Search results for: data to action
25610 Window Opening Behavior in High-Density Housing Development in Subtropical Climate
Authors: Minjung Maing, Sibei Liu
Abstract:
This research discusses the results of a study of window opening behavior of large housing developments in the high-density megacity of Hong Kong. The methods used for the study involved field observations using photo documentation of the four cardinal elevations (north, south-east, and west) of two large housing developments in a very dense urban area of approx. 46,000 persons per square meter within the city of Hong Kong. The targeted housing developments (A and B) are large public housing with a population of about 13,000 in each development of lower income. However, the mean income level in development A is about 40% higher than development B and home ownership is 60% in development A and 0% in development B. Mapping of the surrounding amenities and layout of the developments were also studied to understand the available activities to the residents. The photo documentation of the elevations was taken from November 2016 to February 2018 to gather a full spectrum of different seasons and both in the morning and afternoon (am/pm) times. From the photograph, the window opening behavior was measured by counting the amount of windows opened as a percentage of all the windows on that façade. For each date of survey data collected, weather data was recorded from weather stations located in the same region to collect temperature, humidity and wind speed. To further understand the behavior, simulation studies of microclimate conditions of the housing development was conducted using the software ENVI-met, a widely used simulation tool by researchers studying urban climate. Four major conclusions can be drawn from the data analysis and simulation results. Firstly, there is little change in the amount of window opening during the different seasons within a temperature range of 10 to 35 degrees Celsius. This means that people who tend to open their windows have consistent window opening behavior throughout the year and high tolerance of indoor thermal conditions. Secondly, for all four elevations the lower-income development B opened more windows (almost two times more units) than higher-income development A meaning window opening behavior had strong correlations with income level. Thirdly, there is a lack of correlation between outdoor horizontal wind speed and window opening behavior, as the changes of wind speed do not seem to affect the action of opening windows in most conditions. Similar to the low correlation between horizontal wind speed and window opening percentage, it is found that vertical wind speed also cannot explain the window opening behavior of occupants. Fourthly, there is a slightly higher average of window opening on the south elevation than the north elevation, which may be due to the south elevation being well shaded from high angle sun during the summer and allowing heat into units from lower angle sun during the winter season. These findings are important to providing insight into how to better design urban environments and indoor thermal environments for a liveable high density city.Keywords: high-density housing, subtropical climate, urban behavior, window opening
Procedia PDF Downloads 12525609 Unsupervised Text Mining Approach to Early Warning System
Authors: Ichihan Tai, Bill Olson, Paul Blessner
Abstract:
Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.Keywords: early warning system, knowledge management, market prediction, topic modeling.
Procedia PDF Downloads 33825608 The Role of Synthetic Data in Aerial Object Detection
Authors: Ava Dodd, Jonathan Adams
Abstract:
The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.Keywords: computer vision, machine learning, synthetic data, YOLOv4
Procedia PDF Downloads 22525607 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks
Authors: K. Indra Gandhi
Abstract:
Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.Keywords: data acquisition, model-driven development, separation of concern, wireless sensor networks
Procedia PDF Downloads 43425606 Comparative Analysis of Data Gathering Protocols with Multiple Mobile Elements for Wireless Sensor Network
Authors: Bhat Geetalaxmi Jairam, D. V. Ashoka
Abstract:
Wireless Sensor Networks are used in many applications to collect sensed data from different sources. Sensed data has to be delivered through sensors wireless interface using multi-hop communication towards the sink. The data collection in wireless sensor networks consumes energy. Energy consumption is the major constraints in WSN .Reducing the energy consumption while increasing the amount of generated data is a great challenge. In this paper, we have implemented two data gathering protocols with multiple mobile sinks/elements to collect data from sensor nodes. First, is Energy-Efficient Data Gathering with Tour Length-Constrained Mobile Elements in Wireless Sensor Networks (EEDG), in which mobile sinks uses vehicle routing protocol to collect data. Second is An Intelligent Agent-based Routing Structure for Mobile Sinks in WSNs (IAR), in which mobile sinks uses prim’s algorithm to collect data. Authors have implemented concepts which are common to both protocols like deployment of mobile sinks, generating visiting schedule, collecting data from the cluster member. Authors have compared the performance of both protocols by taking statistics based on performance parameters like Delay, Packet Drop, Packet Delivery Ratio, Energy Available, Control Overhead. Authors have concluded this paper by proving EEDG is more efficient than IAR protocol but with few limitations which include unaddressed issues likes Redundancy removal, Idle listening, Mobile Sink’s pause/wait state at the node. In future work, we plan to concentrate more on these limitations to avail a new energy efficient protocol which will help in improving the life time of the WSN.Keywords: aggregation, consumption, data gathering, efficiency
