Search results for: panel data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42435

Search results for: panel data analysis

41055 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer

Authors: Ravinder Bahl, Jamini Sharma

Abstract:

The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.

Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning

Procedia PDF Downloads 360
41054 Avidity and IgE versus IgG and IgM in Diagnosis of Maternal Toxoplasmosis

Authors: Ghada A. Gamea, Nabila A. Yaseen, Ahmed A. Othman, Ahmed S. Tawfik

Abstract:

Infection with Toxoplasma gondii can cause serious complications in pregnant women, leading to abortion, stillbirth, and congenital anomalies in the fetus. Definitive diagnosis of T. gondii acute infection is therefore critical for the clinical management of a mother and her fetus. This study was conducted on 250 pregnant females in the first trimester who were inpatients or outpatients at Obstetrics and Gynaecology Department at Tanta University Hospital. Screening of the selected females was done for the detection of immunoglobulin (IgG and IgM), and all subjects were submitted to history taking through a questionnaire including personal data, risk factors for Toxoplasma, complaint and history of the present illness. Thirty-eight samples, including 18 IgM +ve and 20 IgM-ve cases were further investigated by the avidity and IgE ELISA tests. The seroprevalence of toxoplasmosis in pregnant women was (42.8%) based on the presence of IgG antibodies in their sera. Contact with cats and consumption of raw or undercooked meat are important risk factors that were associated with toxoplasmosis in pregnant women. By serology, it could be observed that in the IgM +ve group, only one case (5.6%) showed an acute pattern by using the avidity test, though 10 (55.6%) cases were found to be acute by the IgE assay. On the other hand, in the IgM –ve group, 3 (15%) showed low avidity, but none of them was positive by using the IgE assay. In conclusion, there is no single serological test that can be used to confirm whether T. gondii infection is recent or was acquired in the distant past. A panel of tests for detection of toxoplasmosis will certainly have higher discriminatory power than any test alone.

Keywords: diagnosis, serology, seroprevalence, toxoplasmosis

Procedia PDF Downloads 153
41053 Form of Distribution of Traffic Accident and Environment Factors of Road Affecting of Traffic Accident in Dusit District, Only Area Responsible of Samsen Police Station

Authors: Musthaya Patchanee

Abstract:

This research aimed to study form of traffic distribution and environmental factors of road that affect traffic accidents in Dusit District, only areas responsible of Samsen Police Station. Data used in this analysis is the secondary data of traffic accident case from year 2011. Observed area units are 15 traffic lines that are under responsible of Samsen Police Station. Technique and method used are the Cartographic Method, the Correlation Analysis, and the Multiple Regression Analysis. The results of form of traffic accidents show that, the Samsen Road area had most traffic accidents (24.29%), second was Rachvithi Road (18.10%), third was Sukhothai Road (15.71%), fourth was Rachasrima Road (12.38%), and fifth was Amnuaysongkram Road (7.62%). The result from Dusit District, only areas responsible of Samsen police station, has suggested that the scale of accidents have high positive correlation with statistic significant at level 0.05 and the frequency of travel (r=0.857). Traffic intersection point (r=0.763)and traffic control equipments (r=0.713) are relevant factors respectively. By using the Multiple Regression Analysis, travel frequency is the only one that has considerable influences on traffic accidents in Dusit district only Samsen Police Station area. Also, a factor in frequency of travel can explain the change in traffic accidents scale to 73.40 (R2 = 0.734). By using the Multiple regression summation from analysis was Y ̂=-7.977+0.044X6.

Keywords: form of traffic distribution, environmental factors of road, traffic accidents, Dusit district

Procedia PDF Downloads 391
41052 Big Data and Analytics in Higher Education: An Assessment of Its Status, Relevance and Future in the Republic of the Philippines

Authors: Byron Joseph A. Hallar, Annjeannette Alain D. Galang, Maria Visitacion N. Gumabay

Abstract:

One of the unique challenges provided by the twenty-first century to Philippine higher education is the utilization of Big Data. The higher education system in the Philippines is generating burgeoning amounts of data that contains relevant data that can be used to generate the information and knowledge needed for accurate data-driven decision making. This study examines the status, relevance and future of Big Data and Analytics in Philippine higher education. The insights gained from the study may be relevant to other developing nations similarly situated as the Philippines.

