Search results for: model of postural system behavior
19933 Small Text Extraction from Documents and Chart Images
Authors: Rominkumar Busa, Shahira K. C., Lijiya A.
Abstract:
Text recognition is an important area in computer vision which deals with detecting and recognising text from an image. The Optical Character Recognition (OCR) is a saturated area these days and with very good text recognition accuracy. However the same OCR methods when applied on text with small font sizes like the text data of chart images, the recognition rate is less than 30%. In this work, aims to extract small text in images using the deep learning model, CRNN with CTC loss. The text recognition accuracy is found to improve by applying image enhancement by super resolution prior to CRNN model. We also observe the text recognition rate further increases by 18% by applying the proposed method, which involves super resolution and character segmentation followed by CRNN with CTC loss. The efficiency of the proposed method shows that further pre-processing on chart image text and other small text images will improve the accuracy further, thereby helping text extraction from chart images.Keywords: small text extraction, OCR, scene text recognition, CRNN
Procedia PDF Downloads 12519932 Development of Under Water Autonomous Vertical Profiler: Unique Solution to Oceanographic Studies
Authors: I. K. Sharma
Abstract:
Over the years world over system are being developed by research labs continuously monitor under water parameters in the coastal waters of sea such as conductivity, salinity, pressure, temperature, chlorophyll and biological blooms at different levels of water column. The research institutions have developed profilers which are launched by ship connected through cable, glider type profilers following underwater trajectory, buoy any driven profilers, wire guided profilers etc. In all these years, the effect was to design autonomous profilers with no cable quality connection, simple operation and on line date transfer in terms accuracy, repeatability, reliability and consistency. Hence for the Ministry of Communication and Information Technology, India sponsored research project to National Institute of Oceanography, GOA, India to design and develop autonomous vertical profilers, it has taken system and AVP has been successfully developed and tested.Keywords: oceanography, water column, autonomous profiler, buoyancy
Procedia PDF Downloads 39819931 Nonstationarity Modeling of Economic and Financial Time Series
Authors: C. Slim
Abstract:
Traditional techniques for analyzing time series are based on the notion of stationarity of phenomena under study, but in reality most economic and financial series do not verify this hypothesis, which implies the implementation of specific tools for the detection of such behavior. In this paper, we study nonstationary non-seasonal time series tests in a non-exhaustive manner. We formalize the problem of nonstationary processes with numerical simulations and take stock of their statistical characteristics. The theoretical aspects of some of the most common unit root tests will be discussed. We detail the specification of the tests, showing the advantages and disadvantages of each. The empirical study focuses on the application of these tests to the exchange rate (USD/TND) and the Consumer Price Index (CPI) in Tunisia, in order to compare the Power of these tests with the characteristics of the series.Keywords: stationarity, unit root tests, economic time series, ADF tests
Procedia PDF Downloads 42019930 Robust Processing of Antenna Array Signals under Local Scattering Environments
Authors: Ju-Hong Lee, Ching-Wei Liao
Abstract:
An adaptive array beamformer is designed for automatically preserving the desired signals while cancelling interference and noise. Providing robustness against model mismatches and tracking possible environment changes calls for robust adaptive beamforming techniques. The design criterion yields the well-known generalized sidelobe canceller (GSC) beamformer. In practice, the knowledge of the desired steering vector can be imprecise, which often occurs due to estimation errors in the DOA of the desired signal or imperfect array calibration. In these situations, the SOI is considered as interference, and the performance of the GSC beamformer is known to degrade. This undesired behavior results in a reduction of the array output signal-to-interference plus-noise-ratio (SINR). Therefore, it is worth developing robust techniques to deal with the problem due to local scattering environments. As to the implementation of adaptive beamforming, the required computational complexity is enormous when the array beamformer is equipped with massive antenna array sensors. To alleviate this difficulty, a generalized sidelobe canceller (GSC) with partially adaptivity for less adaptive degrees of freedom and faster adaptive response has been proposed in the literature. Unfortunately, it has been shown that the conventional GSC-based adaptive beamformers are usually very sensitive to the mismatch problems due to local scattering situations. In this paper, we present an effective GSC-based beamformer against the mismatch problems mentioned above. The proposed GSC-based array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. We utilize the predefined steering vector and a presumed angle tolerance range to carry out the required estimation for obtaining an appropriate steering vector. A matrix associated with the direction vector of signal sources is first created. Then projection matrices related to the matrix are generated and are utilized to iteratively estimate the actual direction vector of the desired signal. As a result, the quiescent weight vector and the required signal blocking matrix required for performing adaptive beamforming can be easily found. By utilizing the proposed GSC-based beamformer, we find that the performance degradation due to the considered local scattering environments can be effectively mitigated. To further enhance the beamforming performance, a signal subspace projection matrix is also introduced into the proposed GSC-based beamformer. Several computer simulation examples show that the proposed GSC-based beamformer outperforms the existing robust techniques.Keywords: adaptive antenna beamforming, local scattering, signal blocking, steering mismatch
