiensis L3 genome sequence and insights into its metabolic capabilities provide the basis for biotechnological exploitation of genome features involved in thermophilic fermentation processes utilizing renewable primary products.

Keywords: genome sequence, thermophilic biogas plant, Thermotogae, Defluviitoga tunisiensis

Procedia PDF Downloads 499
2813 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna

Abstract:

Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.

Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network

Procedia PDF Downloads 160
2812 Usage of Crude Glycerol for Biological Hydrogen Production, Experiments and Analysis

Authors: Ilze Dimanta, Zane Rutkovska, Vizma Nikolajeva, Janis Kleperis, Indrikis Muiznieks

Abstract:

Majority of word’s steadily increasing energy consumption is provided by non-renewable fossil resources. Need to find an alternative energy resource is essential for further socio-economic development. Hydrogen is renewable, clean energy carrier with high energy density (142 MJ/kg, accordingly – oil has 42 MJ/kg). Biological hydrogen production is an alternative way to produce hydrogen from renewable resources, e.g. using organic waste material resource fermentation that facilitate recycling of sewage and are environmentally benign. Hydrogen gas is produced during the fermentation process of bacteria in anaerobic conditions. Bacteria are producing hydrogen in the liquid phase and when thermodynamic equilibrium is reached, hydrogen is diffusing from liquid to gaseous phase. Because of large quantities of available crude glycerol and the highly reduced nature of carbon in glycerol per se, microbial conversion of it seems to be economically and environmentally viable possibility. Such industrial organic waste product as crude glycerol is perspective for usage in feedstock for hydrogen producing bacteria. The process of biodiesel production results in 41% (w/w) of crude glycerol. The developed lab-scale test system (experimental bioreactor) with hydrogen micro-electrode (Unisense, Denmark) was used to determine hydrogen production yield and rate in the liquid phase. For hydrogen analysis in the gas phase the RGAPro-100 mass-spectrometer connected to the experimental test-system was used. Fermentative bacteria strains were tested for hydrogen gas production rates. The presence of hydrogen in gaseous phase was measured using mass spectrometer but registered concentrations were comparatively small. To decrease the hydrogen partial pressure in liquid phase reactor with a system for continuous bubbling with inert gas was developed. H2 production rate for the best producer in liquid phase reached 0,40 mmol H2/l, in gaseous phase - 1,32 mmol H2/l. Hydrogen production rate is time dependent – higher rate of hydrogen production is at the fermentation process beginning when concentration increases, but after three hours of fermentation, it decreases.

Keywords: bio-hydrogen, fermentation, experimental bioreactor, crude glycerol

Procedia PDF Downloads 522
2811 Augmented and Virtual Reality Experiences in Plant and Agriculture Science Education

Authors: Sandra Arango-Caro, Kristine Callis-Duehl

Abstract:

The Education Research and Outreach Lab at the Donald Danforth Plant Science Center established the Plant and Agriculture Augmented and Virtual Reality Learning Laboratory (PAVRLL) to promote science education through professional development, school programs, internships, and outreach events. Professional development is offered to high school and college science and agriculture educators on the use and applications of zSpace and Oculus platforms. Educators learn to use, edit, or create lesson plans in the zSpace platform that are aligned with the Next Generation Science Standards. They also learn to use virtual reality experiences created by the PAVRLL available in Oculus (e.g. The Soybean Saga). Using a cost-free loan rotation system, educators can bring the AVR units to the classroom and offer AVR activities to their students. Each activity has user guides and activity protocols for both teachers and students. The PAVRLL also offers activities for 3D plant modeling. High school students work in teams of art-, science-, and technology-oriented students to design and create 3D models of plant species that are under research at the Danforth Center and present their projects at scientific events. Those 3D models are open access through the zSpace platform and are used by PAVRLL for professional development and the creation of VR activities. Both teachers and students acquire knowledge of plant and agriculture content and real-world problems, gain skills in AVR technology, 3D modeling, and science communication, and become more aware and interested in plant science. Students that participate in the PAVRLL activities complete pre- and post-surveys and reflection questions that evaluate interests in STEM and STEM careers, students’ perceptions of three design features of biology lab courses (collaboration, discovery/relevance, and iteration/productive failure), plant awareness, and engagement and learning in AVR environments. The PAVRLL was established in the fall of 2019, and since then, it has trained 15 educators, three of which will implement the AVR programs in the fall of 2021. Seven students have worked in the 3D plant modeling activity through a virtual internship. Due to the COVID-19 pandemic, the number of teachers trained, and classroom implementations have been very limited. It is expected that in the fall of 2021, students will come back to the schools in person, and by the spring of 2022, the PAVRLL activities will be fully implemented. This will allow the collection of enough data on student assessments that will provide insights on benefits and best practices for the use of AVR technologies in the classrooms. The PAVRLL uses cutting-edge educational technologies to promote science education and assess their benefits and will continue its expansion. Currently, the PAVRLL is applying for grants to create its own virtual labs where students can experience authentic research experiences using real Danforth research data based on programs the Education Lab already used in classrooms.