Keywords: big data, data analytics, higher education, republic of the philippines, assessment

Procedia PDF Downloads 348
41051 Economic Analysis of Cassava Value Chain by Farmers in Ilesa West Local Government Area of Osun State

Authors: Maikasuwa Mohammed Abubakar, Okebiorun Ola, M. H. Sidi, Ala Ahmed Ladan, Ango Aabdullahi Kamba

Abstract:

The study examines the economic analysis of cassava value chain by farmers in Ilesa West Local Government Area of Osun State. Simple random sampling technique was used to collect data from 200 respondents from purposively selected wards in the L.G.A. The data collected were analyzed using budgetary analysis and value addition model. The result shows that an average total cost incurred by the input dealers was ₦9,062,127.74 while the average net profit realized was ₦1,038,102.40. Other actors such as producers, processors and marketers incurred an average total cost of ₦23,324.00, ₦130,177.00 and ₦523,755.00 per production season, respectively and the average net profit realized was ₦102,614.00 for cassava producers, ₦51,131.00 for cassava processors and ₦79,045.00 for cassava marketers during cassava production season. Further analysis shows the rate of investment for cassava input dealers was ₦0.1, for cassava producers was ₦4.4, for cassava processors were ₦0.40 and for cassava marketers was ₦0.20. This indicated that rate of return on cassava was higher in cassava production than in others corridors along the value chain of cassava. However, value added the cassava producers (₦102,536.16/season) was the highest when compared with value added by cassava processors (₦51,853.82/season) and cassava marketers (₦100,885.56/season).

Keywords: Cassava, value chain, Ilesa West, Nigeria

Procedia PDF Downloads 333
41050 Laban Movement Analysis Using Kinect

Authors: Bernstein Ran, Shafir Tal, Tsachor Rachelle, Studd Karen, Schuster Assaf

Abstract:

Laban Movement Analysis (LMA), developed in the dance community over the past seventy years, is an effective method for observing, describing, notating, and interpreting human movement to enhance communication and expression in everyday and professional life. Many applications that use motion capture data might be significantly leveraged if the Laban qualities will be recognized automatically. This paper presents an automated recognition method of Laban qualities from motion capture skeletal recordings and it is demonstrated on the output of Microsoft’s Kinect V2 sensor.

Keywords: Laban movement analysis, multitask learning, Kinect sensor, machine learning

Procedia PDF Downloads 342
41049 Body Composition Analysis of University Students by Anthropometry and Bioelectrical Impedance Analysis

Authors: Vinti Davar

Abstract:

Background: Worldwide, at least 2.8 million people die each year as a result of being overweight or obese, and 35.8 million (2.3%) of global DALYs are caused by overweight or obesity. Obesity is acknowledged as one of the burning public health problems reducing life expectancy and quality of life. The body composition analysis of the university population is essential in assessing the nutritional status, as well as the risk of developing diseases associated with abnormal body fat content so as to make nutritional recommendations. Objectives: The main aim was to determine the prevalence of obesity and overweight in University students using Anthropometric analysis and BIA methods Material and Methods: In this cross-sectional study, 283 university students participated. The body composition analysis was undertaken by using mainly: i) Anthropometric Measurement: Height, Weight, BMI, waist circumference, hip circumference and skin fold thickness, ii) Bio-electrical impedance was used for analysis of body fat mass, fat percent and visceral fat which was measured by Tanita SC-330P Professional Body Composition Analyzer. The data so collected were compiled in MS Excel and analyzed for males and females using SPSS 16.Results and Discussion: The mean age of the male (n= 153) studied subjects was 25.37 ±2.39 year and females (n=130) was 22.53 ±2.31. The data of BIA revealed very high mean fat per cent of the female subjects i.e. 30.3±6.5 per cent whereas mean fat per cent of the male subjects was 15.60±6.02 per cent indicating a normal body fat range. The findings showed high visceral fat of both males (12.92±3.02) and females (16.86±4.98). BMI, BF% and WHR were higher among females, and BMI was higher among males. The most evident correlation was verified between BF% and WHR for female students (r=0.902; p<0.001). The correlation of BFM and BF% with thickness of triceps, sub scapular and abdominal skin folds and BMI was significant (P<0.001). Conclusion: The studied data made it obvious that there is a need to initiate lifestyle changing strategies especially for adult females and encourage them to improve their dietary intake to prevent incidence of non communicable diseases due to obesity and high fat percentage.

