Search results for: English language performance
2654 Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization
Authors: Eduardo P. Wiechmann, Jorge A. Henríquez, Pablo E. Aqueveque, Luis G. Muñoz
Abstract:
PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.Keywords: electrowinning, intercell bars, PV energy, current modulation
Procedia PDF Downloads 1542653 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management
Procedia PDF Downloads 142652 Visual Servoing for Quadrotor UAV Target Tracking: Effects of Target Information Sharing
Authors: Jason R. King, Hugh H. T. Liu
Abstract:
This research presents simulation and experimental work in the visual servoing of a quadrotor Unmanned Aerial Vehicle (UAV) to stabilize overtop of a moving target. Most previous work in the field assumes static or slow-moving, unpredictable targets. In this experiment, the target is assumed to be a friendly ground robot moving freely on a horizontal plane, which shares information with the UAV. This information includes velocity and acceleration information of the ground target to aid the quadrotor in its tracking task. The quadrotor is assumed to have a downward-facing camera which is fixed to the frame of the quadrotor. Only onboard sensing for the quadrotor is utilized for the experiment, with a VICON motion capture system in place used only to measure ground truth and evaluate the performance of the controller. The experimental platform consists of an ArDrone 2.0 and a Create Roomba, communicating using Robot Operating System (ROS). The addition of the target’s information is demonstrated to help the quadrotor in its tracking task using simulations of the dynamic model of a quadrotor in Matlab Simulink. A nested PID control loop is utilized for inner-loop control the quadrotor, similar to previous works at the Flight Systems and Controls Laboratory (FSC) at the University of Toronto Institute for Aerospace Studies (UTIAS). Experiments are performed with ground truth provided by an indoor motion capture system, and the results are analyzed. It is demonstrated that a velocity controller which incorporates the additional information is able to perform better than the controllers which do not have access to the target’s information.Keywords: quadrotor, target tracking, unmanned aerial vehicle, UAV, UAS, visual servoing
Procedia PDF Downloads 3412651 Surviral: An Agent-Based Simulation Framework for Sars-Cov-2 Outcome Prediction
Authors: Sabrina Neururer, Marco Schweitzer, Werner Hackl, Bernhard Tilg, Patrick Raudaschl, Andreas Huber, Bernhard Pfeifer
Abstract:
History and the current outbreak of Covid-19 have shown the deadly potential of infectious diseases. However, infectious diseases also have a serious impact on areas other than health and healthcare, such as the economy or social life. These areas are strongly codependent. Therefore, disease control measures, such as social distancing, quarantines, curfews, or lockdowns, have to be adopted in a very considerate manner. Infectious disease modeling can support policy and decision-makers with adequate information regarding the dynamics of the pandemic and therefore assist in planning and enforcing appropriate measures that will prevent the healthcare system from collapsing. In this work, an agent-based simulation package named “survival” for simulating infectious diseases is presented. A special focus is put on SARS-Cov-2. The presented simulation package was used in Austria to model the SARS-Cov-2 outbreak from the beginning of 2020. Agent-based modeling is a relatively recent modeling approach. Since our world is getting more and more complex, the complexity of the underlying systems is also increasing. The development of tools and frameworks and increasing computational power advance the application of agent-based models. For parametrizing the presented model, different data sources, such as known infections, wastewater virus load, blood donor antibodies, circulating virus variants and the used capacity for hospitalization, as well as the availability of medical materials like ventilators, were integrated with a database system and used. The simulation result of the model was used for predicting the dynamics and the possible outcomes and was used by the health authorities to decide on the measures to be taken in order to control the pandemic situation. The survival package was implemented in the programming language Java and the analytics were performed with R Studio. During the first run in March 2020, the simulation showed that without measures other than individual personal behavior and appropriate medication, the death toll would have been about 27 million people worldwide within the first year. The model predicted the hospitalization rates (standard and intensive care) for Tyrol and South Tyrol with an accuracy of about 1.5% average error. They were calculated to provide 10-days forecasts. The state government and the hospitals were provided with the 10-days models to support their decision-making. This ensured that standard care was maintained for as long as possible without restrictions. Furthermore, various measures were estimated and thereafter enforced. Among other things, communities were quarantined based on the calculations while, in accordance with the calculations, the curfews for the entire population were reduced. With this framework, which is used in the national crisis team of the Austrian province of Tyrol, a very accurate model could be created on the federal state level as well as on the district and municipal level, which was able to provide decision-makers with a solid information basis. This framework can be transferred to various infectious diseases and thus can be used as a basis for future monitoring.Keywords: modelling, simulation, agent-based, SARS-Cov-2, COVID-19
Procedia PDF Downloads 1742650 Mineral Slag Used as an Alternative of Cement in Concrete
Authors: Eskinder Desta Shumuye, Jun Zhao, Zike Wang
Abstract:
This paper summarizes the results of experimental studies carried out at Zhengzhou University, School of Mechanics and Engineering Science, research laboratory, on the performance of concrete produced by combining Ordinary Portland Cement (OPC) with Ground-Granulated Blast Furnace Slag (GGBS). Concrete specimens cast with OPC and various percentage of GGBS (0%, 30%, 50%, and 70%) were subjected to high temperature exposure and extensive experimental test reproducing basic freeze-thaw cycle and a chloride-ion attack to determine their combined effects within the concrete samples. From the experimental studies, comparisons were made on the physical, mechanical, and microstructural properties in compassion with ordinary Portland cement concrete (OPC). Further, durability of GGBS cement concrete, such as exposure to accelerated carbonation, chloride ion attack, and freeze-thaw action in compassion with various percentage of GGBS and ordinary Portland cement concrete of similar mixture composition was analyzed. The microstructure, mineralogical composition, and pore size distribution of concrete specimens were determined via Scanning Electron Microscopy (SEM) analysis and X-Ray Diffraction (XRD). The result demonstrated that when the exposure temperature increases from 200 ºC to 400 ºC, the residual compressive strength was fluctuating for all concrete group, and compressive strength and chloride ion exposure of the concrete decreased with the increasing of slag content. The SEM and EDS results showed an increase in carbonation rate with increasing in slag content.Keywords: accelerated carbonation, chloride-ion, concrete, ground-granulated blast furnace slag, GGBS, high-temperature