Keywords: assessment, augmented reality, education, plant science, virtual reality

Procedia PDF Downloads 172
2810 Modeling Salam Contract for Profit and Loss Sharing

Authors: Dchieche Amina, Aboulaich Rajae

Abstract:

Profit and loss sharing suggests an equitable sharing of risks and profits between the parts involved in a financial transaction. Salam is a contract in which advance payment is made for goods to be delivered at a future date. The purpose of this work is to price a new contract for profit and loss sharing based on Salam contract, using Khiyar Al Ghabn which is an agreement of choice in case of misrepresent facts.

Keywords: Islamic finance, shariah compliance, profi t and loss sharing, derivatives, risks, hedging, salam contract

Procedia PDF Downloads 332
2809 Modeling Driving Distraction Considering Psychological-Physical Constraints

Authors: Yixin Zhu, Lishengsa Yue, Jian Sun, Lanyue Tang

Abstract:

Modeling driving distraction in microscopic traffic simulation is crucial for enhancing simulation accuracy. Current driving distraction models are mainly derived from physical motion constraints under distracted states, in which distraction-related error terms are added to existing microscopic driver models. However, the model accuracy is not very satisfying, due to a lack of modeling the cognitive mechanism underlying the distraction. This study models driving distraction based on the Queueing Network Human Processor model (QN-MHP). This study utilizes the queuing structure of the model to perform task invocation and switching for distracted operation and control of the vehicle under driver distraction. Based on the assumption of the QN-MHP model about the cognitive sub-network, server F is a structural bottleneck. The latter information must wait for the previous information to leave server F before it can be processed in server F. Therefore, the waiting time for task switching needs to be calculated. Since the QN-MHP model has different information processing paths for auditory information and visual information, this study divides driving distraction into two types: auditory distraction and visual distraction. For visual distraction, both the visual distraction task and the driving task need to go through the visual perception sub-network, and the stimuli of the two are asynchronous, which is called stimulus on asynchrony (SOA), so when calculating the waiting time for switching tasks, it is necessary to consider it. In the case of auditory distraction, the auditory distraction task and the driving task do not need to compete for the server resources of the perceptual sub-network, and their stimuli can be synchronized without considering the time difference in receiving the stimuli. According to the Theory of Planned Behavior for drivers (TPB), this study uses risk entropy as the decision criterion for driver task switching. A logistic regression model is used with risk entropy as the independent variable to determine whether the driver performs a distraction task, to explain the relationship between perceived risk and distraction. Furthermore, to model a driver’s perception characteristics, a neurophysiological model of visual distraction tasks is incorporated into the QN-MHP, and executes the classical Intelligent Driver Model. The proposed driving distraction model integrates the psychological cognitive process of a driver with the physical motion characteristics, resulting in both high accuracy and interpretability. This paper uses 773 segments of distracted car-following in Shanghai Naturalistic Driving Study data (SH-NDS) to classify the patterns of distracted behavior on different road facilities and obtains three types of distraction patterns: numbness, delay, and aggressiveness. The model was calibrated and verified by simulation. The results indicate that the model can effectively simulate the distracted car-following behavior of different patterns on various roadway facilities, and its performance is better than the traditional IDM model with distraction-related error terms. The proposed model overcomes the limitations of physical-constraints-based models in replicating dangerous driving behaviors, and internal characteristics of an individual. Moreover, the model is demonstrated to effectively generate more dangerous distracted driving scenarios, which can be used to construct high-value automated driving test scenarios.

Keywords: computational cognitive model, driving distraction, microscopic traffic simulation, psychological-physical constraints

Procedia PDF Downloads 91
2808 Chemically Enhanced Primary Treatment: Full Scale Trial Results Conducted at a South African Wastewater Works

Authors: Priyanka Govender, S. Mtshali, Theresa Moonsamy, Zanele Mkwanazi, L. Mthembu

Abstract:

Chemically enhanced primary treatment (CEPT) can be used at wastewater works to improve the quality of the final effluent discharge, provided that the plant has spare anaerobic digestion capacity. CEPT can transfer part of the organic load to the digesters thereby effectively relieving the hydraulic loading on the plant and in this way can allow the plant to continue operating long after the hydraulic capacity of the plant has been exceeded. This can allow a plant to continue operating well beyond its original design capacity, requiring only fairly simple and inexpensive modifications to the primary settling tanks as well as additional chemical costs, thereby delaying or even avoiding the need for expensive capital upgrades. CEPT can also be effective at plants where high organic loadings prevent the wastewater discharge from meeting discharge standards, especially in the case of COD, phosphates and suspended solids. By increasing removals of these pollutants in the primary settling tanks, CEPT can enable the plant to conform to specifications without the need for costly upgrades. Laboratory trials were carried out recently at the Umbilo WWTW in Durban and these were followed by a baseline assessment of the current plant performance and a subsequent full scale trial on the Conventional plant i.e. West Plant. The operating conditions of the plant are described and the improvements obtained in COD, phosphate and suspended solids, are discussed. The PST and plant overall suspended solids removal efficiency increased by approximately 6% during the trial. Details regarding the effect that CEPT had on sludge production and the digesters are also provided. The cost implications of CEPT are discussed in terms of capital costs as well as operation and maintenance costs and the impact of Ferric chloride on the infrastructure was also studied and found to be minimal. It was concluded that CEPT improves the final quality of the discharge effluent, thereby improving the compliance of this effluent with the discharge license. It could also allow for a delay in upgrades to the plant, allowing the plant to operate above its design capacity. This will be elaborated further upon presentation.