Procedia PDF Downloads 49725605 A Quality Improvement Approach for Reducing Stigma and Discrimination against Young Key Populations in the Delivery of Sexual Reproductive Health and Rights Services
Authors: Atucungwiire Rwebiita
Abstract:
Introduction: In Uganda, provision of adolescent sexual reproductive health and rights (SRHR) services for key population is still hindered by negative attitudes, stigma and discrimination (S&D) at both the community and facility levels. To address this barrier, Integrated Community Based Initiatives (ICOBI) with support from SIDA is currently implementing a quality improvement (QI) innovative approach for strengthening the capacity of key population (KP) peer leaders and health workers to deliver friendly SRHR services without S&D. Methods: Our innovative approach involves continuous mentorship and coaching of 8 QI teams at 8 health facilities and their catchment areas. Each of the 8 teams (comprised of 5 health workers and 5 KP peer leaders) are facilitated twice a month by two QI Mentors in a 2-hour mentorship session over a period of 4 months. The QI mentors were provided a 2-weeks training on QI approaches for reducing S&D against young key populations in the delivery of SRHR Services. The mentorship sessions are guided by a manual where teams base to analyse root causes of S&D and develop key performance indicators (KPIs) in the 1st and 2nd second sessions respectively. The teams then develop action plans in the 3rd session and review implementation progress on KPIs at the end of subsequent sessions. The KPIs capture information on the attitude of health workers and peer leaders and the general service delivery setting as well as clients’ experience. A dashboard is developed to routinely track the KPIs for S&D across all the supported health facilities and catchment areas. After 4 months, QI teams share documented QI best practices and tested change packages on S&D in a learning and exchange session involving all the teams. Findings: The implementation of this approach is showing positive results. So far, QI teams have already identified the root causes of S&D against key populations including: poor information among health workers, fear of a perceived risk of infection, perceived links between HIV and disreputable behaviour. Others are perceptions that HIV & STIs are divine punishment, sex work and homosexuality are against religion and cultural values. They have also noted the perception that MSM are mentally sick and a danger to everyone. Eight QI teams have developed action plans to address the root causes of S&D. Conclusion: This approach is promising, offers a novel and scalable means to implement stigma-reduction interventions in facility and community settings.Keywords: key populations, sexual reproductive health and rights, stigma and discrimination , quality improvement approach
Procedia PDF Downloads 17325604 Status and Results from EXO-200
Authors: Ryan Maclellan
Abstract:
EXO-200 has provided one of the most sensitive searches for neutrinoless double-beta decay utilizing 175 kg of enriched liquid xenon in an ultra-low background time projection chamber. This detector has demonstrated excellent energy resolution and background rejection capabilities. Using the first two years of data, EXO-200 has set a limit of 1.1x10^25 years at 90% C.L. on the neutrinoless double-beta decay half-life of Xe-136. The experiment has experienced a brief hiatus in data taking during a temporary shutdown of its host facility: the Waste Isolation Pilot Plant. EXO-200 expects to resume data taking in earnest this fall with upgraded detector electronics. Results from the analysis of EXO-200 data and an update on the current status of EXO-200 will be presented.Keywords: double-beta, Majorana, neutrino, neutrinoless
Procedia PDF Downloads 41425603 Addressing Educational Injustice through Collective Teacher Professional Development
Authors: Wenfan Yan, Yumei Han
Abstract:
Objectives: Educational inequality persists between China's ethnic minority regions and the mainland. The key to rectifying this disparity lies in enhancing the quality of educators. This paper delves into the Chinese government's innovative policy, "Group Educators Supporting Tibet" (GEST), designed to bridge the shortage of high-quality teachers in Tibet, a representative underprivileged ethnic minority area. GEST aims to foster collective action by networking provincial expert educators with Tibetan counterparts and collaborating between supporting provincial educational entities and Tibetan education entities. Theoretical Framework: The unequal distribution of social capital contributes significantly to the educational gap between ethnic minority areas and other regions in China. Within the framework of social network theory, motivated GEST educators take action to foster resources and relationships. This study captures grassroots perspectives to outline how social networking contributes to the policy objective of enhancing Tibetan teachers' quality and eradicating educational