Keywords: anthropometry, bioelectrical impedance, body fat percentage, obesity

Procedia PDF Downloads 380
41048 Discriminating Between Energy Drinks and Sports Drinks Based on Their Chemical Properties Using Chemometric Methods

Authors: Robert Cazar, Nathaly Maza

Abstract:

Energy drinks and sports drinks are quite popular among young adults and teenagers worldwide. Some concerns regarding their health effects – particularly those of the energy drinks - have been raised based on scientific findings. Differentiating between these two types of drinks by means of their chemical properties seems to be an instructive task. Chemometrics provides the most appropriate strategy to do so. In this study, a discrimination analysis of the energy and sports drinks has been carried out applying chemometric methods. A set of eleven samples of available commercial brands of drinks – seven energy drinks and four sports drinks – were collected. Each sample was characterized by eight chemical variables (carbohydrates, energy, sugar, sodium, pH, degrees Brix, density, and citric acid). The data set was standardized and examined by exploratory chemometric techniques such as clustering and principal component analysis. As a preliminary step, a variable selection was carried out by inspecting the variable correlation matrix. It was detected that some variables are redundant, so they can be safely removed, leaving only five variables that are sufficient for this analysis. They are sugar, sodium, pH, density, and citric acid. Then, a hierarchical clustering `employing the average – linkage criterion and using the Euclidian distance metrics was performed. It perfectly separates the two types of drinks since the resultant dendogram, cut at the 25% similarity level, assorts the samples in two well defined groups, one of them containing the energy drinks and the other one the sports drinks. Further assurance of the complete discrimination is provided by the principal component analysis. The projection of the data set on the first two principal components – which retain the 71% of the data information – permits to visualize the distribution of the samples in the two groups identified in the clustering stage. Since the first principal component is the discriminating one, the inspection of its loadings consents to characterize such groups. The energy drinks group possesses medium to high values of density, citric acid, and sugar. The sports drinks group, on the other hand, exhibits low values of those variables. In conclusion, the application of chemometric methods on a data set that features some chemical properties of a number of energy and sports drinks provides an accurate, dependable way to discriminate between these two types of beverages.

Keywords: chemometrics, clustering, energy drinks, principal component analysis, sports drinks

Procedia PDF Downloads 109
41047 Reducing Uncertainty in Climate Projections over Uganda by Numerical Models Using Bias Correction

Authors: Isaac Mugume

Abstract:

Since the beginning of the 21st century, climate change has been an issue due to the reported rise in global temperature and changes in the frequency as well as severity of extreme weather and climatic events. The changing climate has been attributed to rising concentrations of greenhouse gases, including environmental changes such as ecosystems and land-uses. Climatic projections have been carried out under the auspices of the intergovernmental panel on climate change where a couple of models have been run to inform us about the likelihood of future climates. Since one of the major forcings informing the changing climate is emission of greenhouse gases, different scenarios have been proposed and future climates for different periods presented. The global climate models project different areas to experience different impacts. While regional modeling is being carried out for high impact studies, bias correction is less documented. Yet, the regional climate models suffer bias which introduces uncertainty. This is addressed in this study by bias correcting the regional models. This study uses the Weather Research and Forecasting model under different representative concentration pathways and correcting the products of these models using observed climatic data. This study notes that bias correction (e.g., the running-mean bias correction; the best easy systematic estimator method; the simple linear regression method, nearest neighborhood, weighted mean) improves the climatic projection skill and therefore reduce the uncertainty inherent in the climatic projections.