Procedia PDF Downloads 11219929 Solid-Liquid-Solid Interface of Yakam Matrix: Mathematical Modeling of the Contact Between an Aircraft Landing Gear and a Wet Pavement
Authors: Trudon Kabangu Mpinga, Ruth Mutala, Shaloom Mbambu, Yvette Kalubi Kashama, Kabeya Mukeba Yakasham
Abstract:
A mathematical model is developed to describe the contact dynamics between the landing gear wheels of an aircraft and a wet pavement during landing. The model is based on nonlinear partial differential equations, using the Yakam Matrix to account for the interaction between solid, liquid, and solid phases. This framework incorporates the influence of environmental factors, particularly water or rain on the runway, on braking performance and aircraft stability. Given the absence of exact analytical solutions, our approach enhances the understanding of key physical phenomena, including Coulomb friction forces, hydrodynamic effects, and the deformation of the pavement under the aircraft's load. Additionally, the dynamics of aquaplaning are simulated numerically to estimate the braking performance limits on wet surfaces, thereby contributing to strategies aimed at minimizing risk during landing on wet runways.Keywords: aircraft, modeling, simulation, yakam matrix, contact, wet runway
Procedia PDF Downloads 719928 Perceived Ease-of-Use and Intention to Use E-Government Services in Ghana: The Moderating Role of Perceived Usefulness
Authors: Isaac Kofi Mensah
Abstract:
Public sector organizations, ministries, departments and local government agencies are adopting e-government as a means to provide efficient and quality service delivery to citizens. The purpose of this research paper is to examine the extent to which perceived usefulness (PU) of e-government services moderates between perceived ease-of-use (PEOU) of e-government services and intention to use (IU) e-government services in Ghana. A structured research questionnaire instrument was developed and administered to 700 potential respondents in Ghana, of which 693 responded, representing 99% of the questionnaires distributed. The Technology Acceptance Model (TAM) was used as the theoretical framework for the study. The Statistical Package for Social Science (SPSS) was used to capture and analyze the data. The results indicate that even though predictors such as PU and PEOU are main determiners of citizens’ intention to adopt and use e-government services in Ghana, it failed to show that PEOU and IU e-government services in Ghana is significantly moderated by the PU of e-government services. The implication of this finding on theory and practice is further discussed.Keywords: e-government services, intention to use, moderating role, perceived ease of use, perceived usefulness, Ghana, technology acceptance model
Procedia PDF Downloads 41119927 Correlation Matrix for Automatic Identification of Meal-Taking Activity
Authors: Ghazi Bouaziz, Abderrahim Derouiche, Damien Brulin, Hélène Pigot, Eric Campo
Abstract:
Automatic ADL classification is a crucial part of ambient assisted living technologies. It allows to monitor the daily life of the elderly and to detect any changes in their behavior that could be related to health problem. But detection of ADLs is a challenge, especially because each person has his/her own rhythm for performing them. Therefore, we used a correlation matrix to extract custom rules that enable to detect ADLs, including eating activity. Data collected from 3 different individuals between 35 and 105 days allows the extraction of personalized eating patterns. The comparison of the results of the process of eating activity extracted from the correlation matrices with the declarative data collected during the survey shows an accuracy of 90%.Keywords: elderly monitoring, ADL identification, matrix correlation, meal-taking activity
Procedia PDF Downloads 9319926 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine
Authors: Hira Lal Gope, Hidekazu Fukai
Abstract:
The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.Keywords: convolutional neural networks, coffee bean, peaberry, sorting, support vector machine
Procedia PDF Downloads 14419925 Android Application on Checking Halal Product Based on Augmented Reality
Authors: Saidatul A'isyah Ahmad Shukri, Haslina Arshad
Abstract:
This study was conducted to develop an application that provides Augmented Reality experience in identifying halal food products and beverages based on Malaysian Islamic Development Department (JAKIM) database for Muslim consumers in Malaysia. The applications is operating on the mobile device using the Android platform. This application aims to provide a new experience to the user how to use the Android application implements Augmentation Reality technology The methodology used is object-oriented analysis and design (OOAD). The programming language used is JAVA programming using the Android Software Development Kit (SDK) and XML. Android operating system is selected, and it is an open source operating system. Results from the study are implemented to further enhance diversity in presentation of information contained in this application and so can bring users using these applications from different angles.Keywords: android, augmented reality, food, halal, Malaysia, products, XML
