Search results for: geometric feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2139

Search results for: geometric feature

789 A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion

Authors: Yingchen Yang

Abstract:

In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions.

Keywords: unidirectional, vertical axis, wave energy converter, wave rotor

Procedia PDF Downloads 236
788 Development of a Paediatric Head Model for the Computational Analysis of Head Impact Interactions

Authors: G. A. Khalid, M. D. Jones, R. Prabhu, A. Mason-Jones, W. Whittington, H. Bakhtiarydavijani, P. S. Theobald

Abstract:

Head injury in childhood is a common cause of death or permanent disability from injury. However, despite its frequency and significance, there is little understanding of how a child’s head responds during injurious loading. Whilst Infant Post Mortem Human Subject (PMHS) experimentation is a logical approach to understand injury biomechanics, it is the authors’ opinion that a lack of subject availability is hindering potential progress. Computer modelling adds great value when considering adult populations; however, its potential remains largely untapped for infant surrogates. The complexities of child growth and development, which result in age dependent changes in anatomy, geometry and physical response characteristics, present new challenges for computational simulation. Further geometric challenges are presented by the intricate infant cranial bones, which are separated by sutures and fontanelles and demonstrate a visible fibre orientation. This study presents an FE model of a newborn infant’s head, developed from high-resolution computer tomography scans, informed by published tissue material properties. To mimic the fibre orientation of immature cranial bone, anisotropic properties were applied to the FE cranial bone model, with elastic moduli representing the bone response both parallel and perpendicular to the fibre orientation. Biofiedility of the computational model was confirmed by global validation against published PMHS data, by replicating experimental impact tests with a series of computational simulations, in terms of head kinematic responses. Numerical results confirm that the FE head model’s mechanical response is in favourable agreement with the PMHS drop test results.

Keywords: finite element analysis, impact simulation, infant head trauma, material properties, post mortem human subjects

Procedia PDF Downloads 326
787 Offline Signature Verification Using Minutiae and Curvature Orientation

Authors: Khaled Nagaty, Heba Nagaty, Gerard McKee

Abstract:

A signature is a behavioral biometric that is used for authenticating users in most financial and legal transactions. Signatures can be easily forged by skilled forgers. Therefore, it is essential to verify whether a signature is genuine or forged. The aim of any signature verification algorithm is to accommodate the differences between signatures of the same person and increase the ability to discriminate between signatures of different persons. This work presented in this paper proposes an automatic signature verification system to indicate whether a signature is genuine or not. The system comprises four phases: (1) The pre-processing phase in which image scaling, binarization, image rotation, dilation, thinning, and connecting ridge breaks are applied. (2) The feature extraction phase in which global and local features are extracted. The local features are minutiae points, curvature orientation, and curve plateau. The global features are signature area, signature aspect ratio, and Hu moments. (3) The post-processing phase, in which false minutiae are removed. (4) The classification phase in which features are enhanced before feeding it into the classifier. k-nearest neighbors and support vector machines are used. The classifier was trained on a benchmark dataset to compare the performance of the proposed offline signature verification system against the state-of-the-art. The accuracy of the proposed system is 92.3%.

Keywords: signature, ridge breaks, minutiae, orientation

Procedia PDF Downloads 146
786 EEG-Based Classification of Psychiatric Disorders: Bipolar Mood Disorder vs. Schizophrenia

Authors: Han-Jeong Hwang, Jae-Hyun Jo, Fatemeh Alimardani

Abstract:

An accurate diagnosis of psychiatric diseases is a challenging issue, in particular when distinct symptoms for different diseases are overlapped, such as delusions appeared in bipolar mood disorder (BMD) and schizophrenia (SCH). In the present study, we propose a useful way to discriminate BMD and SCH using electroencephalography (EEG). A total of thirty BMD and SCH patients (15 vs. 15) took part in our experiment. EEG signals were measured with nineteen electrodes attached on the scalp using the international 10-20 system, while they were exposed to a visual stimulus flickering at 16 Hz for 95 s. The flickering visual stimulus induces a certain brain signal, known as steady-state visual evoked potential (SSVEP), which is differently observed in patients with BMD and SCH, respectively, in terms of SSVEP amplitude because they process the same visual information in own unique way. For classifying BDM and SCH patients, machine learning technique was employed in which leave-one-out-cross validation was performed. The SSVEPs induced at the fundamental (16 Hz) and second harmonic (32 Hz) stimulation frequencies were extracted using fast Fourier transformation (FFT), and they were used as features. The most discriminative feature was selected using the Fisher score, and support vector machine (SVM) was used as a classifier. From the analysis, we could obtain a classification accuracy of 83.33 %, showing the feasibility of discriminating patients with BMD and SCH using EEG. We expect that our approach can be utilized for psychiatrists to more accurately diagnose the psychiatric disorders, BMD and SCH.