Keywords: bias correction, climatic projections, numerical models, representative concentration pathways

Procedia PDF Downloads 119
41046 Data Management and Analytics for Intelligent Grid

Authors: G. Julius P. Roy, Prateek Saxena, Sanjeev Singh

Abstract:

Power distribution utilities two decades ago would collect data from its customers not later than a period of at least one month. The origin of SmartGrid and AMI has subsequently increased the sampling frequency leading to 1000 to 10000 fold increase in data quantity. This increase is notable and this steered to coin the tern Big Data in utilities. Power distribution industry is one of the largest to handle huge and complex data for keeping history and also to turn the data in to significance. Majority of the utilities around the globe are adopting SmartGrid technologies as a mass implementation and are primarily focusing on strategic interdependence and synergies of the big data coming from new information sources like AMI and intelligent SCADA, there is a rising need for new models of data management and resurrected focus on analytics to dissect data into descriptive, predictive and dictatorial subsets. The goal of this paper is to is to bring load disaggregation into smart energy toolkit for commercial usage.

Keywords: data management, analytics, energy data analytics, smart grid, smart utilities

Procedia PDF Downloads 780
41045 Developing a Toolkit of Undergraduate Nursing Student’ Desirable Characteristics (TNDC) : An application Item Response Theory

Authors: Parinyaporn Thanaboonpuang, Siridej Sujiva, Shotiga Pasiphul

Abstract:

The higher education reform that integration of nursing programmes into the higher education system. Learning outcomes represent one of the essential building blocks for transparency within higher education systems and qualifications. The purpose of this study is to develop a toolkit of undergraduate nursing student’desirable characteristics assessment on Thai Qualifications Framework for Higher education and to test psychometric property for this instrument. This toolkit seeks to improve on the Computer Multimedia test. There are three skills to be examined: Cognitive skill, Responsibility and Interpersonal Skill, and Information Technology Skill. The study was conduct in 4 phases. In Phase 1. Based on developed a measurement model and Computer Multimedia test. Phase 2 two round focus group were conducted, to determine the content validity of measurement model and the toolkit. In Phase 3, data were collected using a multistage random sampling of 1,156 senior undergraduate nursing student were recruited to test psychometric property. In Phase 4 data analysis was conducted by descriptive statistics, item analysis, inter-rater reliability, exploratory factor analysis and confirmatory factor analysis. The resulting TNDC consists of 74 items across the following four domains: Cognitive skill, Interpersonal Skill, Responsibility and Information Technology Skill. The value of Cronbach’ s alpha for the four domains were .781, 807, .831, and .865, respectively. The final model in confirmatory factor analysis fit quite well with empirical data. The TNDC was found to be appropriate, both theoretically and statistically. Due to these results, it is recommended that the toolkit could be used in future studies for Nursing Program in Thailand.

Keywords: toolkit, nursing student’ desirable characteristics, Thai qualifications framework

Procedia PDF Downloads 535
41044 Review on Effective Texture Classification Techniques

Authors: Sujata S. Kulkarni

Abstract:

Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases.

Keywords: compressed sensing, feature extraction, image classification, texture analysis

Procedia PDF Downloads 435
41043 Combined Analysis of Sudoku Square Designs with Same Treatments

Authors: A. Danbaba

Abstract:

Several experiments are conducted at different environments such as locations or periods (seasons) with identical treatments to each experiment purposely to study the interaction between the treatments and environments or between the treatments and periods (seasons). The commonly used designs of experiments for this purpose are randomized block design, Latin square design, balanced incomplete block design, Youden design, and one or more factor designs. The interest is to carry out a combined analysis of the data from these multi-environment experiments, instead of analyzing each experiment separately. This paper proposed combined analysis of experiments conducted via Sudoku square design of odd order with same experimental treatments.

Keywords: combined analysis, sudoku design, common treatment, multi-environment experiments

Procedia PDF Downloads 345
41042 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach

Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik

Abstract:

Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.

Keywords: center of pressure (CoP), method of developed statokinesigram trajectory (MDST), model of postural system behavior, retroreflective marker data

Procedia PDF Downloads 350
41041 Privacy Preserving Data Publishing Based on Sensitivity in Context of Big Data Using Hive

Authors: P. Srinivasa Rao, K. Venkatesh Sharma, G. Sadhya Devi, V. Nagesh

Abstract:

Privacy Preserving Data Publication is the main concern in present days because the data being published through the internet has been increasing day by day. This huge amount of data was named as Big Data by its size. This project deals the privacy preservation in the context of Big Data using a data warehousing solution called hive. We implemented Nearest Similarity Based Clustering (NSB) with Bottom-up generalization to achieve (v,l)-anonymity. (v,l)-Anonymity deals with the sensitivity vulnerabilities and ensures the individual privacy. We also calculate the sensitivity levels by simple comparison method using the index values, by classifying the different levels of sensitivity. The experiments were carried out on the hive environment to verify the efficiency of algorithms with Big Data. This framework also supports the execution of existing algorithms without any changes. The model in the paper outperforms than existing models.