Keywords: chemically enhanced, ferric, wastewater, primary

Procedia PDF Downloads 301
2807 Reconstruction of Age-Related Generations of Siberian Larch to Quantify the Climatogenic Dynamics of Woody Vegetation Close the Upper Limit of Its Growth

Authors: A. P. Mikhailovich, V. V. Fomin, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova

Abstract:

Woody vegetation among the upper limit of its habitat is a sensitive indicator of biota reaction to regional climate changes. Quantitative assessment of temporal and spatial changes in the distribution of trees and plant biocenoses calls for the development of new modeling approaches based upon selected data from measurements on the ground level and ultra-resolution aerial photography. Statistical models were developed for the study area located in the Polar Urals. These models allow obtaining probabilistic estimates for placing Siberian Larch trees into one of the three age intervals, namely 1-10, 11-40 and over 40 years, based on the Weilbull distribution of the maximum horizontal crown projection. Authors developed the distribution map for larch trees with crown diameters exceeding twenty centimeters by deciphering aerial photographs made by a UAV from an altitude equal to fifty meters. The total number of larches was equal to 88608, forming the following distribution row across the abovementioned intervals: 16980, 51740, and 19889 trees. The results demonstrate that two processes can be observed in the course of recent decades: first is the intensive forestation of previously barren or lightly wooded fragments of the study area located within the patches of wood, woodlands, and sparse stand, and second, expansion into mountain tundra. The current expansion of the Siberian Larch in the region replaced the depopulation process that occurred in the course of the Little Ice Age from the late 13ᵗʰ to the end of the 20ᵗʰ century. Using data from field measurements of Siberian larch specimen biometric parameters (including height, diameter at root collar and at 1.3 meters, and maximum projection of the crown in two orthogonal directions) and data on tree ages obtained at nine circular test sites, authors developed a model for artificial neural network including two layers with three and two neurons, respectively. The model allows quantitative assessment of a specimen's age based on height and maximum crone projection values. Tree height and crown diameters can be quantitatively assessed using data from aerial photographs and lidar scans. The resulting model can be used to assess the age of all Siberian larch trees. The proposed approach, after validation, can be applied to assessing the age of other tree species growing near the upper tree boundaries in other mountainous regions. This research was collaboratively funded by the Russian Ministry for Science and Education (project No. FEUG-2023-0002) and Russian Science Foundation (project No. 24-24-00235) in the field of data modeling on the basis of artificial neural network.

Keywords: treeline, dynamic, climate, modeling

Procedia PDF Downloads 83
2806 Recirculated Sedimentation Method to Control Contamination for Algal Biomass Production

Authors: Ismail S. Bostanci, Ebru Akkaya

Abstract:

Microalgae-derived biodiesel, fertilizer or industrial chemicals' production with wastewater has great potential. Especially water from a municipal wastewater treatment plant is a very important nutrient source for biofuel production. Microalgae biomass production in open ponds system is lower cost culture systems. There are many hurdles for commercial algal biomass production in large scale. One of the important technical bottlenecks for microalgae production in open system is culture contamination. The algae culture contaminants can generally be described as invading organisms which could cause pond crash. These invading organisms can be competitors, parasites, and predators. Contamination is unavoidable in open systems. Potential contaminant organisms are already inoculated if wastewater is utilized for algal biomass cultivation. Especially, it is important to control contaminants to retain in acceptable level in order to reach true potential of algal biofuel production. There are several contamination management methods in algae industry, ranging from mechanical, chemical, biological and growth condition change applications. However, none of them are accepted as a suitable contamination control method. This experiment describes an innovative contamination control method, 'Recirculated Sedimentation Method', to manage contamination to avoid pond cash. The method can be used for the production of algal biofuel, fertilizer etc. and algal wastewater treatment. To evaluate the performance of the method on algal culture, an experiment was conducted for 90 days at a lab-scale raceway (60 L) reactor with the use of non-sterilized and non-filtered wastewater (secondary effluent and centrate of anaerobic digestion). The application of the method provided the following; removing contaminants (predators and diatoms) and other debris from reactor without discharging the culture (with microscopic evidence), increasing raceway tank’s suspended solids holding capacity (770 mg L-1), increasing ammonium removal rate (29.83 mg L-1 d-1), decreasing algal and microbial biofilm formation on inner walls of reactor, washing out generated nitrifier from reactor to prevent ammonium consumption.

Keywords: contamination control, microalgae culture contamination, pond crash, predator control

Procedia PDF Downloads 207