Keywords: bipolar mood disorder, electroencephalography, schizophrenia, machine learning

Procedia PDF Downloads 420
785 Case Report: Clinical Improvement of Forbrain Neurologic Signs in 3- Month- Old Persian Mastiff Dog with Calvarial Hyperostosis Syndrome after Corticosteroid, Antiepileptic and Antibiotic Therapy

Authors: Hamidreza Jahani, Zahra Salehzadeh, Ehsan Amini, Mohsen Tohidifar

Abstract:

Calvarial Hyperostosis Syndrome (CHS) is a benign bone disease of the skull. It is a non-neoplastic and proliferative bone disease, and the main feature of the disease is progressive and asymmetrical bone involvement. CHS is mostly reported in young male and female bullmastiff dogs and less frequently in other breeds. The etiology of CHS is unknown. This is the first case report of CHS in Iran. A 3-month-old male Persian Mastiff was presented with chief complaints of multiple episodes of seizure, pacing, bizarre behavior, delayed growth, head pressing, and difficulty in opening the mouth. Central blindness and open fontanelles were observed in clinical examination. No abnormality was found in the complete blood count and routine blood biochemical tests. CT scan findings include cortical thickening of frontal and parietal bones and enlargement of the left retropharyngeal lymph node. For treatment, oral clindamycin for two weeks, prednisolone and phenobarbital for one month, respectively, were administrated, and the case showed improvement after a week and recovered after one month.

Keywords: calvarial hyperostosis, Persian Mastiff, frontal bone, seizure

Procedia PDF Downloads 136
784 Promoting Creative and Critical Thinking in Mathematics

Authors: Ana Maria Reis D'Azevedo Breda, Catarina Maria Neto da Cruz

Abstract:

The Japanese art of origami provides a rich context for designing exploratory mathematical activities for children and young people. By folding a simple sheet of paper, fascinating and surprising planar and spatial configurations emerge. Equally surprising is the unfolding process, which also produces striking patterns. The procedure of folding, unfolding, and folding again allows the exploration of interesting geometric patterns. When adequately and systematically done, we may deduce some of the mathematical rules ruling origami. As the child/youth folds the sheet of paper repeatedly, he can physically observe how the forms he obtains are transformed and how they relate to the pattern of the corresponding unfolding, creating space for the understanding/discovery of mathematical principles regulating the folding-unfolding process. As part of a 2023 Summer Academy organized by a Portuguese university, a session entitled “Folding, Thinking and Generalizing” took place. Twenty-three students attended the session, all enrolled in the 2nd cycle of Portuguese Basic Education and aged between 10 and 12 years old. The main focus of this session was to foster the development of critical cognitive and socio-emotional skills among these young learners using origami. These skills included creativity, critical analysis, mathematical reasoning, collaboration, and communication. Employing a qualitative, descriptive, and interpretative analysis of data collected during the session through field notes and students’ written productions, our findings reveal that structured origami-based activities not only promote student engagement with mathematical concepts in a playful and interactive but also facilitate the development of socio-emotional skills, which include collaboration and effective communication between participants. This research highlights the value of integrating origami into educational practices, highlighting its role in supporting comprehensive cognitive and emotional learning experiences.

Keywords: skills, origami rules, active learning, hands-on activities

Procedia PDF Downloads 67
783 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements

Authors: Ebru Turgal, Beyza Doganay Erdogan

Abstract:

Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.

Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data

Procedia PDF Downloads 203
782 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique

Authors: Kritiyaporn Kunsook

Abstract:

Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.

Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting

Procedia PDF Downloads 372
781 Kinetic Model to Interpret Whistler Waves in Multicomponent Non-Maxwellian Space Plasmas

Authors: Warda Nasir, M. N. S. Qureshi

Abstract:

Whistler waves are right handed circularly polarized waves and are frequently observed in space plasmas. The Low frequency branch of the Whistler waves having frequencies nearly around 100 Hz, known as Lion roars, are frequently observed in magnetosheath. Another feature of the magnetosheath is the observations of flat top electron distributions with single as well as two electron populations. In the past, lion roars were studied by employing kinetic model using classical bi-Maxwellian distribution function, however, could not be justified both on quantitatively as well as qualitatively grounds. We studied Whistler waves by employing kinetic model using non-Maxwellian distribution function such as the generalized (r,q) distribution function which is the generalized form of kappa and Maxwellian distribution functions by employing kinetic theory with single or two electron populations. We compare our results with the Cluster observations and found good quantitative and qualitative agreement between them. At times when lion roars are observed (not observed) in the data and bi-Maxwellian could not provide the sufficient growth (damping) rates, we showed that when generalized (r,q) distribution function is employed, the resulted growth (damping) rates exactly match the observations.