Keywords: sensitivity, sensitive level, clustering, Privacy Preserving Data Publication (PPDP), bottom-up generalization, Big Data

Procedia PDF Downloads 295
41040 Arabic Light Word Analyser: Roles with Deep Learning Approach

Authors: Mohammed Abu Shquier

Abstract:

This paper introduces a word segmentation method using the novel BP-LSTM-CRF architecture for processing semantic output training. The objective of web morphological analysis tools is to link a formal morpho-syntactic description to a lemma, along with morpho-syntactic information, a vocalized form, a vocalized analysis with morpho-syntactic information, and a list of paradigms. A key objective is to continuously enhance the proposed system through an inductive learning approach that considers semantic influences. The system is currently under construction and development based on data-driven learning. To evaluate the tool, an experiment on homograph analysis was conducted. The tool also encompasses the assumption of deep binary segmentation hypotheses, the arbitrary choice of trigram or n-gram continuation probabilities, language limitations, and morphology for both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), which provide justification for updating this system. Most Arabic word analysis systems are based on the phonotactic morpho-syntactic analysis of a word transmitted using lexical rules, which are mainly used in MENA language technology tools, without taking into account contextual or semantic morphological implications. Therefore, it is necessary to have an automatic analysis tool taking into account the word sense and not only the morpho-syntactic category. Moreover, they are also based on statistical/stochastic models. These stochastic models, such as HMMs, have shown their effectiveness in different NLP applications: part-of-speech tagging, machine translation, speech recognition, etc. As an extension, we focus on language modeling using Recurrent Neural Network (RNN); given that morphological analysis coverage was very low in dialectal Arabic, it is significantly important to investigate deeply how the dialect data influence the accuracy of these approaches by developing dialectal morphological processing tools to show that dialectal variability can support to improve analysis.

Keywords: NLP, DL, ML, analyser, MSA, RNN, CNN

Procedia PDF Downloads 43
41039 Computational Fluid Dynamic Modeling of Mixing Enhancement by Stimulation of Ferrofluid under Magnetic Field

Authors: Neda Azimi, Masoud Rahimi, Faezeh Mohammadi

Abstract:

Computational fluid dynamics (CFD) simulation was performed to investigate the effect of ferrofluid stimulation on hydrodynamic and mass transfer characteristics of two immiscible liquid phases in a Y-micromixer. The main purpose of this work was to develop a numerical model that is able to simulate hydrodynamic of the ferrofluid flow under magnetic field and determine its effect on mass transfer characteristics. A uniform external magnetic field was applied perpendicular to the flow direction. The volume of fluid (VOF) approach was used for simulating the multiphase flow of ferrofluid and two-immiscible liquid flows. The geometric reconstruction scheme (Geo-Reconstruct) based on piecewise linear interpolation (PLIC) was used for reconstruction of the interface in the VOF approach. The mass transfer rate was defined via an equation as a function of mass concentration gradient of the transported species and added into the phase interaction panel using the user-defined function (UDF). The magnetic field was solved numerically by Fluent MHD module based on solving the magnetic induction equation method. CFD results were validated by experimental data and good agreements have been achieved, which maximum relative error for extraction efficiency was about 7.52 %. It was showed that ferrofluid actuation by a magnetic field can be considered as an efficient mixing agent for liquid-liquid two-phase mass transfer in microdevices.

