Search results for: Hidden Markov Model (HMM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17162

Search results for: Hidden Markov Model (HMM)

15812 A Prediction Method for Large-Size Event Occurrences in the Sandpile Model

Authors: S. Channgam, A. Sae-Tang, T. Termsaithong

Abstract:

In this research, the occurrences of large size events in various system sizes of the Bak-Tang-Wiesenfeld sandpile model are considered. The system sizes (square lattice) of model considered here are 25×25, 50×50, 75×75 and 100×100. The cross-correlation between the ratio of sites containing 3 grain time series and the large size event time series for these 4 system sizes are also analyzed. Moreover, a prediction method of the large-size event for the 50×50 system size is also introduced. Lastly, it can be shown that this prediction method provides a slightly higher efficiency than random predictions.

Keywords: Bak-Tang-Wiesenfeld sandpile model, cross-correlation, avalanches, prediction method

Procedia PDF Downloads 382
15811 Modelling of Heating and Evaporation of Biodiesel Fuel Droplets

Authors: Mansour Al Qubeissi, Sergei S. Sazhin, Cyril Crua, Morgan R. Heikal

Abstract:

This paper presents the application of the Discrete Component Model for heating and evaporation to multi-component biodiesel fuel droplets in direct injection internal combustion engines. This model takes into account the effects of temperature gradient, recirculation and species diffusion inside droplets. A distinctive feature of the model used in the analysis is that it is based on the analytical solutions to the temperature and species diffusion equations inside the droplets. Nineteen types of biodiesel fuels are considered. It is shown that a simplistic model, based on the approximation of biodiesel fuel by a single component or ignoring the diffusion of components of biodiesel fuel, leads to noticeable errors in predicted droplet evaporation time and time evolution of droplet surface temperature and radius.

Keywords: heat/mass transfer, biodiesel, multi-component fuel, droplet

Procedia PDF Downloads 568
15810 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network

Authors: Ziying Wu, Danfeng Yan

Abstract:

Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.

Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network

Procedia PDF Downloads 118
15809 A Mixture Vine Copula Structures Model for Dependence Wind Speed among Wind Farms and Its Application in Reactive Power Optimization

Authors: Yibin Qiu, Yubo Ouyang, Shihan Li, Guorui Zhang, Qi Li, Weirong Chen

Abstract:

This paper aims at exploring the impacts of high dimensional dependencies of wind speed among wind farms on probabilistic optimal power flow. To obtain the reactive power optimization faster and more accurately, a mixture vine Copula structure model combining the K-means clustering, C vine copula and D vine copula is proposed in this paper, through which a more accurate correlation model can be obtained. Moreover, a Modified Backtracking Search Algorithm (MBSA), the three-point estimate method is applied to probabilistic optimal power flow. The validity of the mixture vine copula structure model and the MBSA are respectively tested in IEEE30 node system with measured data of 3 adjacent wind farms in a certain area, and the results indicate effectiveness of these methods.

Keywords: mixture vine copula structure model, three-point estimate method, the probability integral transform, modified backtracking search algorithm, reactive power optimization

Procedia PDF Downloads 248
15808 Geopotential Models Evaluation in Algeria Using Stochastic Method, GPS/Leveling and Topographic Data

Authors: M. A. Meslem

Abstract:

For precise geoid determination, we use a reference field to subtract long and medium wavelength of the gravity field from observations data when we use the remove-compute-restore technique. Therefore, a comparison study between considered models should be made in order to select the optimal reference gravity field to be used. In this context, two recent global geopotential models have been selected to perform this comparison study over Northern Algeria. The Earth Gravitational Model (EGM2008) and the Global Gravity Model (GECO) conceived with a combination of the first model with anomalous potential derived from a GOCE satellite-only global model. Free air gravity anomalies in the area under study have been used to compute residual data using both gravity field models and a Digital Terrain Model (DTM) to subtract the residual terrain effect from the gravity observations. Residual data were used to generate local empirical covariance functions and their fitting to the closed form in order to compare their statistical behaviors according to both cases. Finally, height anomalies were computed from both geopotential models and compared to a set of GPS levelled points on benchmarks using least squares adjustment. The result described in details in this paper regarding these two models has pointed out a slight advantage of GECO global model globally through error degree variances comparison and ground-truth evaluation.