Keywords: kinetic model, whistler waves, non-maxwellian distribution function, space plasmas

Procedia PDF Downloads 314
780 Material Concepts and Processing Methods for Electrical Insulation

Authors: R. Sekula

Abstract:

Epoxy composites are broadly used as an electrical insulation for the high voltage applications since only such materials can fulfill particular mechanical, thermal, and dielectric requirements. However, properties of the final product are strongly dependent on proper manufacturing process with minimized material failures, as too large shrinkage, voids and cracks. Therefore, application of proper materials (epoxy, hardener, and filler) and process parameters (mold temperature, filling time, filling velocity, initial temperature of internal parts, gelation time), as well as design and geometric parameters are essential features for final quality of the produced components. In this paper, an approach for three-dimensional modeling of all molding stages, namely filling, curing and post-curing is presented. The reactive molding simulation tool is based on a commercial CFD package, and include dedicated models describing viscosity and reaction kinetics that have been successfully implemented to simulate the reactive nature of the system with exothermic effect. Also a dedicated simulation procedure for stress and shrinkage calculations, as well as simulation results are presented in the paper. Second part of the paper is dedicated to recent developments on formulations of functional composites for electrical insulation applications, focusing on thermally conductive materials. Concepts based on filler modifications for epoxy electrical composites have been presented, including the results of the obtained properties. Finally, having in mind tough environmental regulations, in addition to current process and design aspects, an approach for product re-design has been presented focusing on replacement of epoxy material with the thermoplastic one. Such “design-for-recycling” method is one of new directions associated with development of new material and processing concepts of electrical products and brings a lot of additional research challenges. For that, one of the successful products has been presented to illustrate the presented methodology.

Keywords: curing, epoxy insulation, numerical simulations, recycling

Procedia PDF Downloads 278
779 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions

Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins

Abstract:

The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.

Keywords: dimensional affect prediction, output-associative RVM, multivariate regression, fast testing

Procedia PDF Downloads 286
778 Predicting Open Chromatin Regions in Cell-Free DNA Whole Genome Sequencing Data by Correlation Clustering  

Authors: Fahimeh Palizban, Farshad Noravesh, Amir Hossein Saeidian, Mahya Mehrmohamadi

Abstract:

In the recent decade, the emergence of liquid biopsy has significantly improved cancer monitoring and detection. Dying cells, including those originating from tumors, shed their DNA into the blood and contribute to a pool of circulating fragments called cell-free DNA. Accordingly, identifying the tissue origin of these DNA fragments from the plasma can result in more accurate and fast disease diagnosis and precise treatment protocols. Open chromatin regions are important epigenetic features of DNA that reflect cell types of origin. Profiling these features by DNase-seq, ATAC-seq, and histone ChIP-seq provides insights into tissue-specific and disease-specific regulatory mechanisms. There have been several studies in the area of cancer liquid biopsy that integrate distinct genomic and epigenomic features for early cancer detection along with tissue of origin detection. However, multimodal analysis requires several types of experiments to cover the genomic and epigenomic aspects of a single sample, which will lead to a huge amount of cost and time. To overcome these limitations, the idea of predicting OCRs from WGS is of particular importance. In this regard, we proposed a computational approach to target the prediction of open chromatin regions as an important epigenetic feature from cell-free DNA whole genome sequence data. To fulfill this objective, local sequencing depth will be fed to our proposed algorithm and the prediction of the most probable open chromatin regions from whole genome sequencing data can be carried out. Our method integrates the signal processing method with sequencing depth data and includes count normalization, Discrete Fourie Transform conversion, graph construction, graph cut optimization by linear programming, and clustering. To validate the proposed method, we compared the output of the clustering (open chromatin region+, open chromatin region-) with previously validated open chromatin regions related to human blood samples of the ATAC-DB database. The percentage of overlap between predicted open chromatin regions and the experimentally validated regions obtained by ATAC-seq in ATAC-DB is greater than 67%, which indicates meaningful prediction. As it is evident, OCRs are mostly located in the transcription start sites (TSS) of the genes. In this regard, we compared the concordance between the predicted OCRs and the human genes TSS regions obtained from refTSS and it showed proper accordance around 52.04% and ~78% with all and the housekeeping genes, respectively. Accurately detecting open chromatin regions from plasma cell-free DNA-seq data is a very challenging computational problem due to the existence of several confounding factors, such as technical and biological variations. Although this approach is in its infancy, there has already been an attempt to apply it, which leads to a tool named OCRDetector with some restrictions like the need for highly depth cfDNA WGS data, prior information about OCRs distribution, and considering multiple features. However, we implemented a graph signal clustering based on a single depth feature in an unsupervised learning manner that resulted in faster performance and decent accuracy. Overall, we tried to investigate the epigenomic pattern of a cell-free DNA sample from a new computational perspective that can be used along with other tools to investigate genetic and epigenetic aspects of a single whole genome sequencing data for efficient liquid biopsy-related analysis.