Keywords: CFD modeling, hydrodynamic, micromixer, ferrofluid, mixing

Procedia PDF Downloads 196
41038 Handling, Exporting and Archiving Automated Mineralogy Data Using TESCAN TIMA

Authors: Marek Dosbaba

Abstract:

Within the mining sector, SEM-based Automated Mineralogy (AM) has been the standard application for quickly and efficiently handling mineral processing tasks. Over the last decade, the trend has been to analyze larger numbers of samples, often with a higher level of detail. This has necessitated a shift from interactive sample analysis performed by an operator using a SEM, to an increased reliance on offline processing to analyze and report the data. In response to this trend, TESCAN TIMA Mineral Analyzer is designed to quickly create a virtual copy of the studied samples, thereby preserving all the necessary information. Depending on the selected data acquisition mode, TESCAN TIMA can perform hyperspectral mapping and save an X-ray spectrum for each pixel or segment, respectively. This approach allows the user to browse through elemental distribution maps of all elements detectable by means of energy dispersive spectroscopy. Re-evaluation of the existing data for the presence of previously unconsidered elements is possible without the need to repeat the analysis. Additional tiers of data such as a secondary electron or cathodoluminescence images can also be recorded. To take full advantage of these information-rich datasets, TIMA utilizes a new archiving tool introduced by TESCAN. The dataset size can be reduced for long-term storage and all information can be recovered on-demand in case of renewed interest. TESCAN TIMA is optimized for network storage of its datasets because of the larger data storage capacity of servers compared to local drives, which also allows multiple users to access the data remotely. This goes hand in hand with the support of remote control for the entire data acquisition process. TESCAN also brings a newly extended open-source data format that allows other applications to extract, process and report AM data. This offers the ability to link TIMA data to large databases feeding plant performance dashboards or geometallurgical models. The traditional tabular particle-by-particle or grain-by-grain export process is preserved and can be customized with scripts to include user-defined particle/grain properties.

Keywords: Tescan, electron microscopy, mineralogy, SEM, automated mineralogy, database, TESCAN TIMA, open format, archiving, big data

Procedia PDF Downloads 110
41037 Potential of Tourism Logistic Service Business in the Border Areas of Chong Anma, Chong Sa-Ngam, and Chong Jom Checkpoints in Thailand to Increase Competitive Efficiency among the ASEAN Community

Authors: Pariwat Somnuek

Abstract:

This study focused on tourism logistic services in the border areas of Thailand by an analysis and comparison of the opinions of tourists, villagers, and entrepreneurs of these services. Sample representatives of this study were a total of 600 villagers and 15 entrepreneurs in the three border areas consisting of Chong Anma, Chong Sa-Ngam, and Chong Jom checkpoints. For methodology, survey questionnaires, situation analysis, TOWS matrix, and focus group discussions were used for data collection, as well as descriptive analysis and statistics such as arithmetic means and standard deviations, were employed for data analysis. The findings revealed that business potential was at the medium level and entrepreneurs were satisfied with their turnovers. However, perspectives of transportation and tourism services provided for tourists need to be immediately improved. Recommendations for the potential development included promotion of border tourism destinations and foreign investments into accommodation, restaurants, and transport, as well as the establishment of business networks between Thailand and Cambodia, along with the introduction of new tourism destinations by co-operation between entrepreneurs in both countries. These initiatives may lead to increased visitors, collaboration of security offices, and an improved image of tourism security.

Keywords: business potential, potential development, tourism logistics, services

Procedia PDF Downloads 308
41036 Pre-Service Science Teachers' Perceptions Related to the Concept of Laboratory: A Metaphorical Analysis

Authors: Salih Uzun

Abstract:

The laboratory activities are seen an indispensable part of science, teaching, and learning. In this study, the aim was to identify pre-service science teachers’ perceptions related to the concept of laboratory through metaphors. It is expressed that metaphors can be used as a powerful research tool in order to understand personal perceptions. Therefore, metaphors were used with the aim of revealing a picture regarding how pre-service science teachers perceive laboratory. Within the scope of this aim, phenomenographic research design was adopted for this study and an answer was sought to the question; ‘What are pre-service science teachers’ perceptions about the concept of laboratory?’. The sample of this study was a total of 80 pre-service science teachers at various grade levels in Turkey. Participants were asked to complete the sentence; ‘Laboratory is like…; because…’. Documents including pre-service science teachers’ answers to the open-ended questions were used as data sources and the data were analysed with content analysis.