Procedia PDF Downloads 1402649 Optimization of Reaction Parameters' Influences on Production of Bio-Oil from Fast Pyrolysis of Oil Palm Empty Fruit Bunch Biomass in a Fluidized Bed Reactor
Authors: Chayanoot Sangwichien, Taweesak Reungpeerakul, Kyaw Thu
Abstract:
Oil palm mills in Southern Thailand produced a large amount of biomass solid wastes. Lignocellulose biomass is the main source for production of biofuel which can be combined or used as an alternative to fossil fuels. Biomass composed of three main constituents of cellulose, hemicellulose, and lignin. Thermochemical conversion process applied to produce biofuel from biomass. Pyrolysis of biomass is the best way to thermochemical conversion of biomass into pyrolytic products (bio-oil, gas, and char). Operating parameters play an important role to optimize the product yields from fast pyrolysis of biomass. This present work concerns with the modeling of reaction kinetics parameters for fast pyrolysis of empty fruit bunch in the fluidized bed reactor. A global kinetic model used to predict the product yields from fast pyrolysis of empty fruit bunch. The reaction temperature and vapor residence time parameters are mainly affected by product yields of EFB pyrolysis. The reaction temperature and vapor residence time parameters effects on empty fruit bunch pyrolysis are considered at the reaction temperature in the range of 450-500˚C and at a vapor residence time of 2 s, respectively. The optimum simulated bio-oil yield of 53 wt.% obtained at the reaction temperature and vapor residence time of 450˚C and 2 s, 500˚C and 1 s, respectively. The simulated data are in good agreement with the reported experimental data. These simulated data can be applied to the performance of experiment work for the fast pyrolysis of biomass.Keywords: kinetics, empty fruit bunch, fast pyrolysis, modeling
Procedia PDF Downloads 2152648 Design of a Portable Shielding System for a Newly Installed NaI(Tl) Detector
Authors: Mayesha Tahsin, A.S. Mollah
Abstract:
Recently, a 1.5x1.5 inch NaI(Tl) detector based gamma-ray spectroscopy system has been installed in the laboratory of the Nuclear Science and Engineering Department of the Military Institute of Science and Technology for radioactivity detection purposes. The newly installed NaI(Tl) detector has a circular lead shield of 22 mm width. An important consideration of any gamma-ray spectroscopy is the minimization of natural background radiation not originating from the radioactive sample that is being measured. Natural background gamma-ray radiation comes from naturally occurring or man-made radionuclides in the environment or from cosmic sources. Moreover, the main problem with this system is that it is not suitable for measurements of radioactivity with a large sample container like Petridish or Marinelli beaker geometry. When any laboratory installs a new detector or/and new shield, it “must” first carry out quality and performance tests for the detector and shield. This paper describes a new portable shielding system with lead that can reduce the background radiation. Intensity of gamma radiation after passing the shielding will be calculated using shielding equation I=Ioe-µx where Io is initial intensity of the gamma source, I is intensity after passing through the shield, µ is linear attenuation coefficient of the shielding material, and x is the thickness of the shielding material. The height and width of the shielding will be selected in order to accommodate the large sample container. The detector will be surrounded by a 4π-geometry low activity lead shield. An additional 1.5 mm thick shield of tin and 1 mm thick shield of copper covering the inner part of the lead shielding will be added in order to remove the presence of characteristic X-rays from the lead shield.Keywords: shield, NaI (Tl) detector, gamma radiation, intensity, linear attenuation coefficient
Procedia PDF Downloads 1592647 Neuropsychology of Social Awareness: A Research Study Applied to University Students in Greece
Authors: Argyris Karapetsas, Maria Bampou, Andriani Mitropoulou
Abstract:
The aim of the present work is to study the role of brain function in social awareness processing. Mind controls all the psychosomatic functions. Mind’s functioning enables individual not only to recognize one's own self and propositional attitudes, but also to assign such attitudes to other individuals, and to consider such observed mental states in the elucidation of behavior. Participants and Methods: Twenty (n=20) undergraduate students (mean age 18 years old) were involved in this study. Students participated in a clinical assessment, being conducted in Laboratory of Neuropsychology, at University of Thessaly, in Volos, Greece. Assessment included both electrophysiological (i.e.Event Related Potentials (ERPs) esp.P300 waveform) and neuropsychological tests (Raven's Progressive Matrices (RPM) and Sally-Anne test). Results: Initial assessment’s results confirmed statistically significant differences between the males and females, as well as in score performance to the tests applied. Strong correlations emerged between prefrontal lobe functioning, RPM, Sally-Anne test and P300 latencies. Also, significant dysfunction of mind has been found, regarding its three dimensions (straight, circular and helical). At the end of the assessment, students received consultation and appropriate guidelines in order to improve their intrapersonal and interpersonal skills. Conclusions: Mind and social awareness phenomena play a vital role in human development and may act as determinants of the quality of one’s own life. Meanwhile, brain function is highly correlated with social awareness and it seems that different set of brain structures are involved in social behavior.Keywords: brain activity, emotions, ERP's, social awareness
Procedia PDF Downloads 1932646 Endometrial Ablation and Resection Versus Hysterectomy for Heavy Menstrual Bleeding: A Systematic Review and Meta-Analysis of Effectiveness and Complications
Authors: Iliana Georganta, Clare Deehan, Marysia Thomson, Miriam McDonald, Kerrie McNulty, Anna Strachan, Elizabeth Anderson, Alyaa Mostafa
Abstract:
Context: A meta-analysis of randomized controlled trials (RCTs) comparing hysterectomy versus endometrial ablation and resection in the management of heavy menstrual bleeding. Objective: To evaluate the clinical efficacy, satisfaction rates and adverse events of hysterectomy compared to more minimally invasive techniques in the treatment of HMB. Evidence Acquisition: A literature search was performed for all RCTs and quasi-RCTs comparing hysterectomy with either endometrial ablation endometrial resection of both. The search had no language restrictions and was last updated in June 2020 using MEDLINE, EMBASE, Cochrane Central Register of Clinical Trials, PubMed, Google Scholar, PsycINFO, Clinicaltrials.gov and Clinical trials. EU. In addition, a manual search of the abstract databases of the European Haemophilia Conference on women's health was performed and further studies were identified from references of acquired papers. The primary outcomes were patient-reported and objective reduction in heavy menstrual bleeding up to 2 years and after 2 years. Secondary outcomes included satisfaction rates, pain, adverse events short and long term, quality of life and sexual function, further surgery, duration of surgery and hospital stay and time to return to work and normal activities. Data were analysed using RevMan software. Evidence synthesis: 12 studies and a total of 2028 women were included (hysterectomy: n = 977 women vs endometrial ablation or resection: n = 1051 women). Hysterectomy was compared with endometrial ablation only in five studies (Lin, Dickersin, Sesti, Jain, Cooper) and endometrial resection only in five studies (Gannon, Schulpher, O’Connor, Crosignani, Zupi) and a mixture of the Ablation and Resection in two studies (Elmantwe, Pinion). Of the 1² studies, 10 reported women’s perception of bleeding symptoms as improved. Meta-analysis showed that women in the hysterectomy group were more likely to show improvement in bleeding symptoms when compared with endometrial ablation or resection up to 2-year follow-up (RR 0.75, 95% CI 0.71 to 0.79, I² = 95%). Objective outcomes of improvement in bleeding also favored hysterectomy. Patient satisfaction was higher after hysterectomy within the 2 years follow-up (RR: 0.90, 95%CI: 0.86 to 0.94, I²:58%), however, there was no significant difference between the two groups at more than 2 years follow up. Sepsis (RR: 0.03, 95% CI 0.002 to 0.56; 1 study), wound infection (RR: 0.05, 95% CI: 0.01 to 0.28, I²: 0%, 3 studies) and Urinary tract infection (UTI) (RR: 0.20, 95% CI: 0.10 to 0.42, I²: 0%, 4 studies) all favoured hysteroscopic techniques. Fluid overload (RR: 7.80, 95% CI: 2.16 to 28.16, I² :0%, 4 studies) and perforation (RR: 5.42, 95% CI: 1.25 to 23.45, I²: 0%, 4 studies) however favoured hysterectomy in the short term. Conclusions: This meta-analysis has demonstrated that endometrial ablation and endometrial resection are both viable options when compared with hysterectomy for the treatment of heavy menstrual bleeding. Hysteroscopic procedures had better outcomes in the short term with fewer adverse events including wound infection, UTI and sepsis. The hysterectomy performed better when measuring more long-term impacts such as recurrence of symptoms, overall satisfaction at two years and the need for further treatment or surgery.Keywords: menorrhagia, hysterectomy, ablation, resection
Procedia PDF Downloads 1552645 Cyclic Behaviour of Wide Beam-Column Joints with Shear Strength Ratios of 1.0 and 1.7
Authors: Roy Y. C. Huang, J. S. Kuang, Hamdolah Behnam
Abstract:
Beam-column connections play an important role in the reinforced concrete moment resisting frame (RCMRF), which is one of the most commonly used structural systems around the world. The premature failure of such connections would severely limit the seismic performance and increase the vulnerability of RCMRF. In the past decades, researchers primarily focused on investigating the structural behaviour and failure mechanisms of conventional beam-column joints, the beam width of which is either smaller than or equal to the column width, while studies in wide beam-column joints were scarce. This paper presents the preliminary experimental results of two full-scale exterior wide beam-column connections, which are mainly designed and detailed according to ACI 318-14 and ACI 352R-02, under reversed cyclic loading. The ratios of the design shear force to the nominal shear strength of these specimens are 1.0 and 1.7, respectively, so as to probe into differences of the joint shear strength between experimental results and predictions by design codes of practice. Flexural failure dominated in the specimen with ratio of 1.0 in which full-width plastic hinges were observed, while both beam hinges and post-peak joint shear failure occurred for the other specimen. No sign of premature joint shear failure was found which is inconsistent with ACI codes’ prediction. Finally, a modification of current codes of practice is provided to accurately predict the joint shear strength in wide beam-column joint.Keywords: joint shear strength, reversed cyclic loading, seismic vulnerability, wide beam-column joints
Procedia PDF Downloads 3232644 Characterizing Surface Machining-Induced Local Deformation Using Electron Backscatter Diffraction
Authors: Wenqian Zhang, Xuelin Wang, Yujin Hu, Siyang Wang
Abstract:
The subsurface layer of a component plays a significant role in its service performance. Any surface mechanical process during fabrication can introduce a deformed layer near the surface, which can be related to the microstructure alteration and strain hardening, and affects the mechanical properties and corrosion resistance of the material. However, there exists a great difficulty in determining the subsurface deformation induced by surface machining. In this study, electron backscatter diffraction (EBSD) was used to study the deformed layer of surface milled 316 stainless steel. The microstructure change was displayed by the EBSD maps and characterized by misorientation variation. The results revealed that the surface milling resulted in heavily nonuniform deformations in the subsurface layer and even in individual grains. The direction of the predominant grain deformation was about 30-60 deg to the machined surface. Moreover, a local deformation rate (LDR) was proposed to quantitatively evaluate the local deformation degree. Both of the average and maximum LDRs were utilized to characterize the deformation trend along the depth direction. It was revealed that the LDR had a strong correlation with the development of grain and sub-grain boundaries. In this work, a scan step size of 1.2 μm was chosen for the EBSD measurement. A LDR higher than 18 deg/μm indicated a newly developed grain boundary, while a LDR ranged from 2.4 to 18 deg/μm implied the generation of a sub-grain boundary. And a lower LDR than 2.4 deg/μm could only introduce a slighter deformation and no sub-grain boundary was produced. According to the LDR analysis with the evolution of grain or sub grain boundaries, the deformed layer could be classified into four zones: grain broken layer, seriously deformed layer, slightly deformed layer and non-deformed layer.Keywords: surface machining, EBSD, subsurface layer, local deformation
Procedia PDF Downloads 3312643 Comparison of Soil Test Extractants for Determination of Available Soil Phosphorus
Authors: Violina Angelova, Stefan Krustev
Abstract:
The aim of this work was to evaluate the effectiveness of different soil test extractants for the determination of available soil phosphorus in five internationally certified standard soils, sludge and clay (NCS DC 85104, NCS DC 85106, ISE 859, ISE 952, ISE 998). The certified samples were extracted with the following methods/extractants: CaCl₂, CaCl₂ and DTPA (CAT), double lactate (DL), ammonium lactate (AL), calcium acetate lactate (CAL), Olsen, Mehlich 3, Bray and Kurtz I, and Morgan, which are commonly used in soil testing laboratories. The phosphorus in soil extracts was measured colorimetrically using Spectroquant Pharo 100 spectrometer. The methods used in the study were evaluated according to the recovery of available phosphorus, facility of application and rapidity of performance. The relationships between methods are examined statistically. A good agreement of the results from different soil test was established for all certified samples. In general, the P values extracted by the nine extraction methods significantly correlated with each other. When grouping the soils according to pH, organic carbon content and clay content, weaker extraction methods showed analogous trends; also among the stronger extraction methods, common tendencies were found. Other factors influencing the extraction force of the different methods include soil: solution ratio, as well as the duration and power of shaking the samples. The mean extractable P in certified samples was found to be in the order of CaCl₂ < CAT < Morgan < Bray and Kurtz I < Olsen < CAL < DL < Mehlich 3 < AL. Although the nine methods extracted different amounts of P from the certified samples, values of P extracted by the different methods were strongly correlated among themselves. Acknowledgment: The financial support by the Bulgarian National Science Fund Projects DFNI Н04/9 and DFNI Н06/21 are greatly appreciated.Keywords: available soil phosphorus, certified samples, determination, soil test extractants