Keywords: open chromatin regions, cancer, cell-free DNA, epigenomics, graph signal processing, correlation clustering

Procedia PDF Downloads 150
777 The Ludic Exception and the Permanent Emergency: Understanding the Emergency Regimes with the Concept of Play

Authors: Mete Ulaş Aksoy

Abstract:

In contemporary politics, the state of emergency has become a permanent and salient feature of politics. This study aims to clarify the anthropological and ontological dimensions of the permanent state of emergency. It pays special attention to the structural relation between the exception and play. Focusing on the play in the context of emergency and exception enables the recognition of the difference and sometimes the discrepancy between the exception and emergency, which has passed into oblivion because of the frequency and normalization of emergency situations. This study coins the term “ludic exception” in order to highlight the difference between the exceptions in which exuberance and paroxysm rule over the socio-political life and the permanent emergency that protects the authority with a sort of extra-legality. The main thesis of the study is that the ludic elements such as risk, conspicuous consumption, sacrificial gestures, agonism, etc. circumscribe the exceptional moments temporarily, preventing them from being routine and normal. The study also emphasizes the decline of ludic elements in modernity as the main factor in the transformation of the exceptions into permanent emergency situations. In the introduction, the relationship between play and exception is taken into consideration. In the second part, the study elucidates the concept of ludic exceptions and dwells on the anthropological examples of the ludic exceptions. In the last part, the decline of ludic elements in modernity is addressed as the main factor for the permanent emergency.

Keywords: emergency, exception, ludic exception, play, sovereignty

Procedia PDF Downloads 89
776 Dual Duality for Unifying Spacetime and Internal Symmetry

Authors: David C. Ni

Abstract:

The current efforts for Grand Unification Theory (GUT) can be classified into General Relativity, Quantum Mechanics, String Theory and the related formalisms. In the geometric approaches for extending General Relativity, the efforts are establishing global and local invariance embedded into metric formalisms, thereby additional dimensions are constructed for unifying canonical formulations, such as Hamiltonian and Lagrangian formulations. The approaches of extending Quantum Mechanics adopt symmetry principle to formulate algebra-group theories, which evolved from Maxwell formulation to Yang-Mills non-abelian gauge formulation, and thereafter manifested the Standard model. This thread of efforts has been constructing super-symmetry for mapping fermion and boson as well as gluon and graviton. The efforts of String theory currently have been evolving to so-called gauge/gravity correspondence, particularly the equivalence between type IIB string theory compactified on AdS5 × S5 and N = 4 supersymmetric Yang-Mills theory. Other efforts are also adopting cross-breeding approaches of above three formalisms as well as competing formalisms, nevertheless, the related symmetries, dualities, and correspondences are outlined as principles and techniques even these terminologies are defined diversely and often generally coined as duality. In this paper, we firstly classify these dualities from the perspective of physics. Then examine the hierarchical structure of classes from mathematical perspective referring to Coleman-Mandula theorem, Hidden Local Symmetry, Groupoid-Categorization and others. Based on Fundamental Theorems of Algebra, we argue that rather imposing effective constraints on different algebras and the related extensions, which are mainly constructed by self-breeding or self-mapping methodologies for sustaining invariance, we propose a new addition, momentum-angular momentum duality at the level of electromagnetic duality, for rationalizing the duality algebras, and then characterize this duality numerically with attempt for addressing some unsolved problems in physics and astrophysics.

Keywords: general relativity, quantum mechanics, string theory, duality, symmetry, correspondence, algebra, momentum-angular-momentum

Procedia PDF Downloads 397
775 Towards Human-Interpretable, Automated Learning of Feedback Control for the Mixing Layer

Authors: Hao Li, Guy Y. Cornejo Maceda, Yiqing Li, Jianguo Tan, Marek Morzynski, Bernd R. Noack

Abstract:

We propose an automated analysis of the flow control behaviour from an ensemble of control laws and associated time-resolved flow snapshots. The input may be the rich database of machine learning control (MLC) optimizing a feedback law for a cost function in the plant. The proposed methodology provides (1) insights into the control landscape, which maps control laws to performance, including extrema and ridge-lines, (2) a catalogue of representative flow states and their contribution to cost function for investigated control laws and (3) visualization of the dynamics. Key enablers are classification and feature extraction methods of machine learning. The analysis is successfully applied to the stabilization of a mixing layer with sensor-based feedback driving an upstream actuator. The fluctuation energy is reduced by 26%. The control replaces unforced Kelvin-Helmholtz vortices with subsequent vortex pairing by higher-frequency Kelvin-Helmholtz structures of lower energy. These efforts target a human interpretable, fully automated analysis of MLC identifying qualitatively different actuation regimes, distilling corresponding coherent structures, and developing a digital twin of the plant.