injustice. Methodology: A sequential mixed-methods approach was adopted to scrutinize policy impacts from the vantage point of social networking. Quantitative research involved surveys for GEST and Tibetan teachers, exploring demographics, perceptions of policy significance, motivations, actions, and networking habits. Qualitative research included focus group interviews with GEST educators, local teachers, and students from program schools. The findings were meticulously analyzed to provide comprehensive insights into stakeholders' experiences and the impacts of the GEST policy. Key Findings: The policy empowers individuals to impact Tibetan education significantly. Motivated GEST educators with prior educational support experiences contribute to its success. Supported by a collective -school, city, province, and government- the new social structure fosters higher efficiency. GEST's approach surpasses conventional methods. The individual, backed by educators, realizes the potential of transformative class design. Collective activities -pedagogy research, teaching, mentoring, training, and partnerships- equip Tibetan teachers, enhancing educational quality and equity. This collaborative effort establishes a robust foundation for the policy's success, emphasizing the collective impact on Tibetan education. Contributions: This study contributes to international policy studies focused on educational equity through collective teacher action. Using a mixed-methods approach and guided by social networking theory, it accentuates stakeholders' perspectives, elucidating the genuine impacts of the GEST policy. The study underscores the advancement of social networking, the reinforcement of local teacher quality, and the transformative potential of cultivating a more equitable and adept teaching workforce in Tibet. Limitations of the Study and Suggestions for Future Research Directions: While the study emphasizes the positive impacts of motivated GEST educators, there might be aspects or challenges not fully explored. A more comprehensive understanding of potential drawbacks or obstacles would provide a more balanced view. For future studies, investigating the long-term impact of the GEST policy on educational quality could provide insights into the sustainability of the improvements observed. Also, understanding the perspectives of Tibetan teachers who may not have directly benefited from GEST could reveal potential disparities in policy implementation.Keywords: teacher development, social networking, teacher quality, mixed research method
Procedia PDF Downloads 6425602 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model
Authors: Amit R. Bhende, G. K. Awari
Abstract:
Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis
Procedia PDF Downloads 43625601 The Importance of Developing Pedagogical Agency Capacities in Initial Teacher Formation: A Critical Approach to Advance in Social Justice
Authors: Priscilla Echeverria
Abstract:
This paper addresses initial teacher formation as a formative space in which pedagogy students develop a pedagogical agency capacity to contribute to social justice, considering ethical, political, and epistemic dimensions. This paper is structured by discussing first the concepts of agency, pedagogical interaction, and social justice from a critical perspective; and continues offering preliminary results on the capacity of pedagogical agency in novice teachers after the analysis of critical incidents as a research methodology. This study is motivated by the concern that responding to the current neoliberal scenario, many initial teacher formation (ITF) programs have reduced the meaning of education to instruction, and pedagogy to methodology, favouring the formation of a technical professional over a reflective or critical one. From this concern, this study proposes that the restitution of the subject is an urgent task in teacher formation, so it is essential to enable him in his capacity for action and advance in eliminating institutionalized oppression insofar as it affects that capacity. Given that oppression takes place in human interaction, through this work, I propose that initial teacher formation develops sensitivity and educates the gaze to identify oppression and take action against it, both in pedagogical interactions -which configure political, ethical, and epistemic subjectivities- as in the hidden and official curriculum. All this from the premise that modelling democratic and dialogical interactions are basic for any program that seeks to contribute to a more just and empowered society. The contribution of this study lies in the fact that it opens a discussion in an area about which we know little: the impact of the type of interactions offered by university teaching at ITF on the capacity of future teachers to be pedagogical agents. For this reason, this study seeks to gather evidence of the result of this formation, analysing the capacity of pedagogical agency of novice teachers, or, in other words, how capable the graduates of secondary pedagogies are in their first pedagogical experiences to act and make decisions putting the formative purposes that they are capable of autonomously defining before technical or bureaucratic issues imposed by the curriculum or the official culture. This discussion is part of my doctoral research, "The importance of developing the capacity for ethical-political-epistemic agency in novice teachers during initial teacher formation to contribute to social justice", which I am currently developing in the Educational Research program of the University of Lancaster, United Kingdom, as a Conicyt fellow for the 2019 cohort.Keywords: initial teacher formation, pedagogical agency, pedagogical interaction, social justice, hidden curriculum