Procedia PDF Downloads 45519924 Physical Modeling of Woodwind Ancient Greek Musical Instruments: The Case of Plagiaulos
Authors: Dimitra Marini, Konstantinos Bakogiannis, Spyros Polychronopoulos, Georgios Kouroupetroglou
Abstract:
Archaemusicology cannot entirely depend on the study of the excavated ancient musical instruments as most of the time their condition is not ideal (i.e., missing/eroded parts) and moreover, because of the concern damaging the originals during the experiments. Researchers, in order to overcome the above obstacles, build replicas. This technique is still the most popular one, although it is rather expensive and time-consuming. Throughout the last decades, the development of physical modeling techniques has provided tools that enable the study of musical instruments through their digitally simulated models. This is not only a more cost and time-efficient technique but also provides additional flexibility as the user can easily modify parameters such as their geometrical features and materials. This paper thoroughly describes the steps to create a physical model of a woodwind ancient Greek instrument, Plagiaulos. This instrument could be considered as the ancestor of the modern flute due to the common geometry and air-jet excitation mechanism. Plagiaulos is comprised of a single resonator with an open end and a number of tone holes. The combination of closed and open tone holes produces the pitch variations. In this work, the effects of all the instrument’s components are described by means of physics and then simulated based on digital waveguides. The synthesized sound of the proposed model complies with the theory, highlighting its validity. Further, the synthesized sound of the model simulating the Plagiaulos of Koile (2nd century BCE) was compared with its replica build in our laboratory by following the scientific methodologies of archeomusicology. The aforementioned results verify that robust dynamic digital tools can be introduced in the field of computational, experimental archaemusicology.Keywords: archaeomusicology, digital waveguides, musical acoustics, physical modeling
Procedia PDF Downloads 11319923 Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach
Authors: Elias K. Maragos, Petros E. Maravelakis
Abstract:
In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs.Keywords: Dynamic Data Envelopment Analysis, DDEA, piecewise linear inputs, piecewise linear outputs
Procedia PDF Downloads 16019922 Photocatalytic Degradation of Bisphenol A Using ZnO Nanoparticles as Catalyst under UV/Solar Light: Effect of Different Parameters and Kinetic Studies
Authors: Farida Kaouah, Chahida Oussalah, Wassila Hachi, Salim Boumaza, Mohamed Trari
Abstract:
A catalyst of ZnO nanoparticles was used in the photocatalytic process of treatment for potential use towards bisphenol A (BPA) degradation in an aqueous solution. To achieve this study, the effect of parameters such as the catalyst dose, initial concentration of BPA and pH on the photocatalytic degradation of BPA was studied. The results reveal that the maximum degradation (more than 93%) of BPA occurred with ZnO catalyst in 120 min of stirring at natural pH (7.1) under solar light irradiation. It was found that chemical oxygen demand (COD) reduction takes place at a faster rate under solar light as compared to that of UV light. The kinetic studies were achieved and revealed that the photocatalytic degradation process obeyed a Langmuir–Hinshelwood model and followed a pseudo-first order rate expression. This work envisages the great potential that sunlight mediated photocatalysis has in the removal of bisphenol A from wastewater.Keywords: bisphenol A, photocatalytic degradation, sunlight, zinc oxide, Langmuir–Hinshelwood model, chemical oxygen demand
Procedia PDF Downloads 15619921 Plant Leaf Recognition Using Deep Learning
Authors: Aadhya Kaul, Gautam Manocha, Preeti Nagrath
Abstract:
Our environment comprises of a wide variety of plants that are similar to each other and sometimes the similarity between the plants makes the identification process tedious thus increasing the workload of the botanist all over the world. Now all the botanists cannot be accessible all the time for such laborious plant identification; therefore, there is an urge for a quick classification model. Also, along with the identification of the plants, it is also necessary to classify the plant as healthy or not as for a good lifestyle, humans require good food and this food comes from healthy plants. A large number of techniques have been applied to classify the plants as healthy or diseased in order to provide the solution. This paper proposes one such method known as anomaly detection using autoencoders using a set of collections of leaves. In this method, an autoencoder model is built using Keras and then the reconstruction of the original images of the leaves is done and the threshold loss is found in order to classify the plant leaves as healthy or diseased. A dataset of plant leaves is considered to judge the reconstructed performance by convolutional autoencoders and the average accuracy obtained is 71.55% for the purpose.Keywords: convolutional autoencoder, anomaly detection, web application, FLASK
Procedia PDF Downloads 16319920 Analytical Solutions of Time Space Fractional, Advection-Dispersion and Whitham-Broer-Kaup Equations
Authors: Muhammad Danish Khan, Imran Naeem, Mudassar Imran