Procedia PDF Downloads 1512642 Study on Science and Technology Resources Coordinated Development and Innovation of Beijing-Tianjin-Hebei Region
Authors: Hong Zhang, Runlian Miao, Min Zhang
Abstract:
Coordinated development of Beijing-Tianjin-Hebei region is of great importance and has been emphasized by the government in recent years. Beijing-Tianjin-Hebei region accumulates a large part of S&T resources of the whole country and boasts the most influential achievements. In order to improve innovation capability of the region, universities, research institutions and enterprises from Beijing, Tianjin and Hebei have cooperated in many forms, but technological innovation is not so satisfactory due to unbalanced allocation, poor sharing and low utilization efficiency of S&T resources. Therefore, it’s very necessary to promote resources sharing, optimize their overall layout, and enhance their innovation performance, which can further deepen coordination development of the region. This study focuses on S&T resources with the methods of documents research plus field investigation and qualitative research combing plus quantitive research. It starts from the macro background of promoting coordinated development of Beijing-Tianjin-Hebei region and arrives at improving regional innovation capability. Firstly, the author makes a literature review on coordinated development of Beijing-Tianjin-Hebei region and summarizes that coordinated development has been carried forward in the major fields which lay foundation for regional innovation; secondly, analyzes current S&T resources distribution and coordinated innovation by taking key industries as the examples; based on analysis of the status quo of resources sharing and innovation in the region, the author points out problems and obstacles that holdbacks coordinated innovation of the region and at last raises some suggestions to resources sharing and regional innovation. It reaches the conclusion that an efficient management mechanism, market laws, favorable environment, model innovation and incentive measures can help to accelerate resources sharing and regional innovation in the region.Keywords: Beijing-Tianjin-Hebei region, coordinated development, innovation, S&T resources
Procedia PDF Downloads 3062641 Multiaxial Fatigue Analysis of a High Performance Nickel-Based Superalloy
Authors: P. Selva, B. Lorraina, J. Alexis, A. Seror, A. Longuet, C. Mary, F. Denard
Abstract:
Over the past four decades, the fatigue behavior of nickel-based alloys has been widely studied. However, in recent years, significant advances in the fabrication process leading to grain size reduction have been made in order to improve fatigue properties of aircraft turbine discs. Indeed, a change in particle size affects the initiation mode of fatigue cracks as well as the fatigue life of the material. The present study aims to investigate the fatigue behavior of a newly developed nickel-based superalloy under biaxial-planar loading. Low Cycle Fatigue (LCF) tests are performed at different stress ratios so as to study the influence of the multiaxial stress state on the fatigue life of the material. Full-field displacement and strain measurements as well as crack initiation detection are obtained using Digital Image Correlation (DIC) techniques. The aim of this presentation is first to provide an in-depth description of both the experimental set-up and protocol: the multiaxial testing machine, the specific design of the cruciform specimen and performances of the DIC code are introduced. Second, results for sixteen specimens related to different load ratios are presented. Crack detection, strain amplitude and number of cycles to crack initiation vs. triaxial stress ratio for each loading case are given. Third, from fractographic investigations by scanning electron microscopy it is found that the mechanism of fatigue crack initiation does not depend on the triaxial stress ratio and that most fatigue cracks initiate from subsurface carbides.Keywords: cruciform specimen, multiaxial fatigue, nickel-based superalloy
Procedia PDF Downloads 2962640 Effects of 8-Week Bee Bread Supplementation on Isokinetic Muscular Strength and Power in Young Athletes
Authors: Fadzel Wong Chee Ping, Chee Keong Chen, Foong Kiew Ooi, Mahaneem Mohamed
Abstract:
Introduction: To date, information on the effects of bee bread supplementation on isokinetic muscular performance are lacking. Therefore, this study was carried out to investigate the effects of 8-week bee bread supplementation on isokinetic muscular strength and power in young athletes. Methodology: Twelve male athletes (age: 24.0±1.8 years; BMI: 22.3 ± 1.3 kg.m-2; VO2max: 52.0 ± 2.8 mL.kg-1.min-1) were recruited in this randomised double blind, placebo-controlled crossover study. Participants consumed either bee bread at a dosage of 20 g.d-1 or placebo for 8 weeks. An isokinetic dynamometer was used to measure participants’ lower limb muscular strength and power prior (pre-test) and post (post-test) 8 weeks of experimental period. Testing angular velocities were set at 180o.s-1 and 300o.s-1 to determine knee flexion and extension muscular peak torque (an indicator of muscular strength) and average power of the participants. Statistical analyses were performed using ANOVA with repeated measures. Results: Isokinetic knee extension peak torque and average power at 180o.s-1, and isokinetic knee flexion peak torque and average power at 180o.s-1 were significantly (p<0.05) higher at post-test compared to pre-test with bee bread supplementation. However, significant differences were not observed in the measured parameters between pre- and post-test with placebo supplementation. Conclusion: Supplementation of bee bread for 8 weeks at a dosage of 20 g daily increased some of the measured isokinetic muscular strength and power parameters in young athletes.Keywords: bee bread, isokinetic, power, strength
Procedia PDF Downloads 2552639 Analysis of the Vibration Behavior of a Small-Scale Wind Turbine Blade under Johannesburg Wind Speed
Authors: Tolulope Babawarun, Harry Ngwangwa
Abstract:
The wind turbine blade may sustain structural damage from external loads such as high winds or collisions, which could compromise its aerodynamic efficiency. The wind turbine blade vibrates at significant intensities and amplitudes under these conditions. The effect of these vibrations on the dynamic flow field surrounding the blade changes the forces operating on it. The structural dynamic analysis of a small wind turbine blade is considered in this study. It entails creating a finite element model, validating the model, and doing structural analysis on the verified finite element model. The analysis is based on the structural reaction of a small-scale wind turbine blade to various loading sources. Although there are many small-scale off-shore wind turbine systems in use, only preliminary structural analysis is performed during design phases; these systems' performance under various loading conditions as they are encountered in real-world situations has not been properly researched. This will allow us to record the same Equivalent von Mises stress and deformation that the blade underwent. A higher stress contour was found to be more concentrated near the middle span of the blade under the various loading scenarios studied. The highest stress that the blade in this study underwent is within the range of the maximum stress that blade material can withstand. The maximum allowable stress of the blade material is 1,770 MPa. The deformation of the blade was highest at the blade tip. The critical speed of the blade was determined to be 4.3 Rpm with a rotor speed range of 0 to 608 Rpm. The blade's mode form under loading conditions indicates a bending mode, the most prevalent of which is flapwise bending.Keywords: ANSYS, finite element analysis, static loading, dynamic analysis