Keywords: quasigeoid, gravity aomalies, covariance, GGM

Procedia PDF Downloads 137
15807 Use of Transportation Networks to Optimize The Profit Dynamics of the Product Distribution

Authors: S. Jayasinghe, R. B. N. Dissanayake

Abstract:

Optimization modelling together with the Network models and Linear Programming techniques is a powerful tool in problem solving and decision making in real world applications. This study developed a mathematical model to optimize the net profit by minimizing the transportation cost. This model focuses the transportation among decentralized production plants to a centralized distribution centre and then the distribution among island wide agencies considering the customer satisfaction as a requirement. This company produces basically 9 types of food items with 82 different varieties and 4 types of non-food items with 34 different varieties. Among 6 production plants, 4 were located near the city of Mawanella and the other 2 were located in Galewala and Anuradhapura cities which are 80 km and 150 km away from Mawanella respectively. The warehouse located in the Mawanella was the main production plant and also the only distribution plant. This plant distributes manufactured products to 39 agencies island-wide. The average values and average amount of the goods for 6 consecutive months from May 2013 to October 2013 were collected and then average demand values were calculated. The following constraints are used as the necessary requirement to satisfy the optimum condition of the model; there was one source, 39 destinations and supply and demand for all the agencies are equal. Using transport cost for a kilometer, total transport cost was calculated. Then the model was formulated using distance and flow of the distribution. Network optimization and linear programming techniques were used to originate the model while excel solver is used in solving. Results showed that company requires total transport cost of Rs. 146, 943, 034.50 to fulfil the customers’ requirement for a month. This is very much less when compared with data without using the model. Model also proved that company can reduce their transportation cost by 6% when distributing to island-wide customers. Company generally satisfies their customers’ requirements by 85%. This satisfaction can be increased up to 97% by using this model. Therefore this model can be used by other similar companies in order to reduce the transportation cost.

Keywords: mathematical model, network optimization, linear programming

Procedia PDF Downloads 346
15806 Calculating Non-Unique Sliding Modes for Switched Dynamical Systems

Authors: Eugene Stepanov, Arkadi Ponossov

Abstract:

Ordinary differential equations with switching nonlinearities constitute a very useful tool in many applications. The solutions of such equations can usually be calculated analytically if they cross the discontinuities transversally. Otherwise, one has trajectories that slides along the discontinuity, and the calculations become less straightforward in this case. For instance, one of the problems one faces is non-uniqueness of the sliding modes. In the presentation, it is proposed to apply the theory of hybrid dynamical systems to calculate the solutions that are ‘hidden’ in the discontinuities. Roughly, one equips the underlying switched system with an explicitly designed discrete dynamical system (‘automaton’), which governs the dynamics of the switched system. This construction ‘splits’ the dynamics, which, as it is shown in the presentation, gives uniqueness of the resulting hybrid trajectories and at the same time provides explicit formulae for them. Projecting the hybrid trajectories back onto the original continuous system explains non-uniqueness of its trajectories. The automaton is designed with the help of the attractors of the specially constructed adjoint dynamical system. Several examples are provided in the presentation, which supports the efficiency of the suggested scheme. The method can be of interest in control theory, gene regulatory networks, neural field models and other fields, where switched dynamics is a part of the analysis.