Procedia PDF Downloads 9725600 Spatio-Temporal Data Mining with Association Rules for Lake Van
Authors: Tolga Aydin, M. Fatih Alaeddinoğlu
Abstract:
People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.Keywords: apriori algorithm, association rules, data mining, spatio-temporal data
Procedia PDF Downloads 37425599 Building Data Infrastructure for Public Use and Informed Decision Making in Developing Countries-Nigeria
Authors: Busayo Fashoto, Abdulhakeem Shaibu, Justice Agbadu, Samuel Aiyeoribe
Abstract:
Data has gone from just rows and columns to being an infrastructure itself. The traditional medium of data infrastructure has been managed by individuals in different industries and saved on personal work tools; one of such is the laptop. This hinders data sharing and Sustainable Development Goal (SDG) 9 for infrastructure sustainability across all countries and regions. However, there has been a constant demand for data across different agencies and ministries by investors and decision-makers. The rapid development and adoption of open-source technologies that promote the collection and processing of data in new ways and in ever-increasing volumes are creating new data infrastructure in sectors such as lands and health, among others. This paper examines the process of developing data infrastructure and, by extension, a data portal to provide baseline data for sustainable development and decision making in Nigeria. This paper employs the FAIR principle (Findable, Accessible, Interoperable, and Reusable) of data management using open-source technology tools to develop data portals for public use. eHealth Africa, an organization that uses technology to drive public health interventions in Nigeria, developed a data portal which is a typical data infrastructure that serves as a repository for various datasets on administrative boundaries, points of interest, settlements, social infrastructure, amenities, and others. This portal makes it possible for users to have access to datasets of interest at any point in time at no cost. A skeletal infrastructure of this data portal encompasses the use of open-source technology such as Postgres database, GeoServer, GeoNetwork, and CKan. These tools made the infrastructure sustainable, thus promoting the achievement of SDG 9 (Industries, Innovation, and Infrastructure). As of 6th August 2021, a wider cross-section of 8192 users had been created, 2262 datasets had been downloaded, and 817 maps had been created from the platform. This paper shows the use of rapid development and adoption of technologies that facilitates data collection, processing, and publishing in new ways and in ever-increasing volumes. In addition, the paper is explicit on new data infrastructure in sectors such as health, social amenities, and agriculture. Furthermore, this paper reveals the importance of cross-sectional data infrastructures for planning and decision making, which in turn can form a central data repository for sustainable development across developing countries.Keywords: data portal, data infrastructure, open source, sustainability
Procedia PDF Downloads 9825598 Analysis of the Effect of Increased Self-Awareness on the Amount of Food Thrown Away
Authors: Agnieszka Dubiel, Artur Grabowski, Tomasz Przerywacz, Mateusz Roganowicz, Patrycja Zioty
Abstract:
Food waste is one of the most significant challenges humanity is facing nowadays. Every year, reports from global organizations show the scale of the phenomenon, although society's awareness is still insufficient. One-third of the food produced in the world is wasted at various points in the food supply chain. Wastes are present from the delivery through the food preparation and distribution to the end of the sale and consumption. The first step in understanding and resisting the phenomenon is a thorough analysis of the everyday behaviors of humanity. This concept is understood as finding the correlation between the type of food and the reason for throwing it out and wasting it. Those actions were identified as a critical step in the start of work to develop technology to prevent food waste. In this paper, the problem mentioned above was analyzed by focusing on the inhabitants of Central Europe, especially Poland, aged 20-30. This paper provides an insight into collecting data through dedicated software and an organized database. The proposed database contains information on the amount, type, and reasons for wasting food in households. A literature review supported the work to answer research questions, compare the situation in Poland with the problem analyzed in other countries, and find research gaps. The proposed article examines the cause of food waste and its quantity in detail. This review complements previous reviews by emphasizing social and economic innovation in Poland's food waste management. The paper recommends a course of action for future research on food waste management and prevention related to the handling and disposal of food, emphasizing households, i.e., the last link in the supply chain.Keywords: food waste, food waste reduction, consumer food waste, human-food interaction
Procedia PDF Downloads 11925597 The Implications of Population Dynamics on the Environmental Issues: A Case behind Global Change in Climate