Procedia PDF Downloads 872638 Perception Towards Using E-learning with Stem Students Whose Programs Require Them to Attend Practical Sections in Laboratories during Covid-19
Authors: Youssef A. Yakoub, Ramy M. Shaaban
Abstract:
Covid-19 has changed and affected the whole world dramatically in a new way that the entire world, even scientists, have not imagined before. The educational institutions around the world have been fighting since Covid-19 hit the world last December to keep the educational process unchanged for all students. E-learning was a must for almost all US universities during the pandemic. It was specifically more challenging to use eLearning instead of regular classes among students who take practical education. The aim of this study is to examine the perception of STEM students towards using eLearning instead of traditional methods during their practical study. Focus groups of STEM students studying at a western Pennsylavian, mid-size university were interviewed. Semi-structured interviews were designed to get an insight on students’ perception towards the alternative educational methods they used in the past seven months. Using convenient sampling, four students were chosen from different STEM fields: science of physics, technology, electrical engineering, and mathematics. The interview was primarily about the extent to which these students were satisfied, and their educational needs were met through distance education during the pandemic. The interviewed students were generally able to do a satisfactory performance during their virtual classes, but they were not satisfied enough with the learning methods. The main challenges they faced included the inability to have real practical experience, insufficient materials posted by the faculty, and some technical problems associated with their study. However, they reported they were satisfied with the simulation programs they had. They reported these simulations provided them with a good alternative to their traditional practical education. In conclusion, this study highlighted the challenges students face during the pandemic. It also highlighted the various learning tools students see as good alternatives to their traditional education.Keywords: eLearning, STEM education, COVID-19 crisis, online practical training
Procedia PDF Downloads 1342637 Emotional Intelligence as a Predictor of Job Satisfaction in the Nigerian Construction Industry
Authors: Adedayo Johnson Ogungbile, Ayodeji Emmanuel Oke, Oluwaseyi Alabi Awodele
Abstract:
This study examines the role of emotional intelligence (EI) as a predictor of job satisfaction within the Nigerian construction industry. Utilizing a methodology that combines mean comparison and correlation analysis, the research explores how EI influences job satisfaction across diverse demographic and professional categories. The construction industry, known for its dynamic and often challenging work environment, provides a unique context to investigate how EI contributes to employee satisfaction. The findings reveal a significant positive correlation between EI and job satisfaction across the industry. Gender-based analysis shows that male employees typically report higher EI and job satisfaction levels compared to their female counterparts, although the impact of EI on job satisfaction is more substantial among women. The study further explores the relationship between trait EI and specific job satisfaction categories, identifying a general positive association with overall job satisfaction but not with supervisor-related satisfaction. Employees are categorized into four EI classes, consistently showing that higher EI levels correspond to greater job satisfaction. These findings align with existing literature, underscoring EI's pivotal role in enhancing job satisfaction in the construction sector. The study concludes that fostering EI among construction industry professionals can lead to improved job satisfaction and performance. Consequently, organizations are encouraged to integrate EI development into their professional growth programs to cultivate a more satisfied and effective workforce. In essence, this research highlights the importance of EI as a key predictor of job satisfaction in the Nigerian construction industry, providing valuable insights for both industry stakeholders and researchers into the benefits of prioritizing emotional intelligence in this high-stakes environment.Keywords: emotional intelligence, job satisfaction, construction industry, workforce productivity, demographics
Procedia PDF Downloads 222636 Key Parameters for Controlling Swell of Expansive Soil-Hydraulic Cement Admixture
Authors: Aung Phyo Kyaw, Kuo Chieh Chao
Abstract:
Expansive soils are more complicated than normal soils, although the soil itself is not very complicated. When evaluating foundation performance on expansive soil, it is important to consider soil expansion. The primary focus of this study is on hydraulic cement and expansive soil mixtures, and the research aims to identify key parameters for controlling the swell of the expansive soil-hydraulic cement mixture. Treatment depths can be determined using hydraulic cement ratios of 4%, 8%, 12%, and 15% for treating expansive soil. To understand the effect of hydraulic cement percentages on the swelling of expansive soil-hydraulic admixture, performing the consolidation-swell test σ''ᶜˢ is crucial. This investigation primarily focuses on consolidation-swell tests σ''ᶜˢ, although the heave index Cₕ is also needed to determine total heave. The heave index can be measured using the percent swell in the specific inundation stress in both the consolidation-swell test and the constant-volume test swelling pressure. Obtaining the relationship between swelling pressure and σ''ᶜⱽ determined from the "constant volume test" is useful in predicting heave from a single oedometer test. The relationship between σ''ᶜˢ and σ''ᶜⱽ is based on experimental results of expansive soil behavior and facilitates heave prediction for each soil. In this method, the soil property "m" is used as a parameter, and common soil property tests include compaction, particle size distribution, and the Atterberg limit. The Electricity Generating Authority of Thailand (EGAT) provided the soil sample for this study, and all laboratory testing is performed according to American Society for Testing and Materials (ASTM) standards.Keywords: expansive soil, swelling pressure, total heave, treatment depth
Procedia PDF Downloads 852635 The Effect of Silanization on Alumina for Improving the Compatibility with Poly(Methacrylic Acid) Matrix for Dental Restorative Materials
Authors: Andrei Tiberiu Cucuruz, Ecaterina Andronescu, Cristina Daniela Ghitulica, Andreia Cucuruz
Abstract:
In modern dentistry, the application of resin-based composites continues to increase and in the majority of countries has completely replaced mercury amalgams. Alumina (Al2O3) is a representative bioinert ceramic with a variety of applications in industry as well as in medicine. Alumina has the potential to improve electrical resistivity and thermal conductivity of polymers. The application of poly(methacrylic acid) (PMAA) in medicine was poorly investigated in the past but can lead to good results by the incorporation of alumina particles that can bring bioinertness to the composite. However, because of the differences related to chemical bonding of these materials, the interaction is very weak at the interface leading to no significant values in practical situations. The aim of this work was to modify the structure of alumina with silane coupling agents and to study the influence of silanization on the physicomechanical properties of the resulting composite materials. Two silanes were used in this study: 3-aminopropyl-trimethoxysilane (APTMS) and dichlorodimethylsilane (DCDMS). Both silanes proved to have a significant effect on the overall performance of composites by establishing bonds with the polymer matrix and the filler. All these improvements in dental adhesive systems made for bonding resin composites to tooth structure have enhanced the clinical application of polymeric restorative materials to the position that they are now considered the material of choice for esthetic restoration.Keywords: alumina, compressive strength, dental materials, silane coupling agents, poly(methacrylic acid)
Procedia PDF Downloads 3502634 From Synthesis to Application of Photovoltaic Perovskite Nanowires
Authors: László Forró
Abstract:
The organolead halide perovskite CH3NH3PbI3 and its derivatives are known to be very efficient light harvesters revolutionizing the field of solid-state solar cells. The major research area in this field is photovoltaic device engineering although other applications are being explored, as well. Recently, we have shown that nanowires of this photovoltaic perovskite can be synthesized which in association with carbon nanostructures (carbon nanotubes and graphene) make outstanding composites with rapid and strong photo-response. They can serve as conducting electrodes, or as central components of detectors. The performance of several miniature devices based on these composite structures will be demonstrated. Our latest findings on the guided growth of perovskite nanowires by solvatomorph graphoepitaxy will be presented. This method turned out to be a fairly simple approach to overcome the spatially random surface nucleation. The process allows the synthesis of extremely long (centimeters) and thin (a few nanometers) nanowires with a morphology defined by the shape of nanostructured open fluidic channels. This low-temperature solution-growth method could open up an entirely new spectrum of architectural designs of organometallic-halide-perovskite-based heterojunctions and tandem solar cells, LEDs and other optoelectronic devices. Acknowledgment: This work is done in collaboration with Endre Horvath, Massimo Spina, Alla Arakcheeva, Balint Nafradi, Eric Bonvin1, Andrzej Sienkievicz, Zsolt Szekrenyes, Hajnalka Tohati, Katalin Kamaras, Eduard Tutis, Laszlo Mihaly and Karoly Holczer The research is supported by the ERC Advanced Grant (PICOPROP670918).Keywords: photovoltaics, perovskite, nanowire, photodetector
Procedia PDF Downloads 3562633 Effect of Dietary Waste Date Meal (Phoneix dactylifera) on Chemical Body Composition, Nutrition Value and Fatty Acids Profile of Fingerling Common Carp (Cyprinus carpio)
Authors: Mehrdad Kamali-Sanzighi, Maziar Kamali-sanzighi
Abstract:
Effect of waste date meal (WDM) addition to the diet on body chemical composition and fatty acids profile of fingerling cyprinus carpio were evaluated. Four treatments with 3 replication such as control treatment (no additional WDM; T1), 5% WDM (50 gr/kg; T2), 10% WDM (100 gr/kg; T3) and 15% WDM (150 gr/kg; T4) were done. 168 fish with initial weight of 2.48±0.06 gr were fed 3 times per day according to 5 % of fish body weight for 12 weeks. The body composition results showed that there is no significant differences between treatments (P>0.05). All of Fatty acids profile parameters show significant differences between different treatments (P<0.05). Although, the highest value of MUFA+PUFA, PUFA/SFA, MUFA+PUFA/SFA, W3, EPA+DHA parameters belong to control treatment (T1) and 5% WDM treatment (T2) had lowest value of MUFA, PUFA, MUFA+PUFA, PUFA/SFA, MUFA+PUFA/SFA, W3, W3/W6, DHA/EPA and EPA+DHA parameters except of SFA and W6/W3 that show highest value than other treatments. Atherogenic index (AI) had no significant differences between different treatments (P>0.05) but Thrombogenic index (TI) had significant differences between different experimental treatments (P<0.05). The 5% WDM and control treatment show highest and lowest values. Generally, treatments of 10 and 15% WDM (T3-T4) had moderate performance than the other experimental treatments. Finally, addition of WDM to common carp fingerlings diets help to insignificant improvement of chemical body composition and the saturated and unsaturated fatty acids profile of them were significant.Keywords: waste, date, common carp, nutrition value
Procedia PDF Downloads 912632 Indigenous Pre-Service Teacher Education: Developing, Facilitating, and Maintaining Opportunities for Retention and Graduation
Authors: Karen Trimmer, Raelene Ward, Linda Wondunna-Foley
Abstract:
Within Australian tertiary institutions, the subject of Aboriginal and Torres Strait Islander education has been a major concern for many years. Aboriginal and Torres Strait Islander teachers are significantly under-represented in Australian schools and universities. High attrition rates in teacher education and in the teaching industry have contributed to a minimal growth rate in the numbers of Aboriginal and Torres Strait Islander teachers in previous years. There was an increase of 500 Indigenous teachers between 2001 and 2008 but these numbers still only account for one percent of teaching staff in government schools who identified as Aboriginal and Torres Strait Islander Australians (Ministerial Council for Education, Early Childhood Development and Youth Affairs 2010). Aboriginal and Torres Strait Islander teachers are paramount in fostering student engagement and improving educational outcomes for Indigenous students. Increasing the numbers of Aboriginal and Torres Strait Islander teachers is also a key factor in enabling all students to develop understanding of and respect for Aboriginal and Torres Strait Islander histories, cultures, and language. An ambitious reform agenda to improve the recruitment and retention of Aboriginal and Torres Strait Islander teachers will be effective only through national collaborative action and co-investment by schools and school authorities, university schools of education, professional associations, and Indigenous leaders and community networks. Whilst the University of Southern Queensland currently attracts Indigenous students to its teacher education programs (61 students in 2013 with an average of 48 enrollments each year since 2010) there is significant attrition during pre-service training. The annual rate of exiting before graduation remains high at 22% in 2012 and was 39% for the previous two years. These participation and retention rates are consistent with other universities across Australia. Whilst aspirations for a growing number of Indigenous people to be trained as teachers is present, there is a significant loss of students during their pre-service training and within the first five years of employment as a teacher. These trends also reflect the situation where Aboriginal and Torres