Keywords: hybrid dynamical systems, singular perturbation analysis, sliding modes, switched dynamics

Procedia PDF Downloads 163
15805 Estimation of Pressure Profile and Boundary Layer Characteristics over NACA 4412 Airfoil

Authors: Anwar Ul Haque, Waqar Asrar, Erwin Sulaeman, Jaffar S. M. Ali

Abstract:

Pressure distribution data of the standard airfoils is usually used for the calibration purposes in subsonic wind tunnels. Results of such experiments are quite old and obtained by using the model in the spanwise direction. In this manuscript, pressure distribution over NACA 4412 airfoil model was presented by placing the 3D model in the lateral direction. The model is made of metal with pressure ports distributed longitudinally as well as in the lateral direction. The pressure model was attached to the floor of the tunnel with the help of the base plate to give the specified angle of attack to the model. Before the start of the experiments, the pressure tubes of the respective ports of the 128 ports pressure scanner are checked for leakage, and the losses due to the length of the pipes were also incorporated in the results for the specified pressure range. Growth rate maps of the boundary layer thickness were also plotted. It was found that with the increase in the velocity, the dynamic pressure distribution was also increased for the alpha seep. Plots of pressure distribution so obtained were overlapped with those obtained by using XFLR software, a low fidelity tool. It was found that at moderate and high angles of attack, the distribution of the pressure coefficients obtained from the experiments is high when compared with the XFLR ® results obtained along with the span of the wing. This under-prediction by XFLR ® is more obvious on the windward than on the leeward side.

Keywords: subsonic flow, boundary layer, wind tunnel, pressure testing

Procedia PDF Downloads 320
15804 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water

Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri

Abstract:

In this research, the capability of neural networks in modeling and learning complicated and nonlinear relations has been used to develop a model for the prediction of changes in the diameter of bubbles in pool boiling distilled water. The input parameters used in the development of this network include element temperature, heat flux, and retention time of bubbles. The test data obtained from the experiment of the pool boiling of distilled water, and the measurement of the bubbles form on the cylindrical element. The model was developed based on training algorithm, which is typologically of back-propagation type. Considering the correlation coefficient obtained from this model is 0.9633. This shows that this model can be trusted for the simulation and modeling of the size of bubble and thermal transfer of boiling.

Keywords: bubble diameter, heat flux, neural network, training algorithm

Procedia PDF Downloads 443
15803 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks

Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam

Abstract:

In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.

Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion

Procedia PDF Downloads 123
15802 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic

Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi

Abstract:

In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.

Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing

Procedia PDF Downloads 299
15801 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks

Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha

Abstract:

Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs –Sigmoid, ReLU, and Tanh–have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment with multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLUReLU) combination. Our results show that using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).

Keywords: activation function, universal approximation function, neural networks, convergence

Procedia PDF Downloads 158
15800 Identity Management in Virtual Worlds Based on Biometrics Watermarking

Authors: S. Bader, N. Essoukri Ben Amara

Abstract:

With the technological development and rise of virtual worlds, these spaces are becoming more and more attractive for cybercriminals, hidden behind avatars and fictitious identities. Since access to these spaces is not restricted or controlled, some impostors take advantage of gaining unauthorized access and practicing cyber criminality. This paper proposes an identity management approach for securing access to virtual worlds. The major purpose of the suggested solution is to install a strong security mechanism to protect virtual identities represented by avatars. Thus, only legitimate users, through their corresponding avatars, are allowed to access the platform resources. Access is controlled by integrating an authentication process based on biometrics. In the request process for registration, a user fingerprint is enrolled and then encrypted into a watermark utilizing a cancelable and non-invertible algorithm for its protection. After a user personalizes their representative character, the biometric mark is embedded into the avatar through a watermarking procedure. The authenticity of the avatar identity is verified when it requests authorization for access. We have evaluated the proposed approach on a dataset of avatars from various virtual worlds, and we have registered promising performance results in terms of authentication accuracy, acceptation and rejection rates.

Keywords: identity management, security, biometrics authentication and authorization, avatar, virtual world

Procedia PDF Downloads 265
15799 Inherited Intergenerational Trauma – The Society for Black People in South Central Los Angeles

Authors: Kevin R. Collins Sr.