Abstract:
In this article, we study time-space Fractional Advection-Dispersion (FADE) equation and time-space Fractional Whitham-Broer-Kaup (FWBK) equation that have a significant role in hydrology. We introduce suitable transformations to convert fractional order derivatives to integer order derivatives and as a result these equations transform into Partial Differential Equations (PDEs). Then the Lie symmetries and corresponding optimal systems of the resulting PDEs are derived. The symmetry reductions and exact independent solutions based on optimal system are investigated which constitute the exact solutions of original fractional differential equations.Keywords: modified Riemann-Liouville fractional derivative, lie-symmetries, optimal system, invariant solutions
Procedia PDF Downloads 43119919 Design, Simulation and Construction of 2.4GHz Microstrip Patch Antenna for Improved Wi-Fi Reception
Authors: Gabriel Ugalahi, Dominic S. Nyitamen
Abstract:
This project seeks to improve Wi-Fi reception by utilizing the properties of directional microstrip patch antennae. Where there is a dense population of Wi-Fi signal, several signal sources transmitting on the same frequency band and indeed channel constitutes interference to each other. The time it takes for request to be received, resolved and response given between a user and the resource provider is increased considerably. By deploying a directional patch antenna with a narrow bandwidth, the range of frequency received is reduced and should help in limiting the reception of signal from unwanted sources. A rectangular microstrip patch antenna (RMPA) is designed to operate at the Industrial Scientific and Medical (ISM) band (2.4GHz) commonly used in Wi-Fi network deployment. The dimensions of the antenna are calculated and these dimensions are used to generate a model on Advanced Design System (ADS), a microwave simulator. Simulation results are then analyzed and necessary optimization is carried out to further enhance the radiation quality so as to achieve desired results. Impedance matching at 50Ω is also obtained by using the inset feed method. Final antenna dimensions obtained after simulation and optimization are then used to implement practical construction on an FR-4 double sided copper clad printed circuit board (PCB) through a chemical etching process using ferric chloride (Fe2Cl). Simulation results show an RMPA operating at a centre frequency of 2.4GHz with a bandwidth of 40MHz. A voltage standing wave ratio (VSWR) of 1.0725 is recorded on a return loss of -29.112dB at input port showing an appreciable match in impedance to a source of 50Ω. In addition, a gain of 3.23dBi and directivity of 6.4dBi is observed during far-field analysis. On deployment, signal reception from wireless devices is improved due to antenna gain. A test source with a received signal strength indication (RSSI) of -80dBm without antenna installed on the receiver was improved to an RSSI of -61dBm. In addition, the directional radiation property of the RMPA prioritizes signals by pointing in the direction of a preferred signal source thus, reducing interference from undesired signal sources. This was observed during testing as rotation of the antenna on its axis resulted to the gain of signal in-front of the patch and fading of signals away from the front.Keywords: advanced design system (ADS), inset feed, received signal strength indicator (RSSI), rectangular microstrip patch antenna (RMPA), voltage standing wave ratio (VSWR), wireless fidelity (Wi-Fi)
Procedia PDF Downloads 22219918 Advancing Food System Resilience by Pseudocereals Utilization
Authors: Yevheniia Varyvoda, Douglas Taren
Abstract:
At the aggregate level, climate variability, the rising number of active violent conflicts, globalization and industrialization of agriculture, the loss in diversity of crop species, the increase in demand for agricultural production, and the adoption of healthy and sustainable dietary patterns are exacerbating factors of food system destabilization. The importance of pseudocereals to fuel and sustain resilient food systems is recognized by leading organizations working to end hunger, particularly for their critical capability to diversify livelihood portfolios and provide plant-sourced healthy nutrition in the face of systemic shocks and stresses. Amaranth, buckwheat, and quinoa are the most promising and used pseudocereals for ensuring food system resilience in the reality of climate change due to their high nutritional profile, good digestibility, palatability, medicinal value, abiotic stress tolerance, pest and disease resistance, rapid growth rate, adaptability to marginal and degraded lands, high genetic variability, low input requirements, and income generation capacity. The study provides the rationale and examples of advancing local and regional food systems' resilience by scaling up the utilization of amaranth, buckwheat, and quinoa along all components of food systems to architect indirect nutrition interventions and climate-smart approaches. Thus, this study aims to explore the drivers for ancient pseudocereal utilization, the potential resilience benefits that can be derived from using them, and the challenges and opportunities for pseudocereal utilization within the food system components. The PSALSAR framework regarding the method for conducting systematic review and meta-analysis for environmental science research was used to answer these research questions. Nevertheless, the utilization of pseudocereals has been slow for a number of reasons, namely the increased production of commercial and major staples such as maize, rice, wheat, soybean, and potato, the displacement due to pressure from imported crops, lack of knowledge about value-adding practices in food supply chain, limited technical knowledge and awareness about nutritional and health benefits, absence of marketing channels and limited access to extension services and information about resilient crops. The success of climate-resilient pathways based on pseudocereal utilization underlines the importance of co-designed activities that use modern technologies, high-value traditional knowledge of underutilized crops, and a strong acknowledgment of cultural norms to increase community-level economic and food system resilience.Keywords: resilience, pseudocereals, food system, climate change