Strait Islander teachers are significantly under-represented, making up less than 1% of teachers in schools across Australia. Through a project conducted as part the nationally funded More Aboriginal and Torres Strait Islander Teachers Initiative (MATSITI) we aim to gain an insight into the reasons that impact Aboriginal and Torres Strait Islander student’s decisions to exit their program. Through the conduct of focus groups and interviews with two graduating cohorts of self-identified Aboriginal and Torres Strait Islander students, rich data has been gathered to gain an understanding of the barriers and enhancers to the completion of pre-service qualification and transition to teaching. Having a greater understanding of these reasons then allows the development of collaborative processes and procedures to increase retention and completion rates of new Indigenous teachers. Analysis of factors impacting on exit decisions and transitions has provided evidence to support change of practice, redesign and enhancement of relevant courses and development of policy/procedures to address identified issues.Keywords: graduation, indigenous, pre-service teacher education, retention
Procedia PDF Downloads 4712631 Computer Aided Shoulder Prosthesis Design and Manufacturing
Authors: Didem Venus Yildiz, Murat Hocaoglu, Murat Dursun, Taner Akkan
Abstract:
The shoulder joint is a more complex structure than the hip or knee joints. In addition to the overall complexity of the shoulder joint, two different factors influence the insufficient outcome of shoulder replacement: the shoulder prosthesis design is far from fully developed and it is difficult to place these shoulder prosthesis due to shoulder anatomy. The glenohumeral joint is the most complex joint of the human shoulder. There are various treatments for shoulder failures such as total shoulder arthroplasty, reverse total shoulder arthroplasty. Due to its reverse design than normal shoulder anatomy, reverse total shoulder arthroplasty has different physiological and biomechanical properties. Post-operative achievement of this arthroplasty is depend on improved design of reverse total shoulder prosthesis. Designation achievement can be increased by several biomechanical and computational analysis. In this study, data of human both shoulders with right side fracture was collected by 3D Computer Tomography (CT) machine in dicom format. This data transferred to 3D medical image processing software (Mimics Materilise, Leuven, Belgium) to reconstruct patient’s left and right shoulders’ bones geometry. Provided 3D geometry model of the fractured shoulder was used to constitute of reverse total shoulder prosthesis by 3-matic software. Finite element (FE) analysis was conducted for comparison of intact shoulder and prosthetic shoulder in terms of stress distribution and displacements. Body weight physiological reaction force of 800 N loads was applied. Resultant values of FE analysis was compared for both shoulders. The analysis of the performance of the reverse shoulder prosthesis could enhance the knowledge of the prosthetic design.Keywords: reverse shoulder prosthesis, biomechanics, finite element analysis, 3D printing
Procedia PDF Downloads 1562630 Temperature Distribution for Asphalt Concrete-Concrete Composite Pavement
Authors: Tetsya Sok, Seong Jae Hong, Young Kyu Kim, Seung Woo Lee
Abstract:
The temperature distribution for asphalt concrete (AC)-Concrete composite pavement is one of main influencing factor that affects to performance life of pavement. The temperature gradient in concrete slab underneath the AC layer results the critical curling stress and lead to causes de-bonding of AC-Concrete interface. These stresses, when enhanced by repetitive axial loadings, also contribute to the fatigue damage and eventual crack development within the slab. Moreover, the temperature change within concrete slab extremely causes the slab contracts and expands that significantly induces reflective cracking in AC layer. In this paper, the numerical prediction of pavement temperature was investigated using one-dimensional finite different method (FDM) in fully explicit scheme. The numerical predicted model provides a fundamental and clear understanding of heat energy balance including incoming and outgoing thermal energies in addition to dissipated heat in the system. By using the reliable meteorological data for daily air temperature, solar radiation, wind speech and variable pavement surface properties, the predicted pavement temperature profile was validated with the field measured data. Additionally, the effects of AC thickness and daily air temperature on the temperature profile in underlying concrete were also investigated. Based on obtained results, the numerical predicted temperature of AC-Concrete composite pavement using FDM provided a good accuracy compared to field measured data and thicker AC layer significantly insulates the temperature distribution in underlying concrete slab.Keywords: asphalt concrete, finite different method (FDM), curling effect, heat transfer, solar radiation
Procedia PDF Downloads 2702629 Experimental Study on Two-Step Pyrolysis of Automotive Shredder Residue
Authors: Letizia Marchetti, Federica Annunzi, Federico Fiorini, Cristiano Nicolella
Abstract:
Automotive shredder residue (ASR) is a mixture of waste that makes up 20-25% of end-of-life vehicles. For many years, ASR was commonly disposed of in landfills or incinerated, causing serious environmental problems. Nowadays, thermochemical treatments are a promising alternative, although the heterogeneity of ASR still poses some challenges. One of the emerging thermochemical treatments for ASR is pyrolysis, which promotes the decomposition of long polymeric chains by providing heat in the absence of an oxidizing agent. In this way, pyrolysis promotes the conversion of ASR into solid, liquid, and gaseous phases. This work aims to improve the performance of a two-step pyrolysis process. After the characterization of the analysed ASR, the focus is on determining the effects of residence time on product yields and gas composition. A batch experimental setup that reproduces the entire process was used. The setup consists of three sections: the pyrolysis section (made of two reactors), the separation section, and the analysis section. Two different residence times were investigated to find suitable conditions for the first sample of ASR. These first tests showed that the products obtained were more sensitive to residence time in the second reactor. Indeed, slightly increasing residence time in the second reactor managed to raise the yield of gas and carbon residue and decrease the yield of liquid fraction. Then, to test the versatility of the setup, the same conditions were applied to a different sample of ASR coming from a different chemical plant. The comparison between the two ASR samples shows that similar product yields and compositions are obtained using the same setup.Keywords: automotive shredder residue, experimental tests, heterogeneity, product yields, two-step pyrolysis
Procedia PDF Downloads 1272628 Urban Transport Demand Management Multi-Criteria Decision Using AHP and SERVQUAL Models: Case Study of Nigerian Cities
Authors: Suleiman Hassan Otuoze, Dexter Vernon Lloyd Hunt, Ian Jefferson
Abstract:
Urbanization has continued to widen the gap between demand and resources available to provide resilient and sustainable transport services in many fast-growing developing countries' cities. Transport demand management is a decision-based optimization concept for both benchmarking and ensuring efficient use of transport resources. This study assesses the service quality of infrastructure and mobility services in the Nigerian cities of Kano and Lagos through five dimensions of quality (i.e., Tangibility, Reliability, Responsibility, Safety Assurance and Empathy). The methodology adopts a hybrid AHP-SERVQUAL model applied on questionnaire surveys to gauge the quality of satisfaction and the views of experts in the field. The AHP results prioritize tangibility, which defines the state of transportation infrastructure and services in terms of satisfaction qualities and intervention decision weights in the two cities. The results recorded ‘unsatisfactory’ indices of quality of performance and satisfaction rating values of 48% and 49% for Kano and Lagos, respectively. The satisfaction indices are identified as indicators of low performances of transportation demand management (TDM) measures and the necessity to re-order priorities and take proactive steps towards infrastructure. The findings pilot a framework for comparative assessment of recognizable standards in transport services, best ethics of management and a necessity of quality infrastructure to guarantee both resilient and sustainable urban mobility.Keywords: transportation demand management, multi-criteria decision support, transport infrastructure, service quality, sustainable transport
Procedia PDF Downloads 2242627 'Antibody Exception' under Dispute and Waning Usage: Potential Influence on Patenting Antibodies
Authors: Xiangjun Kong, Dongning Yao, Yuanjia Hu
Abstract:
Therapeutic antibodies have become the most valuable and successful class of biopharmaceutical drugs, with a huge market potential and therapeutic advantages. Antibody patents are, accordingly, extremely important. As the technological limitation of the early stage of this field, the U. S. Patent and Trademark Offices (USPTO) have issued guidelines that suggest an exception for patents claiming a genus of antibodies that bind to a novel antigen, even in the absence of any experimental antibody production. This 'antibody exception' allowed for a broad scope on antibody claims, and led a global trend to patent antibodies without antibodies. Disputes around the pertinent patentability and written description issues remain particularly intense. Yet the validity of such patents had not been overtly challenged until Centocor v. Abbott, which restricted the broad scope of antibody patents and hit the brakes on the 'antibody exception'. The courts tend to uphold the requirement for adequate description of antibodies in the patent specifications, to avoid overreaching antibody claims. Patents following the 'antibody exception' are at risk of being found invalid for inadequately describing what they have claimed. However, the relation between the court and USPTO guidelines remains obscure, and the waning of the 'antibody exception' has led to further disputes around antibody patents. This uncertainty clearly affects patent applications, antibody innovations, and even relevant business performance. This study will give an overview of the emergence, debate, and waning usage of the 'antibody exception' in a number of enlightening cases, attempting to understand the specific concerns and the potential influence of antibody patents. We will then provide some possible strategies for antibody patenting, under the current considerations on the 'antibody exception'.Keywords: antibody exception, antibody patent, USPTO (U. S. Patent and Trademark Offices) guidelines, written description requirement
Procedia PDF Downloads 1592626 Relationship between Strategic Management and Organizational Culture in Sport Organization (Case Study: Selected Sport Federations of Islamic Republic of Iran)
Authors: Mohammad Ali Ghareh, Habib Honari, Alireza Ahmadi
Abstract:
The aim of this study was to investigate the relationship between strategic management and organizational culture in sport federations of Islamic Republic of Iran. Strategic management is a set of decisions and actions which define the long term performance of an organization. Organizational culture can be considered as an identity for every organization and somehow gives an identification to organization members. Organizational culture result in a certain commitments in organization members which is more valuable than individual profits and interests. The method of research was descriptive and correlational, conducted as a field study. The statistical population consisted of the employees of 10 sports federations and 170 persons were selected as sample. For data gathering, Barringer and Bluedorn’s strategic management questionnaire (1999) and Sakyn’s organizational culture questionnaire (2001) were used. The reliability of the questionnaires were 0.82 and 0.80 respectively, and the validity was approved by 8 experienced professors in sport management. To analyze data, KS (Kolmogorov–Smirnov) test and Pearson's coefficient were used. The results have shown that there is a significant meaningful relationship between strategic management and organizational culture (p < 0.05, r= 0.62). Beside this, there is a positive relationship between strategic management variables including scanning intensity, planning flexibility, locus of planning, planning horizon, strategic controls, and organizational culture (p < 0.05). Based on this research result it can be derived that strategic management planning and operation in terms of appropriate organizational culture is more applicable. By agreeing on their values and beliefs, adaptation to changes, caring about the individualities, coordination in tasks, modifying the individual and organizational goals, the federations will be able to achieve their strategic goals.Keywords: strategic management, organizational culture, sports federations, Islamic Republic of Iran
Procedia PDF Downloads 3742625 Setting Uncertainty Conditions Using Singular Values for Repetitive Control in State Feedback
Authors: Muhammad A. Alsubaie, Mubarak K. H. Alhajri, Tarek S. Altowaim
Abstract:
A repetitive controller designed to accommodate periodic disturbances via state feedback is discussed. Periodic disturbances can be represented by a time delay model in a positive feedback loop acting on system output. A direct use of the small gain theorem solves the periodic disturbances problem via 1) isolating the delay model, 2) finding the overall system representation around the delay model and 3) designing a feedback controller that assures overall system stability and tracking error convergence. This paper addresses uncertainty conditions for the repetitive controller designed in state feedback in either past error feedforward or current error feedback using singular values. The uncertainty investigation is based on the overall system found and the stability condition associated with it; depending on the scheme used, to set an upper/lower limit weighting parameter. This creates a region that should not be exceeded in selecting the weighting parameter which in turns assures performance improvement against system uncertainty. Repetitive control problem can be described in lifted form. This allows the usage of singular values principle in setting the range for the weighting parameter selection. The Simulation results obtained show a tracking error convergence against dynamic system perturbation if the weighting parameter chosen is within the range obtained. Simulation results also show the advantage of weighting parameter usage compared to the case where it is omitted.Keywords: model mismatch, repetitive control, singular values, state feedback
Procedia PDF Downloads 155