Abstract:

In South Central Los Angeles, Black people have endured various forms of trauma that spans across generations. This includes the horrors of slavery and the aftermaths of the Jim Crow Laws, institutionalized racism, and legislative segregation, just to name a few. The individuals born from the 1900’s until today have continued to transmit the traumas experienced across generations. Parents unconsciously transmit the hidden trauma, and the children take these experiences and apply it to the society they live in. Although there are some who attempt to break the cycle of transmitted trauma, the remninsce still remain and play a huge role in how they interact with others. The attempt of this discussion is to bring these traumatic experiences to the surface and attack them head on. It is important that we do this to allow not only the suffering individuals but the suffering society to heal. As a society, looking at the humane side of it and attempting to stop the racial injustice placed on black people to relieve them of the stress that some. If not all,, endure in this great United States of America. Changing the behavior as a country to create an improved since of common unity within. If we solve our own racial and social issues within this country, maybe we can solve these same issues that have been the footstool to the many wars we see around the world. Thus, breaking the cycle of inherited intergenerational trauma.

Keywords: intergenerational trauma, inherited trauma, transmission of trauma, blacks in South central LA, black trauma in America

Procedia PDF Downloads 97
15798 A Non-linear Damage Model For The Annulus Of the Intervertebral Disc Under Cyclic Loading, Including Recovery

Authors: Shruti Motiwale, Xianlin Zhou, Reuben H. Kraft

Abstract:

Military and sports personnel are often required to wear heavy helmets for extended periods of time. This leads to excessive cyclic loads on the neck and an increased chance of injury. Computational models offer one approach to understand and predict the time progression of disc degeneration under severe cyclic loading. In this paper, we have applied an analytic non-linear damage evolution model to estimate damage evolution in an intervertebral disc due to cyclic loads over decade-long time periods. We have also proposed a novel strategy for inclusion of recovery in the damage model. Our results show that damage only grows 20% in the initial 75% of the life, growing exponentially in the remaining 25% life. The analysis also shows that it is crucial to include recovery in a damage model.

Keywords: cervical spine, computational biomechanics, damage evolution, intervertebral disc, continuum damage mechanics

Procedia PDF Downloads 568
15797 Using an Empathy Intervention Model to Enhance Empathy and Socially Shared Regulation in Youth with Autism Spectrum Disorder

Authors: Yu-Chi Chou

Abstract:

The purpose of this study was to establish a logical path of an instructional model of empathy and social regulation, providing feasibility evidence on the model implementation in students with autism spectrum disorder (ASD). This newly developed Emotional Bug-Out Bag (BoB) curriculum was designed to enhance the empathy and socially shared regulation of students with ASD. The BoB model encompassed three instructional phases of basic theory lessons (BTL), action plan practices (APP), and final theory practices (FTP) during implementation. Besides, a learning flow (teacher-directed instruction, student self-directed problem-solving, group-based task completion, group-based reflection) was infused into the progress of instructional phases to deliberately promote the social regulatory process in group-working activities. A total of 23 junior high school students with ASD were implemented with the BoB curriculum. To examine the logical path for model implementation, data was collected from the participating students’ self-report scores on the learning nodes and understanding questions. Path analysis using structural equation modeling (SEM) was utilized for analyzing scores on 10 learning nodes and 41 understanding questions through the three phases of the BoB model. Results showed (a) all participants progressed throughout the implementation of the BoB model, and (b) the models of learning nodes and phases were positive and significant as expected, confirming the hypothesized logic path of this curriculum.

Keywords: autism spectrum disorder, empathy, regulation, socially shared regulation

Procedia PDF Downloads 66
15796 A Comprehensive Procedure of Spatial Panel Modelling with R, A Study of Agricultural Productivity Growth of the 38 East Java’s Regencies/Municipalities

Authors: Rahma Fitriani, Zerlita Fahdha Pusdiktasari, Herman Cahyo Diartho

Abstract:

Spatial panel model is commonly used to specify more complicated behavior of economic agent distributed in space at an individual-spatial unit level. There are several spatial panel models which can be adapted based on certain assumptions. A package called splm in R has several functions, ranging from the estimation procedure, specification tests, and model selection tests. In the absence of prior assumptions, a comprehensive procedure which utilizes the available functions in splm must be formed, which is the objective of this study. In this way, the best specification and model can be fitted based on data. The implementation of the procedure works well. It specifies SARAR-FE as the best model for agricultural productivity growth of the 38 East Java’s Regencies/Municipalities.