Procedia PDF Downloads 7919917 Portable Water Treatment for Flood Resilience
Authors: Alireza Abbassi Monjezi, Mohammad Hasan Shaheed
Abstract:
Flood, caused by excessive rainfall, monsoon, cyclone and tsunami is a common disaster in many countries of the world especially sea connected low-lying countries. A stand-alone self-powered water filtration module for decontamination of floodwater has been designed and modeled. A combination forward osmosis – low pressure reverse osmosis (FO-LPRO) system powered by solar photovoltaic-thermal (PVT) energy is investigated which could overcome the main barriers to water supply for remote areas and ensure off-grid filtration. The proposed system is designed to be small scale and portable to provide on-site potable water to communities that are no longer themselves mobile nor can be reached quickly by the aid agencies. FO is an osmotically driven process that uses osmotic pressure gradients to drive water across a controlled pore membrane from a feed solution (low osmotic pressure) to a draw solution (high osmotic pressure). This drops the demand for high hydraulic pressures and therefore the energy demand. There is also a tendency for lower fouling, easier fouling layer removal and higher water recovery. In addition, the efficiency of the PVT unit will be maximized through freshwater cooling which is integrated into the system. A filtration module with the capacity of 5 m3/day is modeled to treat floodwater and provide drinking water. The module can be used as a tool for disaster relief, particularly in the aftermath of flood and tsunami events.Keywords: flood resilience, membrane desalination, portable water treatment, solar energy
Procedia PDF Downloads 28819916 Multiobjective Optimization of Wastwater Treatment by Electrochemical Process
Authors: Malek Bendjaballah, Hacina Saidi, Sarra Hamidoud
Abstract:
The aim of this study is to model and optimize the performance of a new electrocoagulation (E.C) process for the treatment of wastewater as well as the energy consumption in order to extrapolate it to the industrial scale. Through judicious application of an experimental design (DOE), it has been possible to evaluate the individual effects and interactions that have a significant influence on both objective functions (maximizing efficiency and minimizing energy consumption) by using aluminum electrodes as sacrificial anode. Preliminary experiments have shown that the pH of the medium, the applied potential and the treatment time with E.C are the main parameters. A factorial design 33 has been adopted to model performance and energy consumption. Under optimal conditions, the pollution reduction efficiency is 93%, combined with a minimum energy consumption of 2.60.10-3 kWh / mg-COD. The potential or current applied and the processing time and their interaction were the most influential parameters in the mathematical models obtained. The results of the modeling were also correlated with the experimental ones. The results offer promising opportunities to develop a clean process and inexpensive technology to eliminate or reduce wastewater,Keywords: electrocoagulation, green process, experimental design, optimization
Procedia PDF Downloads 9719915 H2 Production and Treatment of Cake Wastewater Industry via Up-Flow Anaerobic Staged Reactor
Authors: Manal A. Mohsen, Ahmed Tawfik
Abstract:
Hydrogen production from cake wastewater by anaerobic dark fermentation via upflow anaerobic staged reactor (UASR) was investigated in this study. The reactor was continuously operated for four months at constant hydraulic retention time (HRT) of 21.57 hr, PH value of 6 ± 0.6, temperature of 21.1°C, and organic loading rate of 2.43 gCOD/l.d. The hydrogen production was 5.7 l H2/d and the hydrogen yield was 134.8 ml H2 /g CODremoved. The system showed an overall removal efficiency of TCOD, TBOD, TSS, TKN, and Carbohydrates of 40 ± 13%, 59 ± 18%, 84 ± 17%, 28 ± 27%, and 85 ± 15% respectively during the long term operation period. Based on the available results, the system is not sufficient for the effective treatment of cake wastewater, and the effluent quality of UASR is not complying for discharge into sewerage network, therefore a post treatment is needed (not covered in this study).Keywords: cake wastewater industry, chemical oxygen demand (COD), hydrogen production, up-flow anaerobic staged reactor (UASR)
Procedia PDF Downloads 38019914 Application of Causal Inference and Discovery in Curriculum Evaluation and Continuous Improvement
Authors: Lunliang Zhong, Bin Duan
Abstract:
The undergraduate graduation project is a vital part of the higher education curriculum, crucial for engineering accreditation. Current evaluations often summarize data without identifying underlying issues. This study applies the Peter-Clark algorithm to analyze causal relationships within the graduation project data of an Electronics and Information Engineering program, creating a causal model. Structural equation modeling confirmed the model's validity. The analysis reveals key teaching stages affecting project success, uncovering problems in the process. Introducing causal discovery and inference into project evaluation helps identify issues and propose targeted improvement measures. The effectiveness of these measures is validated by comparing the learning outcomes of two student cohorts, stratified by confounding factors, leading to improved teaching quality.Keywords: causal discovery, causal inference, continuous improvement, Peter-Clark algorithm, structural equation modeling
Procedia PDF Downloads 1819913 The Relationship between Characteristics of Nurses and Organizational Commitment of Nurses in Geriatric Intermediate Care Facilities in Japan
Authors: Chiharu Miyata, Hidenori Arai
Abstract:
Background: The quality of care in geriatric intermediate facilities (GIFs) in Japan is not in a satisfied level. To improve it, it is crucial to reconsider nurses’ professionalism. Our goal is to create an organizational system that allows nurses to succeed professionally. To do this, we must first discuss the relationship between nurses’ characteristics and the organization. Objectives: The aim of the present study was to determine the extent to which demographic and work-related factors are related to organizational commitment among nurses in GIFs. Method: A quantitative, cross-sectional method was adopted, using a self-completion questionnaire survey. The questionnaires consisted of 49 items for job satisfaction, the three-dimensional commitment model of organizational commitment and the background information of respondents. Results: A total of 1,189 nurses participated. Of those, 91% (n=1084) were women, and mean age was 48.2 years. Most participants were staff nurses (n=791; 66%). Significant differences in 'affective commitment' (AC) scores were found for age (p < .001), overall work experience (p < .001), and work status (p < .001). For work experience in the current facility, significant differences were found in all organizational commitment scores (p < .001). The group with high job satisfaction scored significantly higher in all types of organizational commitment (p < 0.001). Conclusions: These results led to a conclusion that understanding the expectations of nurses at the workplace to adapt with the organization, and creating a work environment that clarifies contents of tasks, especially allowing for nurses to feel significance and achievement with tasks, would increase AC.Keywords: geriatric intermediate care facilities, geriatric nursing, job satisfaction, organizational commitment
Procedia PDF Downloads 14119912 Experimental Investigation of Energy Performance of Split Type Air Conditioning for Building under Various Indoor Set Point Temperatures and Different Air Flowrates through Cooling Coil
Authors: Niran Watchrodom
Abstract:
An experimental study was carried out to investigate the energy performance of a 1.5 Tr commercial split type air conditioner operating at different indoor set points and different air flowrate circulating through the cooling coil. The refrigerant R-22 was used as working fluid. In this paper, the test conditions considered were varied as follows: The room temperature varied from 23, 24, 25, 26, and 27 C, the air velocity passing through the evaporator was varied from 1.9, 2.1 and 2.4 m/s. The air velocity passing through the condenser was kept constant at 5 m/s. The results showed that when the indoor temperature was high, 27 C, and air velocity was 1.9 m/s, the coefficient of performance (COP) of the system was 3.74. The electrical power consumption of compressor was 1.64 kW, the rate of heat transfer in the condenser and evaporator were 7.79 and 6.10 kW, respectively. The amount corresponding amount of condensed water coming out of evaporator was 8.20 liter. The system can applied to commercial building.Keywords: condensed water, coefficient of performance, air velocity
Procedia PDF Downloads 43919911 Seismic Vulnerability Analysis of Arch Dam Based on Response Surface Method
Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong
Abstract:
Earthquake is one of the main loads threatening dam safety. Once the dam is damaged, it will bring huge losses of life and property to the country and people. Therefore, it is very important to research the seismic safety of the dam. Due to the complex foundation conditions, high fortification intensity, and high scientific and technological content, it is necessary to adopt reasonable methods to evaluate the seismic safety performance of concrete arch dams built and under construction in strong earthquake areas. Structural seismic vulnerability analysis can predict the probability of structural failure at all levels under different intensity earthquakes, which can provide a scientific basis for reasonable seismic safety evaluation and decision-making. In this paper, the response surface method (RSM) is applied to the seismic vulnerability analysis of arch dams, which improves the efficiency of vulnerability analysis. Based on the central composite test design method, the material-seismic intensity samples are established. The response surface model (RSM) with arch crown displacement as performance index is obtained by finite element (FE) calculation of the samples, and then the accuracy of the response surface model (RSM) is verified. To obtain the seismic vulnerability curves, the seismic intensity measure ??(?1) is chosen to be 0.1~1.2g, with an interval of 0.1g and a total of 12 intensity levels. For each seismic intensity level, the arch crown displacement corresponding to 100 sets of different material samples can be calculated by algebraic operation of the response surface model (RSM), which avoids 1200 times of nonlinear dynamic calculation of arch dam; thus, the efficiency of vulnerability analysis is improved greatly.Keywords: high concrete arch dam, performance index, response surface method, seismic vulnerability analysis, vector-valued intensity measure
