Search results for: crop disease detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7914

Search results for: crop disease detection

6564 Community Structure Detection in Networks Based on Bee Colony

Authors: Bilal Saoud

Abstract:

In this paper, we propose a new method to find the community structure in networks. Our method is based on bee colony and the maximization of modularity to find the community structure. We use a bee colony algorithm to find the first community structure that has a good value of modularity. To improve the community structure, that was found, we merge communities until we get a community structure that has a high value of modularity. We provide a general framework for implementing our approach. We tested our method on computer-generated and real-world networks with a comparison to very known community detection methods. The obtained results show the effectiveness of our proposition.

Keywords: bee colony, networks, modularity, normalized mutual information

Procedia PDF Downloads 406
6563 Voice Liveness Detection Using Kolmogorov Arnold Networks

Authors: Arth J. Shah, Madhu R. Kamble

Abstract:

Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.

Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection

Procedia PDF Downloads 41
6562 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning

Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz

Abstract:

Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.

Keywords: quantum machine learning, SVM, QSVM, matrix product state

Procedia PDF Downloads 94
6561 Role of Molecular Changes and Immunohistochamical in Early Detection of Colon Cancer

Authors: Fatimah Alhomaid

Abstract:

The present study was planned to investigate the role of molecular changes and immunohistochemical in early detection of colon cancer in Saudi patients. Our results were carried out on 48 patients colon cancer. We obtained our data from laboratory in King Khalid university hospital. The specimens were taken (48) patients with colon cancer 34 male and 14 female and 2 control. The average age of varied from 37-85 years. The tumor was diagnosed as I in tow patients (male and female) and grade 2 in 42 patients (29 male and 13 female) while the grade 3 in 4 patients (all males). The specimens were processed for haematoxylin and eosin staining , immunohistochemical technique and flow cytometry analysis. Our study noted that most patients had adenocarcinoma which characterized by presence of signet-ring cells were very clear in advanced patients of adenocarcinoma. Our sections in adenocarcinoma in grade 2 and stage 3 had an increase in signet ring cells,an increase in the acini of glands and an increase in number of lymphocytes which spread to the muscularis layer. With advancing the disease, there were haemorge in blood and increase in lymphocytes and increase number of nuclei in the tubular glands. Our study was carried on 48 patients, immunohistochemical diagnosis (CK20,PCNA,P53) and the analysis of DNA content by flow cytometry technique. Our study indicated that the presence of correlation between the immunohistochemical analysis for P53 and the grades. The reaction of P53 appeared as strong in nucleus in grades &stage 3 and appeared in other sections as dark brown pigment. Our study indicated that the absence of correlation between the immunohistochemical analysis for pcan and the grades. In our sections, there were strong reactions in the more 80% of nuclei in grade 1& stage 2. Our study indicated that the presence of correlation between the immunohistochemical analysis for CK20 and the grades. Our results indicated the presence of positive reaction in cytoplasm varied from weak to moderate in grade 3 & stage 4. Concerning the Flow cytometry technique our results indicated that the presence of correlation between the DNA and different stages of colon cancer.

Keywords: DNA-CK20, PCNA, P53, colon cancer

Procedia PDF Downloads 356
6560 Diagnosis, Development, and Adoption of Technology Packages for Innovation in Precision Agriculture in the Wine Sector in Mexico

Authors: Nivon P. Alejandra, Valencia P. L. Rodrigo, Vivanco V. Martin, Morita A. Adelina

Abstract:

Technological innovation is fundamental to reach and maintain the levels of competitiveness of agricultural producers, the detection of actors, their activities, resources and capacities of an innovation system is needed for the development of technological packages that adapt to each type of crops, local circumstances and characteristics of the producer. The growing development of the viticulture and wine sector in Mexico prospects an increase in its national market participation for 2020, this is the reason to consider it a fertile field for the technological packages adoption that promote Precision Agriculture (PA) in a harmonic and sustainable development. A viability inspection of technological packages adoption by viticulture and wine sector is made following the methodology proposed by SAGARPA in 2015 and the World Bank in 2008: the history, actors, strengths and opportunities are analyzed in this particular agroindustrial sector, also its technological innovation system is inspected in order to improve technological capacities and innovation networks taking into account local and regional resources. PA and technological packages adoption can help improving the conditions and quality of the grape for winemaking: increasing the wine's storage potential and its nutraceutical nature. The assertive diagnosis in vineyard opportunity areas will help the management of the crop by applying natural treatments at the right time in the right place.