Keywords: spatial panel, specification, splm, agricultural productivity growth

Procedia PDF Downloads 171
15795 Numerical Simulation of Flow and Particle Motion in Liquid – Solid Hydrocyclone

Authors: Seyed Roozbeh Pishva, Alireza Aboudi Asl

Abstract:

In this investigation a hydrocyclone by using for separation particles from fluid in oil and gas, mining and other industries is simulated. Case study is cone – cylindrical and solid - liquid hydrocyclone. The fluid is water and the solid is a type of silis having diameters of 53, 75, 106, 150, 212, 250, and 300 micron. In this investigation CFD method used for analysis flow and movement of particles in hydrocyclone. In this modeling flow is three-dimention, turbulence and RSM model have been used for solving. Particles are three dimensional, spherical and non rotating and for tracking them Lagrangian model is used. The results of this study in addition to analyzing flowfield, obtaining efficiency of hydrocyclone in 5, 7, 12, and 15 percent concentrations and compare them with experimental result that both of them had suitable agreement with each other.

Keywords: hydrocyclone, RSM Model, CFD, copper industry

Procedia PDF Downloads 573
15794 Healthcare Social Entrepreneurship: A Positive Theory Applied to the Case of YOU Foundation in Nepal

Authors: Simone Rondelli, Damiano Rondelli, Bishesh Poudyal, Juan Jose Cabrera-Lazarini

Abstract:

One of the main obstacles for Social Entrepreneurship is to find a business model that is financially sustainable. In other words, the captured value generates enough cash flow to ensure business continuity and reinvestment for growth. Providing Health Services in poor countries for the uninsured population affected by a high-cost chronical disease is not the exception for this challenge. As a prime example, cancer has become a high impact on a global disease not only because of the high morbidity but also of the financial impact on both the patient family and health services in underdeveloped countries. Therefore, it is relevant to find a Social Entrepreneurship Model that provides affordable treatment for this disease while maintaining healthy finances not only for the patient but also for the organization providing the treatment. Using the methodology of Constructive Research, this paper applied a Positive Theory and four business models of Social Entrepreneurship to a case of a Private Foundation model whose mission is to address the challenge previously described. It was found that the Foundation analyzed, in this case, is organized as an Embedded Business Model and complies with the four propositions of the Positive Theory considered. It is recommended for this Private Foundation to explore implementing the Integrated Business Model to ensure more robust sustainability in the long term. It evolves as a scalable model that can attract investors interested in contributing to expanding this initiative globally.

Keywords: affordable treatment, global healthcare, social entrepreneurship theory, sustainable business model

Procedia PDF Downloads 145
15793 A Unified Theory of the Primary Psychological and Social Sciences

Authors: George McMillan

Abstract:

This paper introduces the methodology to create a baseline equation for the philosophical and social sciences in the behavioral-political-economic-demographic sequence. The two major ideological political-economic philosophies (Hume-Smith and Marx-Engels) are systematized into competing integrated three dimensional behavioral-political-economic models. The paper argues that Hume-Smith’s empathy-sympathy behavioral assumptions are a sufficient starting point to create the integrated causal model sought by Tooby and Cosmides. The author then shows that the prerequisite advances in psychology and demographic studies now exist to generate the universal economic theory sought by von Neumann-Morgenstern and the integrated behavioral-economic method of Gintis—a psychological (i.e., behavioral) socio-economic model. By updating Hume-Smith’s work with a modern understanding of psychology, as presented by Fromm and others, a new integrated societal model as postulated by Harsanyi can be created that intertwines the social and psychological sciences. The author argues that this fundamentally psychology-based model also can serve as a baseline equation for all social sciences as desired by Kant and Mach, as well as the ahistorical (psychological) philosophic model noted by Husserl, Heidegger, Tillich, and Strauss. The author concludes with a discussion of the necessary next steps to generating a detailed model that fuses these disciplines.