Authors: Simiso Fisokuhle Nyandeni
Abstract:
The environment is one of the major components of intergenerational equity under sustainability; however, this component has been facing a lot of issues/crises, which include those that are caused by natural systems due to the actions of humans. Although some of those environmental issues may occur from natural causes, however, climate change effects have shown to increase rapidly due to human behavior, which led to the increase in greenhouse emissions and the over-exploitation of natural resources that maintain an ecological balance in our environment. Based on the recent projections, the growing population tends to outstrip the environmental resources, and as a result, the rapid depletion of natural resources that maintain ecological balance within the environment has resulted in such environmental issues. This paper has adopted desktop analysis to address the main objective, which seeks to address the effects of population dynamics on environmental issues and what needs to be done to maintain the ecological balance between the growing population and the limited resources that are available; thus, the collective data sources were used to justify the literature in order to get adequate results to influence the potential findings. The major findings postulate that there is an ecological imbalance between limited resources available and the growing population; as a result, the environment is taking action against humanity through climate change impacts. Hence findings further outline that in order to prevent such impacts, there should be drastic interventions by the governments (all stakeholders should be involved in decision-making; Governmental or non-governmental institutions, scientists, researchers, etc.) around the world to maintain this ecological balance and also to prioritize the adaptation measures. Therefore, this paper seeks to examine the implications of population dynamics on the environmental issues and what needs to be done in order to maintain this ecological balance between the growing population and environmental resources; hence, this review will be based on the climate change context.Keywords: population dynamics, climate change, environment, sustainability
Procedia PDF Downloads 13225596 Process Data-Driven Representation of Abnormalities for Efficient Process Control
Authors: Hyun-Woo Cho
Abstract:
Unexpected operational events or abnormalities of industrial processes have a serious impact on the quality of final product of interest. In terms of statistical process control, fault detection and diagnosis of processes is one of the essential tasks needed to run the process safely. In this work, nonlinear representation of process measurement data is presented and evaluated using a simulation process. The effect of using different representation methods on the diagnosis performance is tested in terms of computational efficiency and data handling. The results have shown that the nonlinear representation technique produced more reliable diagnosis results and outperforms linear methods. The use of data filtering step improved computational speed and diagnosis performance for test data sets. The presented scheme is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. Thus this scheme helps to reduce the sensitivity of empirical models to noise.Keywords: fault diagnosis, nonlinear technique, process data, reduced spaces
Procedia PDF Downloads 24725595 Identify the Risks Factors and Problems of Waste Management in Developing Countries as Hurdles
Authors: Zubair Ahmad
Abstract:
The aim of this study is to analyze the risks factors and issues with waste management in developing nations as barriers. Depending on their content and categorization, wastes are managed differently. Waste management strategies differ for liquid, solid, and organic wastes. The final stage of trash disposal entails procedures like burning, interment, recycling, and treatment. Due to the rising creation of solid waste, the growing urban population has a magnified impact on the environment and public health. All regions, but especially informal urban neighborhoods, tribal villages, and official rural settlements have a protracted backlog in waste services. Another significant impediment seen in the developing world is a lack of education and awareness of effective waste-management practices. Unauthorized dumpsites pose a serious risk to the environment since they could contain dangerous elements like radioactive, infectious, and toxic waste. Wealthier individuals are more inclined to think that their actions will have an impact on environmental problems and to act to address them. Waste managers need to take action to make sure the public is given information that is consistent with what they currently know. The results of the data analysis conducted with the aid of the various methodologies discussed in the preceding chapter are presented in this chapter by the researcher. Descriptive analysis has been used in research to determine whether or not there are relationships between variables and to determine the importance of the variables. According to a survey, there are no efforts being made to lessen the odor that garbage dump sites emit (in terms of treating or recycling the material placed at dumpsite) This might be the case since respondents only commented on the waste management conditions in their immediate surroundings and may not have fully understood the steps taken to resolve this issue.Keywords: risk factor of waste material, lack of awareness, developing countries struggles, waste management