Keywords: technological packages, precision farming, sustainable development, innovation

Procedia PDF Downloads 199
6559 Breast Cancer as a Response to Distress in Women with or without a History of Precancerous Breast Disease

Authors: Viacheslav Sushko, Viktor Sushko

Abstract:

Pre-cancerous breast diseases are pathological changes that precede the appearance of adenocarcinoma. The most common benign breast disease is mastopathy. We examined the life and disease history of 114 women aged 58-69 who were diagnosed with adenocarcinoma of the breast at different stages of development. They filled out the Reeder Scale to determine the level of stress. The results of the study revealed that 62 of them had mastopathy at the age of 30-45 years old. These women refused surgical treatment for mastopathy. Five to six years before their diagnosis of adenocarcinoma of the mammary gland, 84 women had experienced severe stress (death of a beloved close relative, torture accompanied by rape, prolonged stay in extreme conditions (under bombardment and bombardment). In the assessment of data from completed Reeder scales, 114 women had a high level of mental stress, with a score from 1-1.72. The 84 women who suffered from severe stress showed overeating or a significant decrease in food intake, insomnia, apathy, increased irritability and restlessness, loss of interest in sexual relationships, forgetfulness, difficulty in performing routine work, prolonged uncontrollable headaches, unexplained fatigue, heart pain, reduced capacity for work. In conclusion, it is important to provide psychotherapy for breast cancer patients as the diagnosis, and the different stages of treatment are very stressful. It is also advisable to see a psychiatrist at an early stage and prevent distress and treat precancerous breast disease.

Keywords: breast cancer, distress, mastopathy, severe stress

Procedia PDF Downloads 135
6558 Application of Groundwater Model for Optimization of Denitrification Strategies to Minimize Public Health Risk

Authors: Mukesh A. Modi

Abstract:

High-nitrate concentration in groundwater of unconfined aquifers has been a serious issue for public health risk at a global scale. Various anthropogenic activities in agricultural land and urban land of alluvial soil have been observed to be responsible for the increment of nitrate in groundwater. The present study was designed to identify suitable denitrification strategies to minimize the effects of high nitrate in groundwater near the Mahi River of Vadodara block, Gujarat. There were 11 wells of Jal Jeevan Mission, Ministry of Jal Shakti, along with 3 observation wells of Gujarat Water Resources Development Corporation have been used for the duration of 21 years. MODFLOW and MT3DMS codes have been used to simulate solute transport phenomena along with attempted effectively for optimization. Current research is one step ahead by optimizing various denitrification strategies with the simulation of the model. The in-situ and ex-situ denitrification strategies viz. NAS (No Action Scenario), CAS (Crop Alternation Scenario), PS (Phytoremediation Scenario), and CAS + PS (Crop Alternation Scenario + Phytoremediation Scenario) have been selected for the optimization. The groundwater model simulates the most suitable denitrification strategy considering the hydrogeological characteristics at the targeted well.

Keywords: groundwater, high nitrate, MODFLOW, MT3DMS, optimization, denitrification strategy

Procedia PDF Downloads 31
6557 Development of Fake News Model Using Machine Learning through Natural Language Processing

Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini

Abstract:

Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.

Keywords: fake news detection, natural language processing, machine learning, classification techniques.

Procedia PDF Downloads 167
6556 Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation

Authors: Lae-Jeong Park

Abstract:

The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds.

Keywords: pedestrian detection, color segmentation, false positive, feature extraction

Procedia PDF Downloads 281
6555 Nanoparticle-Based Histidine-Rich Protein-2 Assay for the Detection of the Malaria Parasite Plasmodium Falciparum

Authors: Yagahira E. Castro-Sesquen, Chloe Kim, Robert H. Gilman, David J. Sullivan, Peter C. Searson

Abstract:

Diagnosis of severe malaria is particularly important in highly endemic regions since most patients are positive for parasitemia and treatment differs from non-severe malaria. Diagnosis can be challenging due to the prevalence of diseases with similar symptoms. Accurate diagnosis is increasingly important to avoid overprescribing antimalarial drugs, minimize drug resistance, and minimize costs. A nanoparticle-based assay for detection and quantification of Plasmodium falciparum histidine-rich protein 2 (HRP2) in urine and serum is reported. The assay uses magnetic beads conjugated with anti-HRP2 antibody for protein capture and concentration, and antibody-conjugated quantum dots for optical detection. Western Blot analysis demonstrated that magnetic beads allows the concentration of HRP2 protein in urine by 20-fold. The concentration effect was achieved because large volume of urine can be incubated with beads, and magnetic separation can be easily performed in minutes to isolate beads containing HRP2 protein. Magnetic beads and Quantum Dots 525 conjugated to anti-HRP2 antibodies allows the detection of low concentration of HRP2 protein (0.5 ng mL-1), and quantification in the range of 33 to 2,000 ng mL-1 corresponding to the range associated with non-severe to severe malaria. This assay can be easily adapted to a non-invasive point-of-care test for classification of severe malaria.