Keywords: Unified Social Theory

Procedia PDF Downloads 377
15792 Flange/Web Distortional Buckling of Cold-Formed Steel Beams with Web Holes under Pure Bending

Authors: Nan-Ting Yu, Boksun Kim, Long-Yuan Li

Abstract:

The cold-formed steel beams with web holes are widely used as the load-carrying members in structural engineering. The perforations can release the space of the building and let the pipes go through. However, the perforated cold-formed steel (PCFS) beams may fail by distortional buckling more easily than beams with plain web; this is because the rotational stiffness from the web decreases. It is well known that the distortional buckling can be described as the buckling of the compressed flange-lip system. In fact, near the ultimate failure, the flange/web corner would move laterally, which indicates the bending of the web should be taken account. The purpose of this study is to give a specific solution for the critical stress of flange/web distortional buckling of PCFS beams. The new model is deduced based on classical energy method, and the deflection of the web is represented by the shape function of the plane beam element. The finite element analyses have been performed to validate the accuracy of the proposed model. The comparison of the critical stress calculated from Hancock's model, FEA, and present model, shows that the present model can provide a splendid prediction for the flange/web distortional buckling of PCFS beams.

Keywords: cold-formed steel, beams, perforations, flange-web distortional buckling, finite element analysis

Procedia PDF Downloads 130
15791 Analysis of CO₂ Two-Phase Ejector with Taguchi and ANOVA Optimization and Refrigerant Selection with Enviro Economic Concerns by TOPSIS Analysis

Authors: Karima Megdouli, Bourhan tachtouch

Abstract:

Ejector refrigeration cycles offer an alternative to conventional systems for producing cold from low-temperature heat. In this article, a thermodynamic model is presented. This model has the advantage of simplifying the calculation algorithm and describes the complex double-throttling mechanism that occurs in the ejector. The model assumption and calculation algorithm are presented first. The impact of each efficiency is evaluated. Validation is performed on several data sets. The ejector model is then used to simulate a RES (refrigeration ejector system), to validate its robustness and suitability for use in predicting thermodynamic cycle performance. A Taguchi and ANOVA optimization is carried out on a RES. TOPSIS analysis was applied to decide the optimum refrigerants with cost, safety, environmental and enviro economic concerns along with thermophysical properties.

Keywords: ejector, velocity distribution, shock circle, Taguchi and ANOVA optimization, TOPSIS analysis

Procedia PDF Downloads 89
15790 Conceptual Model of a Residential Waste Collection System Using ARENA Software

Authors: Bruce G. Wilson

Abstract:

The collection of municipal solid waste at the curbside is a complex operation that is repeated daily under varying circumstances around the world. There have been several attempts to develop Monte Carlo simulation models of the waste collection process dating back almost 50 years. Despite this long history, the use of simulation modeling as a planning or optimization tool for waste collection is still extremely limited in practice. Historically, simulation modeling of waste collection systems has been hampered by the limitations of computer hardware and software and by the availability of representative input data. This paper outlines the development of a Monte Carlo simulation model that overcomes many of the limitations contained in previous models. The model uses a general purpose simulation software program that is easily capable of modeling an entire waste collection network. The model treats the stops on a waste collection route as a queue of work to be processed by a collection vehicle (or server). Input data can be collected from a variety of sources including municipal geographic information systems, global positioning system recorders on collection vehicles, and weigh scales at transfer stations or treatment facilities. The result is a flexible model that is sufficiently robust that it can model the collection activities in a large municipality, while providing the flexibility to adapt to changing conditions on the collection route.

Keywords: modeling, queues, residential waste collection, Monte Carlo simulation

Procedia PDF Downloads 400
15789 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objetives

Authors: Mingyu Xie, Mietek Brdys

Abstract:

The paper develops a non-linear model predictive control (NMPC) of water quality in drinking water distribution systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.

Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives

Procedia PDF Downloads 317
15788 Nonlinear Model Predictive Control for Biodiesel Production via Transesterification

Authors: Juliette Harper, Yu Yang

Abstract:

Biofuels have gained significant attention recently due to the new regulations and agreements regarding fossil fuels and greenhouse gases being made by countries around the globe. One of the most common types of biofuels is biodiesel, primarily made via the transesterification reaction. We model this nonlinear process in MATLAB using the standard kinetic equations. Then, a nonlinear Model predictive control (NMPC) was developed to regulate this process due to its capability to handle process constraints. The feeding flow uncertainty and kinetic disturbances are further incorporated in the model to capture the real-world operating conditions. The simulation results will show that the proposed NMPC can guarantee the final composition of fatty acid methyl esters (FAME) above the target threshold with a high chance by adjusting the process temperature and flowrate. This research will allow further understanding of NMPC under uncertainties and how to design the computational strategy for larger process with more variables.

Keywords: NMPC, biodiesel, uncertainties, nonlinear, MATLAB

Procedia PDF Downloads 97
15787 Mediation Models in Triadic Relationships: Illness Narratives and Medical Education

Authors: Yoko Yamada, Chizumi Yamada

Abstract:

Narrative psychology is based on the dialogical relationship between self and other. The dialogue can consist of divided, competitive, or opposite communication between self and other. We constructed models of coexistent dialogue in which self and other were positioned side by side and communicated sympathetically. We propose new mediation models for narrative relationships. The mediation models are based on triadic relationships that incorporate a medium or a mediator along with self and other. We constructed three types of mediation model. In the first type, called the “Joint Attention Model”, self and other are positioned side by side and share attention with the medium. In the second type, the “Triangle Model”, an agent mediates between self and other. In the third type, the “Caring Model”, a caregiver stands beside the communication between self and other. We apply the three models to the illness narratives of medical professionals and patients. As these groups have different views and experiences of disease or illness, triadic mediation facilitates the ability to see things from the other person’s perspective and to bridge differences in people’s experiences and feelings. These models would be useful for medical education in various situations, such as in considering the relationships between senior and junior doctors and between old and young patients.

Keywords: illness narrative, mediation, psychology, model, medical education

Procedia PDF Downloads 409
15786 Neural Network based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The educational system faces a significant concern with regards to Dyslexia and Dysgraphia, which are learning disabilities impacting reading and writing abilities. This is particularly challenging for children who speak the Sinhala language due to its complexity and uniqueness. Commonly used methods to detect the risk of Dyslexia and Dysgraphia rely on subjective assessments, leading to limited coverage and time-consuming processes. Consequently, delays in diagnoses and missed opportunities for early intervention can occur. To address this issue, the project developed a hybrid model that incorporates various deep learning techniques to detect the risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16, and YOLOv8 models were integrated to identify handwriting issues. The outputs of these models were then combined with other input data and fed into an MLP model. Hyperparameters of the MLP model were fine-tuned using Grid Search CV, enabling the identification of optimal values for the model. This approach proved to be highly effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention. The Resnet50 model exhibited a training accuracy of 0.9804 and a validation accuracy of 0.9653. The VGG16 model achieved a training accuracy of 0.9991 and a validation accuracy of 0.9891. The MLP model demonstrated impressive results with a training accuracy of 0.99918, a testing accuracy of 0.99223, and a loss of 0.01371. These outcomes showcase the high accuracy achieved by the proposed hybrid model in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, dyslexia, dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 64
15785 Performance Evaluation of Arrival Time Prediction Models

Authors: Bin Li, Mei Liu

Abstract:

Arrival time information is a crucial component of advanced public transport system (APTS). The advertisement of arrival time at stops can help reduce the waiting time and anxiety of passengers, and improve the quality of service. In this research, an experiment was conducted to compare the performance on prediction accuracy and precision between the link-based and the path-based historical travel time based model with the automatic vehicle location (AVL) data collected from an actual bus route. The research results show that the path-based model is superior to the link-based model, and achieves the best improvement on peak hours.