Procedia PDF Downloads 24019910 Sound Selection for Gesture Sonification and Manipulation of Virtual Objects
Authors: Benjamin Bressolette, S´ebastien Denjean, Vincent Roussarie, Mitsuko Aramaki, Sølvi Ystad, Richard Kronland-Martinet
Abstract:
New sensors and technologies – such as microphones, touchscreens or infrared sensors – are currently making their appearance in the automotive sector, introducing new kinds of Human-Machine Interfaces (HMIs). The interactions with such tools might be cognitively expensive, thus unsuitable for driving tasks. It could for instance be dangerous to use touchscreens with a visual feedback while driving, as it distracts the driver’s visual attention away from the road. Furthermore, new technologies in car cockpits modify the interactions of the users with the central system. In particular, touchscreens are preferred to arrays of buttons for space improvement and design purposes. However, the buttons’ tactile feedback is no more available to the driver, which makes such interfaces more difficult to manipulate while driving. Gestures combined with an auditory feedback might therefore constitute an interesting alternative to interact with the HMI. Indeed, gestures can be performed without vision, which means that the driver’s visual attention can be totally dedicated to the driving task. In fact, the auditory feedback can both inform the driver with respect to the task performed on the interface and on the performed gesture, which might constitute a possible solution to the lack of tactile information. As audition is a relatively unused sense in automotive contexts, gesture sonification can contribute to reducing the cognitive load thanks to the proposed multisensory exploitation. Our approach consists in using a virtual object (VO) to sonify the consequences of the gesture rather than the gesture itself. This approach is motivated by an ecological point of view: Gestures do not make sound, but their consequences do. In this experiment, the aim was to identify efficient sound strategies, to transmit dynamic information of VOs to users through sound. The swipe gesture was chosen for this purpose, as it is commonly used in current and new interfaces. We chose two VO parameters to sonify, the hand-VO distance and the VO velocity. Two kinds of sound parameters can be chosen to sonify the VO behavior: Spectral or temporal parameters. Pitch and brightness were tested as spectral parameters, and amplitude modulation as a temporal parameter. Performances showed a positive effect of sound compared to a no-sound situation, revealing the usefulness of sounds to accomplish the task.Keywords: auditory feedback, gesture sonification, sound perception, virtual object
Procedia PDF Downloads 30219909 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences
Authors: Nayer Mofidtabatabaei
Abstract:
Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations
Procedia PDF Downloads 7019908 Pareto Optimal Material Allocation Mechanism
Authors: Peter Egri, Tamas Kis
Abstract:
Scheduling problems have been studied by the algorithmic mechanism design research from the beginning. This paper is focusing on a practically important, but theoretically rather neglected field: the project scheduling problem where the jobs connected by precedence constraints compete for various nonrenewable resources, such as materials. Although the centralized problem can be solved in polynomial-time by applying the algorithm of Carlier and Rinnooy Kan from the Eighties, obtaining materials in a decentralized environment is usually far from optimal. It can be observed in practical production scheduling situations that project managers tend to cache the required materials as soon as possible in order to avoid later delays due to material shortages. This greedy practice usually leads both to excess stocks for some projects and materials, and simultaneously, to shortages for others. The aim of this study is to develop a model for the material allocation problem of a production plant, where a central decision maker—the inventory—should assign the resources arriving at different points in time to the jobs. Since the actual due dates are not known by the inventory, the mechanism design approach is applied with the projects as the self-interested agents. The goal of the mechanism is to elicit the required information and allocate the available materials such that it minimizes the maximal tardiness among the projects. It is assumed that except the due dates, the inventory is familiar with every other parameters of the problem. A further requirement is that due to practical considerations monetary transfer is not allowed. Therefore a mechanism without money is sought which excludes some widely applied solutions such as the Vickrey–Clarke–Groves scheme. In this work, a type of Serial Dictatorship Mechanism (SDM) is presented for the studied problem, including a polynomial-time algorithm for computing the material allocation. The resulted mechanism is both truthful and Pareto optimal. Thus the randomization over the possible priority orderings of the projects results in a universally truthful and Pareto optimal randomized mechanism. However, it is shown that in contrast to problems like the many-to-many matching market, not every Pareto optimal solution can be generated with an SDM. In addition, no performance guarantee can be given compared to the optimal solution, therefore this approximation characteristic is investigated with experimental study. All in all, the current work studies a practically relevant scheduling problem and presents a novel truthful material allocation mechanism which eliminates the potential benefit of the greedy behavior that negatively influences the outcome. The resulted allocation is also shown to be Pareto optimal, which is the most widely used criteria describing a necessary condition for a reasonable solution.Keywords: material allocation, mechanism without money, polynomial-time mechanism, project scheduling