Keywords: HRP2 protein, malaria, magnetic beads, Quantum dots

Procedia PDF Downloads 333
6554 Evaluation of the Pain of Patients with Chronic Renal Disease in Hemodialysis

Authors: Fabiana Souza Orlandi, Izabel Cristina Chavez Gomes, Barbara Isabela De Paula Morais, Ana Carolina Ottaviani

Abstract:

Chronic Kidney Disease (CKD) is considered a public health problem. Patients who present CKD in their more advanced stages usually present several biopsychosocial changes, which may include pain. Pain can be considered subjective and personal, and its perception is characterized as a multidimensional experience. The objective of this study was to evaluate the level and descriptors of pain of adults and elderly patients with chronic kidney disease, through the Multidimensional Pain Evaluation Scale (EMADOR). This is a descriptive cross-sectional study with a quantitative approach. The sample consisted of 100 subjects with CKD in hemodialysis treatment at a Renal Replacement Therapy Service in the interior of the state of São Paulo. Data were collected through an individual interview, using a Sociodemographic Characterization and Multidimensional Pain Evaluation Scale (EMADOR). All ethical precepts were respected. The majority of the respondents were men (61.0%), white (56.0%) and with a high school education (34.0%). Regarding the pain of the individuals, 89 patients reported pain, with Chronic Pain predominating (50.0%, n = 50), followed by Acute Pain (39.0%, n = 39). Of the subjects who presented acute pain most of the 89.0% described the pain felt as unbearable, and of those who presented chronic pain, 35.0% described the pain felt as painful, unbearable and uncomfortable. It was concluded that there was a significant presence of pain, being the chronic pain dominant in the studied population. Faced with such factors, the present study motivates researches in this population, in order to establish interventions with the objective of improving the quality of life of these individuals.

Keywords: pain, chronic kidney disease, dialysis, evaluation

Procedia PDF Downloads 452
6553 Fluoride Contamination and Effects on Crops in North 24 Parganas, West Bengal, India

Authors: Rajkumar Ghosh

Abstract:

Fluoride contamination in water and its subsequent impact on agricultural practices is a growing concern in various regions worldwide, including North 24 Parganas, West Bengal, India. This study aimed to investigate the extent of fluoride contamination in the region's water sources and evaluate its effects on crop production and quality. A comprehensive survey of water sources, including wells, ponds, and rivers, was conducted to assess the fluoride levels in North 24 Parganas. Water samples were collected and analyzed using standard methods, and the fluoride concentration was determined. The findings revealed significant fluoride contamination in the water sources, surpassing the permissible limits recommended by national and international standards. To assess the effects of fluoride contamination on crops, field experiments were carried out in selected agricultural areas. Various crops commonly cultivated in the region, such as paddy, wheat, vegetables, and fruits, were examined for their growth, yield, and nutritional quality parameters. Additionally, soil samples were collected from the study sites to analyse the fluoride levels and their potential impact on soil health. The results demonstrated the adverse effects of fluoride contamination on crop growth and yield. Reduced plant height, stunted root development, decreased biomass accumulation, and diminished crop productivity were observed in fluoride-affected areas compared to uncontaminated control sites. Furthermore, the nutritional composition of crops, including micronutrients and mineral content, was significantly altered under high fluoride exposure, leading to potential health risks for consumers. The study also assessed the impact of fluoride on soil quality and found a negative correlation between fluoride concentration and soil health indicators, such as pH, organic matter content, and nutrient availability. These findings emphasize the need for sustainable soil management practices to mitigate the harmful effects of fluoride contamination and maintain agricultural productivity. Overall, this study highlights the alarming issue of fluoride contamination in water sources and its detrimental effects on crop production and quality in North 24 Parganas, West Bengal, India. The findings underscore the urgency for implementing appropriate water treatment measures, promoting awareness among farmers and local communities, and adopting sustainable agricultural practices to mitigate fluoride contamination and safeguard the region's agricultural ecosystem.

Keywords: agricultural ecosystem, water treatment, sustainable agricultural, fluoride contamination

Procedia PDF Downloads 79
6552 Regional Variation of Cancer Incidence in Nepal

Authors: Rudra Prasad Khanal

Abstract:

Introduction: Non-communicable disease, such as cancer, has spread all over the world for some last decades. However, every nation has experienced a burden from the development of technology. In the context of Nepal, 10 to 15 thousand new cancer incidences are being registered in different hospitals for treatment. Since the date of starting nuclear medicine at Bir Hospital in 1998, cancer patients have been getting treatment regularly. According to the data of the population-based cancer registry, approximately 60% of the population having a middle-class income is being affected by cancer in Nepal. Methods and Materials: The study is aimed to find out the particular place where the population density of new cancer incidence is highest in Nepal and to inform the concerned regulatory body that is working on cancer screening and early detection for the proper treatment from the beginning. In order to identify the areas with the highest population density of new cancer incidence, all the data of cancer patients were collected from five different renowned hospitals and also from the population-based cancer registry center and then analyzed the data. The history of cancer patients was studied from 2003 to 2020, but here the data are analyzed from 2015 to 2020 only to find the latest trend in cancer incidence. Results: In the five major hospitals in Nepal, the total new cancer incidence was 61783 from 2015 to 2020. Out of those, 34617 were female, and 27176 were male. This research shows that female cancer patients were more every year. In the male, lung cancer patients more than cancer of other organs, but in females, the number of breast cancer patients was greatest. The age-adjusted mortality rate for males in Kathmandu valley was 36.3, and for females was 27.0 per 100,000 population. The cancer incidence and mortality rate were slightly lesser in other districts of Nepal. This rate increased with the increase in the age of people. Over 60 years, cancer incidence and mortality rates have been found to increase rapidly. Conclusion: This research supports conducting the program of cancer screening and early detection at Kathmandu valley with high priority and then Morang, Rukum, SSDM, etc., to control cancer.