Keywords: machine learning control, mixing layer, feedback control, model-free control

Procedia PDF Downloads 223
774 Concubines, Handmaids Or Sister Wives: Polygamy In The Media, A Comparison Between The TV Dramas "The Legend of Zhen Huan", "The Handmaid’s Tale" And "Big Love"

Authors: Muriel Canas-Walker

Abstract:

Polygamy is a sensitive issue yet a surprisingly popular topic on television. In China, among other palace intrigues dramas, "The Legend of Zhen Huan" stands out in its harsh portrayal of sequestered concubines in the Forbidden City. In the United States the critically acclaimed "Big Love", set in the Mormon community, generated much discussion and controversy, both accademically and on social media. More recently "The Handmaid’s Tale", adapted from the famous novel by Canadian writer Margaret Atwood, also contributed to the topic. All three dramas feature the plight of women caught in a polygamy system and are particularly popular with female audiences. Using Foucault’s theory of power, visual anthropology, and feminist perspective this paper aims at analyzing the treatment of this sensitive topic in the media and its reception. From the seemingly happy sister wives in "Big Love", to the fiercely competitive concubines in "The Legend of Zhen Huan" and the tragically coerced handmaids in "The Handmaid’s Tale", the lives of women in a polygamy system are inspiring to modern audiences. This paper’s objective is to understand how the treatment of polygamy is relevant to these audiences.

Keywords: polygamy, michel foucault, feminism, visual anthropology

Procedia PDF Downloads 91
773 Formula Student Car: Design, Analysis and Lap Time Simulation

Authors: Rachit Ahuja, Ayush Chugh

Abstract:

Aerodynamic forces and moments, as well as tire-road forces largely affects the maneuverability of the vehicle. Car manufacturers are largely fascinated and influenced by various aerodynamic improvements made in formula cars. There is constant effort of applying these aerodynamic improvements in road vehicles. In motor racing, the key differentiating factor in a high performance car is its ability to maintain highest possible acceleration in appropriate direction. One of the main areas of concern in motor racing is balance of aerodynamic forces and stream line the flow of air across the body of the vehicle. At present, formula racing cars are regulated by stringent FIA norms, there are constrains for dimensions of the vehicle, engine capacity etc. So one of the fields in which there is a large scope of improvement is aerodynamics of the vehicle. In this project work, an attempt has been made to design a formula- student (FS) car, improve its aerodynamic characteristics through steady state CFD simulations and simultaneously calculate its lap time. Initially, a CAD model of a formula student car is made using SOLIDWORKS as per the given dimensions and a steady-state external air-flow simulation is performed on the baseline model of the formula student car without any add on device to evaluate and analyze the air-flow pattern around the car and aerodynamic forces using FLUENT Solver. A detailed survey on different add-on devices used in racing application like: - front wing, diffuser, shark pin, T- wing etc. is made and geometric model of these add-on devices are created. These add-on devices are assembled with the baseline model. Steady state CFD simulations are done on the modified car to evaluate the aerodynamic effects of these add-on devices on the car. Later comparison of lap time simulation of the formula student car with and without the add-on devices is done with the help of MATLAB. Aerodynamic performances like: - lift, drag and their coefficients are evaluated for different configuration and design of the add-on devices at different speed of the vehicle. From parametric CFD simulations on formula student car attached with add-on devices, there is a considerable amount of drag and lift force reduction besides streamlining the airflow across the car. The best possible configuration of these add-on devices is obtained from these CFD simulations and also use of these add-on devices have shown an improvement in performance of the car which can be compared by various lap time simulations of the car.

Keywords: aerodynamic performance, front wing, laptime simulation, t-wing

Procedia PDF Downloads 197
772 Monitoring Energy Reduction through Applying Green Roofs to Residential Buildings in Dubai

Authors: Hanan M. Taleb

Abstract:

Since buildings are a major consumer of energy, their potential impact on the environment is considerable. Therefore, expanding the application of low energy architecture is of the utmost importance. Designing with nature is also one of the most attractive methods of design for many architects and designers because it creates a pathway to sustainability. One feature of designing with nature is the use of green roofing which aims to cover the roof with vegetation either partially or completely. Appreciably, green roofing in a building has many advantages including absorbing rainwater, providing thermal insulation, enhancing the ecology, creating a peaceful retreat for people and animals, improving air quality and helping to offset the air temperature and heat island effect. The aim of this paper is to monitor energy saving in the residential buildings of Dubai after applying green roofing techniques. The paper also attempts to provide a thermal analysis after the application of green roofs. A villa in Dubai was chosen as a case study. With the aid of energy simulation software, namely Design Builder, as well as manual recording and calculations, the energy savings after applying the green roofing were detected. To that extent, the paper draws some recommendations with regard to the types of green roofing that should be used in these particular climatic conditions based on this real experiment that took place over a one year period.