Procedia PDF Downloads 7025594 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment
Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova
Abstract:
Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper
Procedia PDF Downloads 4525593 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data
Authors: Ruchika Malhotra, Megha Khanna
Abstract:
The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics
Procedia PDF Downloads 41825592 Detect QOS Attacks Using Machine Learning Algorithm
Authors: Christodoulou Christos, Politis Anastasios
Abstract:
A large majority of users favoured to wireless LAN connection since it was so simple to use. A wireless network can be the target of numerous attacks. Class hijacking is a well-known attack that is fairly simple to execute and has significant repercussions on users. The statistical flow analysis based on machine learning (ML) techniques is a promising categorization methodology. In a given dataset, which in the context of this paper is a collection of components representing frames belonging to various flows, machine learning (ML) can offer a technique for identifying and characterizing structural patterns. It is possible to classify individual packets using these patterns. It is possible to identify fraudulent conduct, such as class hijacking, and take necessary action as a result. In this study, we explore a way to use machine learning approaches to thwart this attack.Keywords: wireless lan, quality of service, machine learning, class hijacking, EDCA remapping
Procedia PDF Downloads 6125591 Variance-Aware Routing and Authentication Scheme for Harvesting Data in Cloud-Centric Wireless Sensor Networks
Authors: Olakanmi Oladayo Olufemi, Bamifewe Olusegun James, Badmus Yaya Opeyemi, Adegoke Kayode
Abstract:
The wireless sensor network (WSN) has made a significant contribution to the emergence of various intelligent services or cloud-based applications. Most of the time, these data are stored on a cloud platform for efficient management and sharing among different services or users. However, the sensitivity of the data makes them prone to various confidentiality and performance-related attacks during and after harvesting. Various security schemes have been developed to ensure the integrity and confidentiality of the WSNs' data. However, their specificity towards particular attacks and the resource constraint and heterogeneity of WSNs make most of these schemes imperfect. In this paper, we propose a secure variance-aware routing and authentication scheme with two-tier verification to collect, share, and manage WSN data. The scheme is capable of classifying WSN into different subnets, detecting any attempt of wormhole and black hole attack during harvesting, and enforcing access control on the harvested data stored in the cloud. The results of the analysis showed that the proposed scheme has more security functionalities than other related schemes, solves most of the WSNs and cloud security issues, prevents wormhole and black hole attacks, identifies the attackers during data harvesting, and enforces access control on the harvested data stored in the cloud at low computational, storage, and communication overheads.Keywords: data block, heterogeneous IoT network, data harvesting, wormhole attack, blackhole attack access control
Procedia PDF Downloads 8425590 Quality of Age Reporting from Tanzania 2012 Census Results: An Assessment Using Whipple’s Index, Myer’s Blended Index, and Age-Sex Accuracy Index
Authors: A. Sathiya Susuman, Hamisi F. Hamisi
Abstract:
Background: Many socio-economic and demographic data are age-sex attributed. However, a variety of irregularities and misstatement are noted with respect to age-related data and less to sex data because of its biological differences between the genders. Noting the misstatement/misreporting of age data regardless of its significance importance in demographics and epidemiological studies, this study aims at assessing the quality of 2012 Tanzania Population and Housing Census Results. Methods: Data for the analysis are downloaded from Tanzania National Bureau of Statistics. Age heaping and digit preference were measured using summary indices viz., Whipple’s index, Myers’ blended index, and Age-Sex Accuracy index. Results: The recorded Whipple’s index for both sexes was 154.43; male has the lowest index of about 152.65 while female has the highest index of about 156.07. For Myers’ blended index, the preferences were at digits ‘0’ and ‘5’ while avoidance were at digits ‘1’ and ‘3’ for both sexes. Finally, Age-sex index stood at 59.8 where sex ratio score was 5.82 and age ratio scores were 20.89 and 21.4 for males and female respectively. Conclusion: The evaluation of the 2012 PHC data using the demographic techniques has qualified the data inaccurate as the results of systematic heaping and digit preferences/avoidances. Thus, innovative methods in data collection along with measuring and minimizing errors using statistical techniques should be used to ensure accuracy of age data.Keywords: age heaping, digit preference/avoidance, summary indices, Whipple’s index, Myer’s index, age-sex accuracy index
Procedia PDF Downloads 47625589 Values-based Physical Education in a Diverse South African Context
Authors: C. F. Jones Couto
Abstract:
The implementation of quality Physical Education (PE) inspires and instils lasting healthy behavioural patterns, hence have the potential as an educational tool to teach values in today’s society. The goal of PE should be to contribute to the acceptance of the infinite qualities of South Africa’s (RSA) diversity and to claim RSA’s diversity as a source of strength that forms a universal bond of a common set of values. There is a global change in the interaction of children with their environment; their lives are shaped by forces that do not necessarily assist them in learning and applying values. In most countries today, the responsibility for developing values is assigned to schools in formal teaching settings. Values-based education offers an investment in individual and societal improvement through attendance to a values framework. The aim of this qualitative research is to develop a PE programme aligned with the current South African curriculum, enriched with values of Olympism and Ubuntuism, and to present PE teacher training workshops (TTW). Participatory action research will be used as the basis of how data will be collected, analysed, and presented on an ongoing, cyclical basis. PE teachers from different schools in the Tshwane District of RSA will participate as they can best inform the research questions and enhance the understanding of the phenomenon under study. The outcomes of using PE as a tool to teach values can propose recommendations to the Department of Basic Education of RSA to improve and implement a quality PE curriculum that is applicable to practice and that will optimize the chances of meeting the South African National Curriculum Statement standards. A PE programme with the aim of holistic development, based on the values of Olympism and Ubuntuism, can strive to ensure that the values set out in RSA’s constitution are part of PE organization, planning, and teaching at each South African school.Keywords: olympism, physical education, teacher training, ubuntuism, values-based education
Procedia PDF Downloads 10525588 Model for Introducing Products to New Customers through Decision Tree Using Algorithm C4.5 (J-48)
Authors: Komol Phaisarn, Anuphan Suttimarn, Vitchanan Keawtong, Kittisak Thongyoun, Chaiyos Jamsawang
Abstract:
This article is intended to analyze insurance information which contains information on the customer decision when purchasing life insurance pay package. The data were analyzed in order to present new customers with Life Insurance Perfect Pay package to meet new customers’ needs as much as possible. The basic data of insurance pay package were collect to get data mining; thus, reducing the scattering of information. The data were then classified in order to get decision model or decision tree using Algorithm C4.5 (J-48). In the classification, WEKA tools are used to form the model and testing datasets are used to test the decision tree for the accurate decision. The validation of this model in classifying showed that the accurate prediction was 68.43% while 31.25% were errors. The same set of data were then tested with other models, i.e. Naive Bayes and Zero R. The results showed that J-48 method could predict more accurately. So, the researcher applied the decision tree in writing the program used to introduce the product to new customers to persuade customers’ decision making in purchasing the insurance package that meets the new customers’ needs as much as possible.Keywords: decision tree, data mining, customers, life insurance pay package
Procedia PDF Downloads 42825587 Deformation and Energy Absorption of Corrugated Tubes
Authors: Mohammad R. Rahim, Shagil Akhtar, Prem K. Bharti, Syed Muneeb Iqbal
Abstract:
Deformation and energy absorption studies with corrugated tubes where corrugation is perpendicular to the line of action which coincides exactly with the unstrained axis of the tubes. In the present study, several specimens with various geometric parameters are prepared and compressed quasi-statistically in ANSYS Workbench. It is observed that tubes with perpendicular corrugation alters the deformation condition considerably and culminates in a substantial escalation in energy absorption scope in juxtaposed with the tubes having a circular cross-section. This study will help automotive, aerospace and various other industries to design superior components with perpendicular corrugated tubes and will reduce the experimental trials by conducting the numerical simulations.Keywords: ANSYS Workbench, deformation and energy absorption, corrugated tubes, quasi-static compression
Procedia PDF Downloads 38625586 Re-Invent Corporate Governance - Ethical Way
Authors: Talha Sareshwala
Abstract:
The purpose of this research paper is to help entrepreneurs build an environment of trust, transparency and accountability necessary for fostering long term investment, financial stability and business integrity and to guide future Entrepreneurs into a promising future. The study presents a broader review on Corporate Governance, starting from its definition and antecedents. This is the most important aspect of ethical business. In fact, the 3 main pillars of corporate governance are: Transparency; Accountability; Security. The combination of these 3 pillars in running a company successfully and forming solid professional relationships among its stakeholders, which includes key managerial employees and, most important, the shareholders This paper is sharing an experience how an entrepreneur can act as a catalyst while ensuring them that ethics and transparency do pay in business when followed in true spirit and action.Keywords: business, entrepreneur, ethics, governance, transparency.