Keywords: cancer incidence, research scholar, Tribhuvan University, Bhaktapur Cancer Hospital, Nepal

Procedia PDF Downloads 74
6551 Detection of Image Blur and Its Restoration for Image Enhancement

Authors: M. V. Chidananda Murthy, M. Z. Kurian, H. S. Guruprasad

Abstract:

Image restoration in the process of communication is one of the emerging fields in the image processing. The motion analysis processing is the simplest case to detect motion in an image. Applications of motion analysis widely spread in many areas such as surveillance, remote sensing, film industry, navigation of autonomous vehicles, etc. The scene may contain multiple moving objects, by using motion analysis techniques the blur caused by the movement of the objects can be enhanced by filling-in occluded regions and reconstruction of transparent objects, and it also removes the motion blurring. This paper presents the design and comparison of various motion detection and enhancement filters. Median filter, Linear image deconvolution, Inverse filter, Pseudoinverse filter, Wiener filter, Lucy Richardson filter and Blind deconvolution filters are used to remove the blur. In this work, we have considered different types and different amount of blur for the analysis. Mean Square Error (MSE) and Peak Signal to Noise Ration (PSNR) are used to evaluate the performance of the filters. The designed system has been implemented in Matlab software and tested for synthetic and real-time images.

Keywords: image enhancement, motion analysis, motion detection, motion estimation

Procedia PDF Downloads 288
6550 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 105
6549 Systems of Liquid Organic Fertilizer Application with Respect to Environmental Impact

Authors: Hidayatul Fitri, Petr Šařec

Abstract:

The use of organic fertilizer is increasing nowadays, and the application must be conducted accurately to provide the right benefits for plants and maintain soil health. Improper application of fertilizers can cause problems for both plants and the environment. This study investigated the liquid organic fertilizer application, particularly digestate, varied into different application doses concerning mitigation of adverse environmental impacts, improving water infiltration ability, and crop yields. The experiment was established into eight variants with different digestate doses, conducted on emission monitoring and soil physical properties. As a result, the digestate application with shallow injection (5 cm in depth) was confirmed as an appropriate technique for applying liquid fertilizer into the soil. Gas emissions resulted in low concentration and declined gradually over time, obviously proved from the experiment conducted under two measurements immediately after application and the next day. Applied various doses of liquid digestate fertilizer affected the emission concentrations of NH3 volatilization, differing significantly and decreasing about 40% from the first to second measurement. In this study, winter wheat crop production significantly increases under digestate application with additional N fertilizer. This study suggested the long-term application of digestate to obtain more alteration of soil properties such as bulk density, penetration resistance, and hydraulic conductivity.

Keywords: liquid organic fertilizer, digestate, application, ammonia, emission

Procedia PDF Downloads 287
6548 Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface

Authors: A. J. Babajanyan, T. A. Abrahamyan, H. A. Minasyan, K. V. Nerkararyan

Abstract:

Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depending on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations.

Keywords: fiber-tip, liquid-air interface, nano vibration, opto-mechanical sensor

Procedia PDF Downloads 484
6547 Advanced Real-Time Fluorescence Imaging System for Rat's Femoral Vein Thrombosis Monitoring

Authors: Sang Hun Park, Chul Gyu Song

Abstract:

Artery and vein occlusion changes observed in patients and experimental animals are unexplainable symptoms. As the fat accumulated in cardiovascular ruptures, it causes vascular blocking. Likewise, early detection of cardiovascular disease can be useful for treatment. In this study, we used the mouse femoral occlusion model to observe the arterial and venous occlusion changes without darkroom. We observed the femoral arterial flow pattern changes by proposed fluorescent imaging system using an animal model of thrombosis. We adjusted the near-infrared light source current in order to control the intensity of the fluorescent substance light. We got the clear fluorescent images and femoral artery flow pattern were measured by a 5-minute interval. The result showed that the fluorescent substance flowing in the femoral arteries were accumulated in thrombus as time passed, and the fluorescence of other vessels gradually decreased.

Keywords: thrombus, fluorescence, femoral, arteries

Procedia PDF Downloads 344
6546 Assessing the Lifestyle Factors, Nutritional and Socioeconomic Status Associated with Peptic Ulcer Disease: A Cross-Sectional Study among Patients at the Tema General Hospital of Ghana

Authors: Marina Aferiba Tandoh, Elsie Odei

Abstract:

Peptic Ulcer Disease (PUD) is amongst the commonest gastrointestinal problems that require emergency treatment in order to preserve life. The prevalence of PUD is increasing within the Ghanaian population, deepening the need to identify factors that are associated with its occurrence. This cross-sectional study assessed the nutritional status, socioeconomic and lifestyle factors associated with PUD among patients attending the Out-Patient Department of the Tema General Hospital of Ghana. A food frequency questionnaire and a three-day, 24-hour recall were used to assess the dietary intakes of study participants. A standardized questionnaire was used to obtain information on the participants’ socio-demographic characteristics, lifestyle as well as medical history. The data was analyzed using SPSS version 22. The mean age of study participants was 32.8±15.41years. Females were significantly higher (61.4%) than males (38.6%) (p < 0.001). All participants had received some form of education, with tertiary education being the highest (52.6%). The majority of them managed their condition with medications only (86%), while 10.5% managed it with a combination of medications and diet. The rest were either by dietary counseling only (1.8%), or surgery only (1.8%). or herbal medicines (29.3%), which were made from home (7.2%) or bought from a medical store (10.8%). Most of the participants experienced a recurrence of the disease (42.1%). For those who had ever experienced recurrences of the disease, it happened when they ate acidic foods (1.8%), ate bigger portions (1.8%), starved themselves (1.8%), or were stressed (1.8%). Others also had triggers when they took certain medications (1.8%) or ate too much pepper (1.8%). About 49% of the participants were either overweight or obese with a recurrence of PUD (p>0.05). Obese patients had the highest rate of PUD recurrences (41%). Drinking alcohol was significantly associated with the recurrence of PUD (χ2= 5.243, p=0.026). Other lifestyles, such as weed smoking, fasting, and use of herbal medicine and NSAIDs did not have any significant association with the disease recurrence. There was no significant correlation between the various dietary patterns and anthropometric parameters except dietary pattern one (salty snacks, regular soft drinks, milk, sweetened yogurt, ice cream, and cooked vegetables), which had a positive correlation with weight (p=0.002) and BMI (p=0.038). PUD patients should target weight reduction actions and reduce alcohol intake as measures to control the recurrence of the disease. Nutrition Education among this population must be promoted to minimize the recurrence of PUD.

Keywords: Dietary patterns, lifestyle factors, nutritional status, peptic ulcer disease

Procedia PDF Downloads 81
6545 A Phishing Email Detection Approach Using Machine Learning Techniques

Authors: Kenneth Fon Mbah, Arash Habibi Lashkari, Ali A. Ghorbani

Abstract:

Phishing e-mails are a security issue that not only annoys online users, but has also resulted in significant financial losses for businesses. Phishing advertisements and pornographic e-mails are difficult to detect as attackers have been becoming increasingly intelligent and professional. Attackers track users and adjust their attacks based on users’ attractions and hot topics that can be extracted from community news and journals. This research focuses on deceptive Phishing attacks and their variants such as attacks through advertisements and pornographic e-mails. We propose a framework called Phishing Alerting System (PHAS) to accurately classify e-mails as Phishing, advertisements or as pornographic. PHAS has the ability to detect and alert users for all types of deceptive e-mails to help users in decision making. A well-known email dataset has been used for these experiments and based on previously extracted features, 93.11% detection accuracy is obtainable by using J48 and KNN machine learning techniques. Our proposed framework achieved approximately the same accuracy as the benchmark while using this dataset.

Keywords: phishing e-mail, phishing detection, anti phishing, alarm system, machine learning

Procedia PDF Downloads 341
6544 Barriers to Tuberculosis Detection in Portuguese Prisons

Authors: M. F. Abreu, A. I. Aguiar, R. Gaio, R. Duarte

Abstract:

Background: Prison establishments constitute high-risk environments for the transmission and spread of tuberculosis (TB), given their epidemiological context and the difficulty of implementing preventive and control measures. Guidelines for control and prevention of tuberculosis in prisons have been described as incomplete and heterogeneous internationally, due to several identified obstacles, for example scarcity of human resources and funding of prisoner health services. In Portugal, a protocol was created in 2014 with the aim to define and standardize procedures of detection and prevention of tuberculosis within prisons. Objective: The main objective of this study was to identify and describe barriers to tuberculosis detection in prisons of Porto and Lisbon districts in Portugal. Methods: A cross-sectional study was conducted from 2ⁿᵈ January 2018 till 30ᵗʰ June 2018. Semi-structured questionnaires were applied to health care professionals working in the prisons of the districts of Porto (n=6) and Lisbon (n=8). As inclusion criteria we considered having work experience in the area of tuberculosis (either in diagnosis, treatment, or follow up). The questionnaires were self-administered, in paper format. Descriptive analyses of the questionnaire variables were made using frequencies and median. Afterwards, a hierarchical agglomerative clusters analysis was performed. After obtaining the clusters, the chi-square test was applied to study the association between the variables collected and the clusters. The level of significance considered was 0.05. Results: From the total of 186 health professionals, 139 met the criteria of inclusion and 82 health professionals were interviewed (62,2% of participation). Most were female, nurses, with a median age of 34 years, with term employment contract. From the cluster analysis, two groups were identified with different characteristics and behaviors for the procedures of this protocol. Statistically significant results were found in: elements of cluster 1 (78% of the total participants) work in prisons for a longer time (p=0.003), 45,3% work > 4 years while 50% of the elements of cluster 2 work for less than a year, and more frequently answered they know and apply the procedures of the protocol (p=0.000). Both clusters answered frequently the need of having theoretical-practical training for TB (p=0.000), especially in the areas of diagnosis, treatment and prevention and that there is scarcity of funding to prisoner health services (p=0.000). Regarding procedures for TB screening (periodic and contact screening) and procedures for transferring a prisoner with this disease, cluster 1 also answered more frequently to perform them (p=0.000). They also referred that the material/equipment for TB screening is accessible and available (p=0.000). From this clusters we identified as barriers scarcity of human resources, the need to theoretical-practical training for tuberculosis, inexperience in working in health services prisons and limited knowledge of protocol procedures. Conclusions: The barriers found in this study are the same described internationally. This protocol is mostly being applied in portuguese prisons. The study also showed the need to invest in human and material resources. This investigation bridged gaps in knowledge that could help prison health services optimize the care provided for early detection and adherence of prisoners to treatment of tuberculosis.