Keywords: laboratory, metaphor, phenomenology, pre-service science teachers

Procedia PDF Downloads 433
41035 A Fuzzy Kernel K-Medoids Algorithm for Clustering Uncertain Data Objects

Authors: Behnam Tavakkol

Abstract:

Uncertain data mining algorithms use different ways to consider uncertainty in data such as by representing a data object as a sample of points or a probability distribution. Fuzzy methods have long been used for clustering traditional (certain) data objects. They are used to produce non-crisp cluster labels. For uncertain data, however, besides some uncertain fuzzy k-medoids algorithms, not many other fuzzy clustering methods have been developed. In this work, we develop a fuzzy kernel k-medoids algorithm for clustering uncertain data objects. The developed fuzzy kernel k-medoids algorithm is superior to existing fuzzy k-medoids algorithms in clustering data sets with non-linearly separable clusters.

Keywords: clustering algorithm, fuzzy methods, kernel k-medoids, uncertain data

Procedia PDF Downloads 215
41034 Ranking of Provinces in Iran for Capital Formation in Spatial Planning with Numerical Taxonomy Technique (An Improvement) Case Study: Agriculture Sector

Authors: Farhad Nouparast

Abstract:

For more production we need more capital formation. Capital formation in each country should be based on comparative advantages in different economic sectors due to the different production possibility curves. In regional planning, recognizing the relative advantages and consequently investing in more production requires identifying areas with the necessary capabilities and location of each region compared to other regions. In this article, ranking of Iran's provinces is done according to the specific and given variables as the best investment position in agricultural activity. So we can provide the necessary background for investment analysis in different regions of the country to formulate national and regional planning and execute investment projects. It is used factor analysis technique and numerical taxonomy analysis to do this in thisarticle. At first, the provinces are homogenized and graded according to the variables using cross-sectional data obtained from the agricultural census and population and housing census of Iran as data matrix. The results show that which provinces have the most potential for capital formation in agronomy sub-sector. Taxonomy classifies organisms based on similar genetic traits in biology and botany. Numerical taxonomy using quantitative methods controls large amounts of information and get the number of samples and categories and take them based on inherent characteristics and differences indirectly accommodates. Numerical taxonomy is related to multivariate statistics.

Keywords: Capital Formation, Factor Analysis, Multivariate statistics, Numerical Taxonomy Analysis, Production, Ranking, Spatial Planning

Procedia PDF Downloads 140
41033 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness

Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers

Abstract:

The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).

Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning

Procedia PDF Downloads 286
41032 Crop Leaf Area Index (LAI) Inversion and Scale Effect Analysis from Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Data

Authors: Xiaohua Zhu, Lingling Ma, Yongguang Zhao

Abstract:

Leaf Area Index (LAI) is a key structural characteristic of crops and plays a significant role in precision agricultural management and farmland ecosystem modeling. However, LAI retrieved from different resolution data contain a scaling bias due to the spatial heterogeneity and model non-linearity, that is, there is scale effect during multi-scale LAI estimate. In this article, a typical farmland in semi-arid regions of Chinese Inner Mongolia is taken as the study area, based on the combination of PROSPECT model and SAIL model, a multiple dimensional Look-Up-Table (LUT) is generated for multiple crops LAI estimation from unmanned aerial vehicle (UAV) hyperspectral data. Based on Taylor expansion method and computational geometry model, a scale transfer model considering both difference between inter- and intra-class is constructed for scale effect analysis of LAI inversion over inhomogeneous surface. The results indicate that, (1) the LUT method based on classification and parameter sensitive analysis is useful for LAI retrieval of corn, potato, sunflower and melon on the typical farmland, with correlation coefficient R2 of 0.82 and root mean square error RMSE of 0.43m2/m-2. (2) The scale effect of LAI is becoming obvious with the decrease of image resolution, and maximum scale bias is more than 45%. (3) The scale effect of inter-classes is higher than that of intra-class, which can be corrected efficiently by the scale transfer model established based Taylor expansion and Computational geometry. After corrected, the maximum scale bias can be reduced to 1.2%.