Procedia PDF Downloads 7525585 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review
Authors: Faisal Muhibuddin, Ani Dijah Rahajoe
Abstract:
This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review
Procedia PDF Downloads 6625584 Examining the Structural Model of Mindfulness and Headache Intensity With the Mediation of Resilience and Perfectionism in Migraine Patients
Authors: Alireza Monzavi Chaleshtari, Mahnaz Aliakbari Dehkordi, Nazila Esmaeili, Ahmad Alipour, Amin Asadi Hieh
Abstract:
Headache disorders are one of the most common disorders of the nervous system and are associated with suffering, disability, and financial costs for patients. Mindfulness as a lifestyle, in line with human nature, has the ability to affect the emotional system, i.e. thoughts, body sensations, raw emotions and action impulses of people. The aim of this study was to test the fit of structural model of mindfulness and severity of headache mediated by resilience and perfectionism in patients with migraine. Methods: The statistical population of this study included all patients with migraine referred to neurologists in Tehran in the spring and summer of 1401. The inclusion criteria were diagnosis of migraine by a neurologist, not having mental disorders or other physical diseases, and having at least a diploma. According to the number of research variables, 180 people were selected by convenience sampling method, which online answered the Ahvaz perfectionism questionnaire (AMQ), Connor and Davidson resilience questionnaire (CD-RISC), Ahvaz migraine headache questionnaire (APS) and 5-factor mindfulness questionnaire ((MAAS). Data were analyzed using structural equation modeling and Amos software. Results: The results showed that the direct pathways of mindfulness were not significant for severe headache (P <0.05), but other direct pathways - mindfulness to resilience, mindfulness to perfectionism, resilience to severe headache and perfectionism to severe headache), Was significant (P <0.01). After modifying and removing the non-significant paths, the final model fitted. Mediating variables Resilience and perfectionism mediated all paths of predictor variables to the criterion. Conclusion: According to the findings of the present study, mindfulness in migraine patients reduces the severity of headache by promoting resilience and reducing perfectionism.Keywords: migraine, headache severity, mindfulness, resilience, perfectionism
Procedia PDF Downloads 7925583 Assessing Supply Chain Performance through Data Mining Techniques: A Case of Automotive Industry
Authors: Emin Gundogar, Burak Erkayman, Nusret Sazak
Abstract:
Providing effective management performance through the whole supply chain is critical issue and hard to applicate. The proper evaluation of integrated data may conclude with accurate information. Analysing the supply chain data through OLAP (On-Line Analytical Processing) technologies may provide multi-angle view of the work and consolidation. In this study, association rules and classification techniques are applied to measure the supply chain performance metrics of an automotive manufacturer in Turkey. Main criteria and important rules are determined. The comparison of the results of the algorithms is presented.Keywords: supply chain performance, performance measurement, data mining, automotive
Procedia PDF Downloads 51325582 Multimodal Data Fusion Techniques in Audiovisual Speech Recognition
Authors: Hadeer M. Sayed, Hesham E. El Deeb, Shereen A. Taie
Abstract:
In the big data era, we are facing a diversity of datasets from different sources in different domains that describe a single life event. These datasets consist of multiple modalities, each of which has a different representation, distribution, scale, and density. Multimodal fusion is the concept of integrating information from multiple modalities in a joint representation with the goal of predicting an outcome through a classification task or regression task. In this paper, multimodal fusion techniques are classified into two main classes: model-agnostic techniques and model-based approaches. It provides a comprehensive study of recent research in each class and outlines the benefits and limitations of each of them. Furthermore, the audiovisual speech recognition task is expressed as a case study of multimodal data fusion approaches, and the open issues through the limitations of the current studies are presented. This paper can be considered a powerful guide for interested researchers in the field of multimodal data fusion and audiovisual speech recognition particularly.Keywords: multimodal data, data fusion, audio-visual speech recognition, neural networks
Procedia PDF Downloads 11225581 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic
Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam
Abstract:
In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.Keywords: decision support system, data mining, knowledge discovery, data discovery, fuzzy logic
Procedia PDF Downloads 335