Keywords: barriers, health care professionals, prisons, protocol, tuberculosis

Procedia PDF Downloads 147
6543 Study on Measuring Method and Experiment of Arc Fault Detection Device

Authors: Yang Jian-Hong, Zhang Ren-Cheng, Huang Li

Abstract:

Arc fault is one of the main inducements of electric fires. Arc Fault Detection Device (AFDD) can detect arc fault effectively. Arc fault detections and unhooking standards are the keys to AFDD practical application. First, an arc fault continuous production system was developed, which could count the arc half wave number. Then, Combining with the UL1699 standard, ignition probability curve of cotton and unhooking time of various currents intensity were obtained by experiments. The combustion degree of arc fault could be expressed effectively by arc area. Experiments proved that electric fires would be misjudged or missed only using arc half wave number as AFDD unhooking basis. At last, Practical tests were carried out on the self-developed AFDD system. The result showed that actual AFDD unhooking time was the sum of arc half wave cycling number, Arc wave identification time and unhooking mechanical operation time And the first two shared shorter time. Unhooking time standard depended on the shortest mechanical operation time.

Keywords: arc fault detection device, arc area, arc half wave, unhooking time, arc fault

Procedia PDF Downloads 509
6542 Clinical Signs of River Blindness and the Efficacy of Ivermectin Therapy in Idogun, Ondo State-Nigeria

Authors: Afolabi O.J, Simon-Oke I.A., Oniya M.O., Okaka C.E.

Abstract:

River blindness is a skin, and an eye disease caused by Onchocerca volvulus and vectored by a female hematophagous blackfly. The study aims to evaluate the distribution of the clinical signs of river blindness and the efficacy of ivermectin in the treatment of river blindness in Idogun. Observational studies in epidemiology that involve the use of a structured questionnaire to obtain useful epidemiological information from the respondents, physical assessment via palpation from head to ankle was used to assess clinical signs from the respondents and skin snip test was used to evaluate the prevalence of the disease. The efficacy of the drug was evaluated and expressed in percentages. One hundred and ninety-two (192) out of the 384 respondents examined, showed various signs of river blindness. However, it was only 108 (28.1%) respondents with the clinical signs that demonstrated Onchocerca volvulus microfilariae in their skin snips. The clinical signs observed among the respondents include skin depigmentation such as dermatitis, leopard skin, papules, pruritus and self-inflicted injury, while ocular symptoms include cataract, ocular lesion and partial blindness. Among these clinical signs, papules, and pruritus were the most dominant in the community. The prevalence of the clinical signs was observed to vary significantly among the age groups and gender (P<0.05). The efficacy of the drug after 6 and 12 months of treatments shows that the drug is more effective at age groups 10-50 years than the age groups 51-90 years. Ivermectin is observed to be efficacious in the treatment of the disease. However, to achieve eradication of the disease, the drug may be administered at 0.15mg/kg twice a year.

Keywords: riverblindness, clinical signs, ivermectin, Idogun

Procedia PDF Downloads 159
6541 Evaluation of the Appropriateness of Common Oxidants for Ruthenium (II) Chemiluminescence in a Microfluidic Detection Device Coupled to Microbore High Performance Liquid Chromatography for the Analysis of Drugs in Formulations and Biological Fluids

Authors: Afsal Mohammed Kadavilpparampu, Haider A. J. Al Lawati, Fakhr Eldin O. Suliman, Salma M. Z. Al Kindy

Abstract:

In this work, we evaluated the appropriateness of various oxidants that can be used potentially with Ru(bipy)32+ CL system while performing CL detection in a microfluidic device using eight common active pharmaceutical ingredients- ciprofloxacin, hydrochlorothiazide, norfloxacin, buspirone, fexofenadine, cetirizine, codeine, and dextromethorphan. This is because, microfludics have very small channel volume and the residence time is also very short. Hence, a highly efficient oxidant is required for on-chip CL detection to obtain analytically acceptable CL emission. Three common oxidants were evaluated, lead dioxide, cerium ammonium sulphate and ammonium peroxydisulphate. Results obtained showed that ammonium peroxydisulphate is the most appropriate oxidant which can be used in microfluidic setup and all the tested analyte give strong CL emission while using this oxidant. We also found that Ru(bipy)33+ generated off-line by oxidizing [Ru(bipy)3]Cl2.6H2O in acetonitrile under acidic condition with lead dioxide was stable for more than 72 hrs. A highly sensitive microbore HPLC- CL method using ammonium peroxydisulphate as an oxidant in a microfluidic on-chip CL detection has been developed for the analyses of fixed-dose combinations of pseudoephedrine (PSE), fexofenadine (FEX) and cetirizine (CIT) in biological fluids and pharmaceutical formulations with minimum sample pre-treatment.