Keywords: leaf area index (LAI), scale effect, UAV-based hyperspectral data, look-up-table (LUT), remote sensing

Procedia PDF Downloads 440
41031 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: machine learning, imbalanced data, data mining, big data

Procedia PDF Downloads 130
41030 Measuring Financial Asset Return and Volatility Spillovers, with Application to Sovereign Bond, Equity, Foreign Exchange and Commodity Markets

Authors: Petra Palic, Maruska Vizek

Abstract:

We provide an in-depth analysis of interdependence of asset returns and volatilities in developed and developing countries. The analysis is split into three parts. In the first part, we use multivariate GARCH model in order to provide stylized facts on cross-market volatility spillovers. In the second part, we use a generalized vector autoregressive methodology developed by Diebold and Yilmaz (2009) in order to estimate separate measures of return spillovers and volatility spillovers among sovereign bond, equity, foreign exchange and commodity markets. In particular, our analysis is focused on cross-market return, and volatility spillovers in 19 developed and developing countries. In order to estimate named spillovers, we use daily data from 2008 to 2017. In the third part of the analysis, we use a generalized vector autoregressive framework in order to estimate total and directional volatility spillovers. We use the same daily data span for one developed and one developing country in order to characterize daily volatility spillovers across stock, bond, foreign exchange and commodities markets.

Keywords: cross-market spillovers, sovereign bond markets, equity markets, value at risk (VAR)

Procedia PDF Downloads 262
41029 Automatic Detection of Traffic Stop Locations Using GPS Data

Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell

Abstract:

Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.

Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data

Procedia PDF Downloads 275
41028 Geographic Information System for District Level Energy Performance Simulations

Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck

Abstract:

The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.

Keywords: CityGML, EnergyADE, energy performance simulation, GIS

Procedia PDF Downloads 169
41027 Analyzing Environmental Emotive Triggers in Terrorist Propaganda

Authors: Travis Morris

Abstract:

The purpose of this study is to measure the intersection of environmental security entities in terrorist propaganda. To the best of author’s knowledge, this is the first study of its kind to examine this intersection within terrorist propaganda. Rosoka, natural language processing software and frame analysis are used to advance our understanding of how environmental frames function as emotive triggers. Violent jihadi demagogues use frames to suggest violent and non-violent solutions to their grievances. Emotive triggers are framed in a way to leverage individual and collective attitudes in psychological warfare. A comparative research design is used because of the differences and similarities that exist between two variants of violent jihadi propaganda that target western audiences. Analysis is based on salience and network text analysis, which generates violent jihadi semantic networks. Findings indicate that environmental frames are used as emotive triggers across both data sets, but also as tactical and information data points. A significant finding is that certain core environmental emotive triggers like “water,” “soil,” and “trees” are significantly salient at the aggregate level across both data sets. All environmental entities can be classified into two categories, symbolic and literal. Importantly, this research illustrates how demagogues use environmental emotive triggers in cyber space from a subcultural perspective to mobilize target audiences to their ideology and praxis. Understanding the anatomy of propaganda construction is necessary in order to generate effective counter narratives in information operations. This research advances an additional method to inform practitioners and policy makers of how environmental security and propaganda intersect.

Keywords: propaganda analysis, emotive triggers environmental security, frames

Procedia PDF Downloads 138
41026 Democracy Bytes: Interrogating the Exploitation of Data Democracy by Radical Terrorist Organizations

Authors: Nirmala Gopal, Sheetal Bhoola, Audecious Mugwagwa

Abstract:

This paper discusses the continued infringement and exploitation of data by non-state actors for destructive purposes, emphasizing radical terrorist organizations. It will discuss how terrorist organizations access and use data to foster their nefarious agendas. It further examines how cybersecurity, designed as a tool to curb data exploitation, is ineffective in raising global citizens' concerns about how their data can be kept safe and used for its acquired purpose. The study interrogates several policies and data protection instruments, such as the Data Protection Act, Cyber Security Policies, Protection of Personal Information(PPI) and General Data Protection Regulations (GDPR), to understand data use and storage in democratic states. The study outcomes point to the fact that international cybersecurity and cybercrime legislation, policies, and conventions have not curbed violations of data access and use by radical terrorist groups. The study recommends ways to enhance cybersecurity and reduce cyber risks using democratic principles.

Keywords: cybersecurity, data exploitation, terrorist organizations, data democracy

Procedia PDF Downloads 204