Keywords: residential buildings, Dubai, energy saving, green roofing, CFD, thermal comfort

Procedia PDF Downloads 299
771 Detecting and Thwarting Interest Flooding Attack in Information Centric Network

Authors: Vimala Rani P, Narasimha Malikarjunan, Mercy Shalinie S

Abstract:

Data Networking was brought forth as an instantiation of information-centric networking. The attackers can send a colossal number of spoofs to take hold of the Pending Interest Table (PIT) named an Interest Flooding attack (IFA) since the in- interests are recorded in the PITs of the intermediate routers until they receive corresponding Data Packets are go beyond the time limit. These attacks can be detrimental to network performance. PIT expiration rate or the Interest satisfaction rate, which cannot differentiate the IFA from attacks, is the criterion Traditional IFA detection techniques are concerned with. Threshold values can casually affect Threshold-based traditional methods. This article proposes an accurate IFA detection mechanism based on a Multiple Feature-based Extreme Learning Machine (MF-ELM). Accuracy of the attack detection can be increased by presenting the entropy of Internet names, Interest satisfaction rate and PIT usage as features extracted in the MF-ELM classifier. Furthermore, we deploy a queue-based hostile Interest prefix mitigation mechanism. The inference of this real-time test bed is that the mechanism can help the network to resist IFA with higher accuracy and efficiency.

Keywords: information-centric network, pending interest table, interest flooding attack, MF-ELM classifier, queue-based mitigation strategy

Procedia PDF Downloads 205
770 How Unicode Glyphs Revolutionized the Way We Communicate

Authors: Levi Corallo

Abstract:

Typed language made by humans on computers and cell phones has made a significant distinction from previous modes of written language exchanges. While acronyms remain one of the most predominant markings of typed language, another and perhaps more recent revolution in the way humans communicate has been with the use of symbols or glyphs, primarily Emojis—globally introduced on the iPhone keyboard by Apple in 2008. This paper seeks to analyze the use of symbols in typed communication from both a linguistic and machine learning perspective. The Unicode system will be explored and methods of encoding will be juxtaposed with the current machine and human perception. Topics in how typed symbol usage exists in conversation will be explored as well as topics across current research methods dealing with Emojis like sentiment analysis, predictive text models, and so on. This study proposes that sequential analysis is a significant feature for analyzing unicode characters in a corpus with machine learning. Current models that are trying to learn or translate the meaning of Emojis should be starting to learn using bi- and tri-grams of Emoji, as well as observing the relationship between combinations of different Emoji in tandem. The sociolinguistics of an entire new vernacular of language referred to here as ‘typed language’ will also be delineated across my analysis with unicode glyphs from both a semantic and technical perspective.

Keywords: unicode, text symbols, emojis, glyphs, communication

Procedia PDF Downloads 194
769 Effects of Nitroxin Fertilizer on Physiological Characters Forage Millet under Drought Stress Conditions

Authors: Mohammad Darbani, Jafar Masoud Sinaki, Armaghan Abedzadeh Neyshaburi

Abstract:

An experiment was conducted as split plot factorial design using randomized complete block design in Damghan in 2012-2013 in order to investigate the effects of irrigation cut off (based on the Phenological stages of plants) on physiological properties of forage millet cultivars. The treatments included three irrigation levels (control with full irrigation, irrigation cut off when flowering started, and irrigation cut off when flowering ended) in the main plots, and applying nitroxin biofertilizer (+), not applying nitroxin biofertilizer (control), and Iranian forage millet cultivars (Bastan, Pishahang, and Isfahan) in the subplots. The highest rate of ashes and water-soluble carbohydrates content were observed in the cultivar Bastan (8.22 and 8.91%, respectively), the highest content of fiber and water (74.17 and 48.83%, respectively) in the treatment of irrigation cut off when flowering started, and the largest proline concentration (μmol/gfw-1) was seen in the treatment of irrigation cut off when flowering started. very rapid growth of millet, its short growing season, drought tolerance, its unique feature regarding harvest time, and its response to nitroxin biofertilizer can help expanding its cultivation in arid and semi-arid regions of Iran.