Keywords: oxidants, microbore High Performance Liquid Chromatography, chemiluminescence, microfluidics

Procedia PDF Downloads 449
6540 A Radiofrequency Spectrophotometer Device to Detect Liquids in Gastroesophageal Ways

Authors: R. Gadea, J. M. Monzó, F. J. Puertas, M. Castro, A. Tebar, P. J. Fito, R. J. Colom

Abstract:

There exists a wide array of ailments impacting the structural soundness of the esophageal walls, predominantly linked to digestive issues. Presently, the techniques employed for identifying esophageal tract complications are excessively invasive and discomforting, subjecting patients to prolonged discomfort in order to achieve an accurate diagnosis. This study proposes the creation of a sensor with profound measuring capabilities designed to detect fluids coursing through the esophageal tract. The multi-sensor detection system relies on radiofrequency photospectrometry. During experimentation, individuals representing diverse demographics in terms of gender and age were utilized, positioning the sensors amidst the trachea and diaphragm and assessing measurements in vacuum conditions, water, orange juice, and saline solutions. The findings garnered enabled the identification of various liquid mediums within the esophagus, segregating them based on their ionic composition.

Keywords: radiofrequency spectrophotometry, medical device, gastroesophageal disease, photonics

Procedia PDF Downloads 81
6539 Simultaneous Detection of Cd⁺², Fe⁺², Co⁺², and Pb⁺² Heavy Metal Ions by Stripping Voltammetry Using Polyvinyl Chloride Modified Glassy Carbon Electrode

Authors: Sai Snehitha Yadavalli, K. Sruthi, Swati Ghosh Acharyya

Abstract:

Heavy metal ions are toxic to humans and all living species when exposed in large quantities or for long durations. Though Fe acts as a nutrient, when intake is in large quantities, it becomes toxic. These toxic heavy metal ions, when consumed through water, will cause many disorders and are harmful to all flora and fauna through biomagnification. Specifically, humans are prone to innumerable diseases ranging from skin to gastrointestinal, neurological, etc. In higher quantities, they even cause cancer in humans. Detection of these toxic heavy metal ions in water is thus important. Traditionally, the detection of heavy metal ions in water has been done by techniques like Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Atomic Absorption Spectroscopy (AAS). Though these methods offer accurate quantitative analysis, they require expensive equipment and cannot be used for on-site measurements. Anodic Stripping Voltammetry is a good alternative as the equipment is affordable, and measurements can be made at the river basins or lakes. In the current study, Square Wave Anodic Stripping Voltammetry (SWASV) was used to detect the heavy metal ions in water. Literature reports various electrodes on which deposition of heavy metal ions was carried out like Bismuth, Polymers, etc. The working electrode used in this study is a polyvinyl chloride (PVC) modified glassy carbon electrode (GCE). Ag/AgCl reference electrode and Platinum counter electrode were used. Biologic Potentiostat SP 300 was used for conducting the experiments. Through this work of simultaneous detection, four heavy metal ions were successfully detected at a time. The influence of modifying GCE with PVC was studied in comparison with unmodified GCE. The simultaneous detection of Cd⁺², Fe⁺², Co⁺², Pb⁺² heavy metal ions was done using PVC modified GCE by drop casting 1 wt.% of PVC dissolved in Tetra Hydro Furan (THF) solvent onto GCE. The concentration of all heavy metal ions was 0.2 mg/L, as shown in the figure. The scan rate was 0.1 V/s. Detection parameters like pH, scan rate, temperature, time of deposition, etc., were optimized. It was clearly understood that PVC helped in increasing the sensitivity and selectivity of detection as the current values are higher for PVC-modified GCE compared to unmodified GCE. The peaks were well defined when PVC-modified GCE was used.

Keywords: cadmium, cobalt, electrochemical sensing, glassy carbon electrodes, heavy metal Ions, Iron, lead, polyvinyl chloride, potentiostat, square wave anodic stripping voltammetry

Procedia PDF Downloads 103
6538 Efficacy of Defender 2% WS (Tebuconazole) and Imidal 70 WS (Imidacloprid) to Control Damping-Off Diseases and Early Insect Pests in Sesame in Rain Fed Areas, Sudan

Authors: Anas Fadlelmula, Elsafi M. M. Ahmed

Abstract:

The efficacy of Defender 2% WS (tebuconazole) and Imidal 70 WS (imidacloprid) to control damping-off diseases and early insect pests in sesame crop under rain fed conditions at Damazine and Gedarif areas was evaluated. Defender 2% WS with dosage rates 0.5, 0.75, 1.0 and 1.25 g/kg of seeds and Imidal 70 WS at 2.25, 3.0, and 3.75 g/ kg of seeds were tested singly and as a mixture during 2010/2011 and 2012/013. Sesame seeds treated with Defender at the rates of 0.5 g and 0.75 g/ kg of seeds gave a high significant increase in percent seedlings emergence (84% and 85%) respectively. Imidal 70 WS at rate of 3g/kg seed showed the least percent damaged leaves by sesame webworm (1.7%). However, the mixed Defender at rate 0.75g with Imidal at 3 g/kg seed, significantly gave a highest percentage of sesame seedling emergence (85.1%) and reduced the incidence of post-emergence damping off and percent damaged leaves to the least per cent (2.1% and 0.4% ) respectively, compared to other treatments. Consequently, the mixed treatment of 0.75 g of Defender + 3 g of Imidal improved the crop stand and significantly gave the highest yield (405.2 kg and 418.8 kg/fed) respectively in both sites compared to the other treatments.

Keywords: seed dressers, damage, daming off, insects

Procedia PDF Downloads 269
6537 Intrusion Detection System Using Linear Discriminant Analysis

Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou

Abstract:

Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.

Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99

Procedia PDF Downloads 227
6536 Variation in N₂ Fixation and N Contribution by 30 Groundnut (Arachis hypogaea L.) Varieties Grown in Blesbokfontein Mpumalanga Province, South Africa

Authors: Titus Y. Ngmenzuma, Cherian. Mathews, Feilx D. Dakora

Abstract:

In Africa, poor nutrient availability, particularly N and P, coupled with low soil moisture due to erratic rainfall, constitutes the major crop production constraints. Although inorganic fertilizers are an option for meeting crop nutrient requirements for increased grain yield, the high cost and scarcity of inorganic inputs make them inaccessible to resource-poor farmers in Africa. Because crops grown on such nutrient-poor soils are micronutrient deficient, incorporating N₂-fixing legumes into cropping systems can sustainably improve crop yield and nutrient accumulation in the grain. In Africa, groundnut can easily form an effective symbiosis with native soil rhizobia, leading to marked N contribution in cropping systems. In this study, field experiments were conducted at Blesbokfontein in Mpumalanga Province to assess N₂ fixation and N contribution by 30 groundnut varieties during the 2018/2019 planting season using the ¹⁵N natural abundance technique. The results revealed marked differences in shoot dry matter yield, symbiotic N contribution, soil N uptake and grain yield among the groundnut varieties. The percent N derived from fixation ranged from 37 to 44% for varieties ICGV131051 and ICGV13984. The amount of N-fixed ranged from 21 to 58 kg/ha for varieties Chinese and IS-07273, soil N uptake from 31 to 80 kg/ha for varieties IS-07947 and IS-07273, and grain yield from 193 to 393 kg/ha for varieties ICGV15033 and ICGV131096, respectively. Compared to earlier studies on groundnut in South Africa, this study has shown low N₂ fixation and N contribution to the cropping systems, possibly due to environmental factors such as low soil moisture. Because the groundnut varieties differed in their growth, symbiotic performance and grain yield, more field testing is required over a range of differing agro-ecologies to identify genotypes suitable for different cropping environments

Keywords: ¹⁵N natural abundance, percent N derived from fixation, amount of N-fixed, grain yield

Procedia PDF Downloads 188
6535 LCA and LCC for the Evaluation of Sustainability of Rapeseed, Giant Reed, and Poplar Cultivation

Authors: Alessandro Suardi, Rodolfo Picchio, Domenico Coaloa, Maria Bonaventura Forleo, Nadia Palmieri, Luigi Pari

Abstract:

The reconversion process of the Italian sugar supply chain to bio-energy supply chains, as a result of the 2006 Sugar CMO reform, have involved research to define the best logistics, the most adapted energy crops for the Italian territory and their sustainability. Rapeseed (Brassica napus L.), Giant reed (Arundo donax L.) and Poplar (Poplar ssp.) are energy crops considered strategic for the development of Italian energy supply-chains. This study analyzed the environmental and the economic impacts on the farm level of these three energy crops. The environmental assessment included six farming units, two per crop, which were extracted from a sample of 251 rapeseed farm units (2751 ha), 7 giant reed farm units (7.8 ha), and 91 poplar farm units (440 ha) using a statistical multivariate analysis. Life Cycle Assessment (LCA) research method has been used to evaluate and compare the sustainability of the agricultural phases of the crops studied. The impact analyses have been performed at mid-point and end-point levels. The results of the analysis shown that the fertilization, is the major source of environmental impact of the agricultural phase due to the production of the fertilizers and the soil emissions of GHG following the treatment. The perennial energy crops studied (Arundo donax L., Poplar ssp.) were environmentally more sustainable if compared with the annual crop (Brassica napus L.) for all the impact categories at mid-point and end-point levels analyzed. The most relevant impact category influenced by the agricultural process result the fossil depletion, mainly due to the fossil fuels consumed during the mineral fertilizers production (urea). Human health was the most affected damage category at the end point level. Poplar result the energy crop with the best environmental performance for the Italian territory, in the distribution areas most suitable for its cultivation.

Keywords: LCA, energy crops, rapeseed, giant reed, poplar

Procedia PDF Downloads 481