Procedia PDF Downloads 33219907 A Discrete Element Method-Based Simulation of Toppling Failure Considering Block Interaction
Authors: Hooman Dabirmanesh, Attila M. Zsaki
Abstract:
The toppling failure mode in a rock mass is considerably different from the most common sliding failure type along an existing or an induced slip plane. Block toppling is observed in a rock mass which consists of both a widely-spaced basal cross-joint set and a closely-spaced discontinuity set dipping into the slope. For this case, failure occurs when the structure cannot bear the tensile portion of bending stress, and the columns or blocks overturn by their own weight. This paper presents a particle-based discrete element model of rock blocks subjected to a toppling failure where geometric conditions and interaction among blocks are investigated. A series of parametric studies have been conducted on particles’ size, arrangement and bond contact among of particles which are made the blocks. Firstly, a numerical investigation on a one-block system was verified. Afterward, a slope consisting of multi-blocks was developed to study toppling failure and interaction forces between blocks. The results show that the formation of blocks, especially between the block and basal plane surface, can change the process of failure. The results also demonstrate that the initial configuration of particles used to form the blocks has a significant role in achieving accurate simulation results. The size of particles and bond contacts have a considerable influence to change the progress of toppling failure.Keywords: block toppling failure, contact interaction, discrete element, particle size, random generation
Procedia PDF Downloads 20119906 Determinants of Mobile Payment Adoption among Retailers in Ghana
Authors: Ibrahim Masud, Yusheng Kong, Adam Diyawu Rahman
Abstract:
Mobile payment variously referred to as mobile money, mobile money transfer, and mobile wallet refers to payment services operated under financial regulation and performed from or via a mobile device. Mobile payment systems have come to augment and to some extent try to replace the conventional payment methods like cash, cheque, or credit cards. This study examines mobile payment adoption factors among retailers in Ghana. A conceptual framework was adopted from the extant literature using the Technology Acceptance Model and the Theory of Reasoned action as the theoretical bases. Data for the study was obtained from a sample of 240 respondents through a structured questionnaire. The PLS-SEM was used to analyze the data through SPSS v.22 and SmartPLS v.3. The findings indicate that factors such as perceived usefulness, perceived ease of use, perceived security, competitive pressure and facilitating conditions are the main determinants of mobile payment adoption among retailers in Ghana. The study contributes to the literature on mobile payment adoption from developing country context.Keywords: mobile payment, retailers, structural equation modeling, technology acceptance model
Procedia PDF Downloads 17819905 Improved Artificial Bee Colony Algorithm for Non-Convex Economic Power Dispatch Problem
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
This study presents a modified version of the artificial bee colony (ABC) algorithm by including a local search technique for solving the non-convex economic power dispatch problem. The local search step is incorporated at the end of each iteration. Total system losses, valve-point loading effects and prohibited operating zones have been incorporated in the problem formulation. Thus, the problem becomes highly nonlinear and with discontinuous objective function. The proposed technique is validated using an IEEE benchmark system with ten thermal units. Simulation results demonstrate that the proposed optimization algorithm has better convergence characteristics in comparison with the original ABC algorithm.Keywords: economic power dispatch, artificial bee colony, valve-point loading effects, prohibited operating zones
Procedia PDF Downloads 25719904 Searching k-Nearest Neighbors to be Appropriate under Gaming Environments
Authors: Jae Moon Lee
Abstract:
In general, algorithms to find continuous k-nearest neighbors have been researched on the location based services, monitoring periodically the moving objects such as vehicles and mobile phone. Those researches assume the environment that the number of query points is much less than that of moving objects and the query points are not moved but fixed. In gaming environments, this problem is when computing the next movement considering the neighbors such as flocking, crowd and robot simulations. In this case, every moving object becomes a query point so that the number of query point is same to that of moving objects and the query points are also moving. In this paper, we analyze the performance of the existing algorithms focused on location based services how they operate under gaming environments.Keywords: flocking behavior, heterogeneous agents, similarity, simulation
Procedia PDF Downloads 302