Keywords: irrigation cut off, forage millet, Nitroxin fertilizer, physiological properties

Procedia PDF Downloads 609
768 MhAGCN: Multi-Head Attention Graph Convolutional Network for Web Services Classification

Authors: Bing Li, Zhi Li, Yilong Yang

Abstract:

Web classification can promote the quality of service discovery and management in the service repository. It is widely used to locate developers desired services. Although traditional classification methods based on supervised learning models can achieve classification tasks, developers need to manually mark web services, and the quality of these tags may not be enough to establish an accurate classifier for service classification. With the doubling of the number of web services, the manual tagging method has become unrealistic. In recent years, the attention mechanism has made remarkable progress in the field of deep learning, and its huge potential has been fully demonstrated in various fields. This paper designs a multi-head attention graph convolutional network (MHAGCN) service classification method, which can assign different weights to the neighborhood nodes without complicated matrix operations or relying on understanding the entire graph structure. The framework combines the advantages of the attention mechanism and graph convolutional neural network. It can classify web services through automatic feature extraction. The comprehensive experimental results on a real dataset not only show the superior performance of the proposed model over the existing models but also demonstrate its potentially good interpretability for graph analysis.

Keywords: attention mechanism, graph convolutional network, interpretability, service classification, service discovery

Procedia PDF Downloads 135
767 Spatio-Temporal Data Mining with Association Rules for Lake Van

Authors: Tolga Aydin, M. Fatih Alaeddinoğlu

Abstract:

People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.

Keywords: apriori algorithm, association rules, data mining, spatio-temporal data

Procedia PDF Downloads 374
766 Characterization and Effect of Using Pumpkin Seeds Oil Methyl Ester (PSME) as Fuel in a LHR Diesel Engine

Authors: Hanbey Hazar, Hakan Gul, Ugur Ozturk

Abstract:

In order to decrease the hazardous emissions of the internal combustion engines and to improve the combustion and thermal efficiency, thermal barrier coatings are applied. In this experimental study, cylinder, piston, exhaust, and inlet valves which are combustion chamber components have been coated with a ceramic material, and this earned the engine LHR feature. Cylinder, exhaust and inlet valves of the diesel engine used in the tests were coated with ekabor-2 commercial powder, which is a ceramic material, to a thickness of 50 µm, by using the boriding method. The piston of a diesel engine was coated in 300 µm thickness with bor-based powder by using plasma coating method. Pumpkin seeds oil methyl ester (PSME) was produced by the transesterification method. In addition, dimethoxymethane additive materials were used to improve the properties of diesel fuel, pumpkin seeds oil methyl ester (PSME) and its mixture. Dimethoxymethane was blended with test fuels, which was used as a pilot fuel, at the volumetric ratios of 4% and 8%. Due to thermal barrier coating, the diesel engine's CO, HC, and smoke density values decreased; but, NOx and exhaust gas temperature (EGT) increased.

Keywords: boriding, diesel engine, exhaust emission, thermal barrier coating

Procedia PDF Downloads 477
765 Clinical Profile of Renal Diseases in Children in Tertiary Care Centre

Authors: Jyoti Agrawal

Abstract:

Introduction: Renal diseases in children and young adult can be difficult to diagnose early as it may present only with few symptoms, tends to have different course than adult and respond variously to different treatment. The pattern of renal disease in children is different from developing countries as compared to developed countries. Methods: This study was a hospital based prospective observational study carried from March, 2014 to February 2015 at BP Koirala institute of health sciences. Patients with renal disease, both inpatient and outpatient from birth to 14 years of age were enrolled in the study. The diagnosis of renal disease was be made on clinical and laboratory criteria. Results: Total of 120 patients were enrolled in our study which contributed to 3.74% % of total admission. The commonest feature of presentation was edema (75%), followed by fever (65%), hypertension (60%), decreased urine output (45%) and hematuria (25%). Most common diagnosis was acute glomerulonephritis (40%) followed by Nephrotic syndrome (25%) and urinary tract infection (25%). Renal biopsy was done for 10% of cases and most of them were steroid dependent nephrotic syndrome. 5% of our cases expired because of multiorgan dysfunction syndrome, sepsis and acute kidney injury. Conclusion: Renal disease contributes to a large part of hospital pediatric admission as well as mortality and morbidity to the children.

Keywords: glomerulonephritis, nephrotic syndrome, renal disease, urinary tract infection

Procedia PDF Downloads 426
764 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment

Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar

Abstract:

Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.

Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors

Procedia PDF Downloads 11
763 Introducing α-Oxoester (COBz) as a Protecting Group for Carbohydrates

Authors: Atul Kumar, Veeranjaneyulu Gannedi, Qazi Naveed Ahmed

Abstract:

Oligosaccharides, which are essential to all cellular organisms, play vital roles in cell recognition, signaling, and are involved in a broad range of biological processes. The chemical synthesis of carbohydrates represents a powerful tool to provide homogeneous glycans. In carbohydrate synthesis, the major concern is the orthogonal protection of hydroxyl groups that can be unmasked independently. Classical protecting groups include benzyl ethers (Bn), which are normally cleaved through hydrogenolysis or by means of metal reduction, and acetate (Ac), benzoate (Bz) or pivaloate esters, which are removed using base promoted hydrolysis. In present work a series of α-Oxoester (COBz) protected saccharides, with divergent base sensitivity profiles against benzoyl (Bz) and acetyl (Ac), were designed and KHSO₅/CH₃COCl in methanol was identified as an easy, mild, selective and efficient deprotecting reagent for their removal in the perspective of carbohydrate synthesis. Timely monitoring of later reagent was advantageous in establishing both sequential as well as simultaneous deprotecting of COBz, Bz, and Ac. The salient feature of our work is its ease to generate different acceptors using designed monosaccharides. In summary, we demonstrated α-Oxoester (COBz) as a new protecting group for carbohydrates and the application of this group for the synthesis of Glycosylphosphatidylinositol (GPI) anchor are in progress.

Keywords: α-Oxoester, oligosaccharides, new protecting group, acceptor synthesis, glycosylation

Procedia PDF Downloads 150
762 Physics-Informed Neural Network for Predicting Strain Demand in Inelastic Pipes under Ground Movement with Geometric and Soil Resistance Nonlinearities

Authors: Pouya Taraghi, Yong Li, Nader Yoosef-Ghodsi, Muntaseer Kainat, Samer Adeeb

Abstract:

Buried pipelines play a crucial role in the transportation of energy products such as oil, gas, and various chemical fluids, ensuring their efficient and safe distribution. However, these pipelines are often susceptible to ground movements caused by geohazards like landslides, fault movements, lateral spreading, and more. Such ground movements can lead to strain-induced failures in pipes, resulting in leaks or explosions, leading to fires, financial losses, environmental contamination, and even loss of human life. Therefore, it is essential to study how buried pipelines respond when traversing geohazard-prone areas to assess the potential impact of ground movement on pipeline design. As such, this study introduces an approach called the Physics-Informed Neural Network (PINN) to predict the strain demand in inelastic pipes subjected to permanent ground displacement (PGD). This method uses a deep learning framework that does not require training data and makes it feasible to consider more realistic assumptions regarding existing nonlinearities. It leverages the underlying physics described by differential equations to approximate the solution. The study analyzes various scenarios involving different geohazard types, PGD values, and crossing angles, comparing the predictions with results obtained from finite element methods. The findings demonstrate a good agreement between the results of the proposed method and the finite element method, highlighting its potential as a simulation-free, data-free, and meshless alternative. This study paves the way for further advancements, such as the simulation-free reliability assessment of pipes subjected to PGD, as part of ongoing research that leverages the proposed method.

Keywords: strain demand, inelastic pipe, permanent ground displacement, machine learning, physics-informed neural network

Procedia PDF Downloads 61
761 Functional Characterization of Transcriptional Regulator WhiB Proteins of Mycobacterium Tuberculosis

Authors: Sonam Kumari

Abstract:

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, possesses a remarkable feature of entering into and emerging from a persistent state. The mechanism by which Mtb switches from the dormant state to the replicative form is still poorly characterized. Proteome studies have given us an insight into the role of certain proteins in giving stupendous virulence to Mtb, but numerous dotsremain unconnected and unaccounted. The WhiB family of proteins is one such protein that is associated with developmental processes in actinomycetes.Mtb has seven such proteins (WhiB1 to WhiB7).WhiB proteins are transcriptional regulators; their conserved C-terminal HTH motif is involved in DNA binding. They regulate various essential genes of Mtbby binding to their promoter DNA. Biophysical Analysis of the effect of DNA binding on WhiB proteins has not yet been appropriately characterized. Interaction with DNA induces conformational changes in the WhiB proteins, confirmed by steady-state fluorescence and circular dichroism spectroscopy. ITC has deduced thermodynamic parameters and the binding affinity of the interaction. Since these transcription factors are highly unstable in vitro, their stability and solubility were enhanced by the co-expression of molecular chaperones. The present study findings help determine the conditions under which the WhiB proteins interact with their interacting partner and the factors that influence their binding affinity. This is crucial in understanding their role in regulating gene expression in Mtbandin targeting WhiB proteins as a drug target to cure TB.

Keywords: tuberculosis, WhiB proteins, mycobacterium tuberculosis, nucleic acid binding

Procedia PDF Downloads 104
760 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation

Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman

Abstract:

With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.

Keywords: band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation

Procedia PDF Downloads 354