Keywords: bus transit, arrival time prediction, link-based, path-based

Procedia PDF Downloads 359
15784 Narcissism and Kohut's Self-Psychology: Self Practices in Service of Self-Transcendence

Authors: Noelene Rose

Abstract:

The DSM has been plagued with conceptual issues since its inception, not least discriminant validity and comorbidity issues. An attempt to remain a-theoretical in the divide between the psycho-dynamicists and the behaviourists contributed to much of this, in particular relating to the Personality Disorders. With the DSM-5, although the criterion have remained unchanged, major conceptual and structural directions have been flagged and proposed in section III. The biggest changes concern the Personality Disorders. While Narcissistic Personality Disorder (NPD) was initially tagged for removal, instead the addition of section III proposes a move away from a categorical approach to a more dimensional approach, with a measure of Global Function of Personality. This global measure is an assessment of impairment of self-other relations; a measure of trait narcissism. In the same way mainstream psychology has struggled in its diagnosis of narcissism, so too in its treatment. Kohut’s self psychology represents the most significant inroad in theory and treatment for the narcissistic disorders. Kohut had moved away from a categorical system, towards disorders of the self. According to this theory, disorders of the self are the result of childhood trauma (impaired attunement) resulting in a developmental arrest. Self-psychological, Psychodynamic treatment of narcissism, however, is expensive, in time and money and outside the awareness or access of most people. There is more than a suggestion that narcissism is on the increase, created in trauma and worsened by a fearful world climate. A dimensional model of narcissism, from mild to severe, requires cut off points for diagnosis. But where do we draw the line? Mainstream psychology is inclined to set it high when there is some degree of impairment in functioning in daily life. Transpersonal Psychology is inclined to set it low, with the concept that we all have some degree of narcissism and that it is the point and the path of our life journey to transcend our focus on our selves. Mainstream psychology stops its focus on trait narcissism with a healthy level of self esteem, but it is at this point that Transpersonal Psychology can complement the discussion. From a Transpersonal point of view, failure to begin the process of self-transcendence will also create emotional symptoms of meaning or purpose, often later in our lives, and is also conceived of as a developmental arrest. The maps for this transcendence are hidden in plain sight; in the chakras of kundalini yoga, in the sacraments of the Catholic Church, in the Kabbalah tree of life of Judaism, in Maslow’s hierarchy of needs, to name a few. This paper outlines some proposed research exploring the use of daily practices that can be incorporated into the therapy room; practices that utilise meditation, visualisation and imagination: that are informed by spiritual technology and guided by the psychodynamic theory of Self Psychology.

Keywords: narcissism, self-psychology, self-practice, self-transcendence

Procedia PDF Downloads 260
15783 Expectation-Confirmation Model of Information System Continuance: A Meta-Analysis

Authors: Hui-Min Lai, Chin-Pin Chen, Yung-Fu Chang

Abstract:

The expectation-confirmation model (ECM) is one of the most widely used models for evaluating information system continuance, and this model has been extended to other study backgrounds, or expanded with other theoretical perspectives. However, combining ECM with other theories or investigating the background problem may produce some disparities, thus generating inaccurate conclusions. Habit is considered to be an important factor that influences the user’s continuance behavior. This paper thus critically examines seven pairs of relationships from the original ECM and the habit variable. A meta-analysis was used to tackle the development of ECM research over the last 10 years from a range of journals and conference papers published in 2005–2014. Forty-six journal articles and 19 conference papers were selected for analysis. The results confirm our prediction that a high effect size for the seven pairs of relationships was obtained (ranging from r=0.386 to r=0.588). Furthermore, a meta-analytic structural equation modeling was performed to simultaneously test all relationships. The results show that habit had a significant positive effect on continuance intention at p<=0.05 and that the six other pairs of relationships were significant at p<0.10. Based on the findings, we refined our original research model and an alternative model was proposed for understanding and predicting information system continuance. Some theoretical implications are also discussed.

Keywords: Expectation-confirmation theory, Expectation-confirmation model, Meta-analysis, meta-analytic structural equation modeling.

Procedia PDF Downloads 307