Search results for: radio networks
1915 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods
Authors: Mohammad Arabi
Abstract:
The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.Keywords: electric motor, fault detection, frequency features, temporal features
Procedia PDF Downloads 471914 Deep Learning for Image Correction in Sparse-View Computed Tomography
Authors: Shubham Gogri, Lucia Florescu
Abstract:
Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net
Procedia PDF Downloads 1611913 Facing Global Competition through Participation in Global Innovation Networks: The Case of Mechatronics District in the Veneto Region
Authors: Monica Plechero
Abstract:
Many firms belonging to Italian industrial districts faced a crisis starting from 2000 and upsurging during 2008-2014. To remain competitive in the global market, these firms and their local systems need to renovate their traditional competitive advantages, strengthen their link with global flows of knowledge. This may be particularly relevant in sectors such as the mechatronics, that combine traditional knowledge domain with new knowledge domains (e.g. mechanics, electronics, and informatics). This sector is nowadays one of the key sectors within the so-called ‘smart specialization strategy’ that can lead part of the Italian traditional industry towards new economic developmental opportunities. This paper, by investigating the mechatronics district of the Veneto region, wants to shed new light on how firms of a local system can gain from the globalization of innovation and innovation networks. Methodologically, the paper relies on primary data collected through a survey targeting firms of the local system, as well as on a number of qualitative case studies. The relevant role of medium size companies in the district emerges as evident, as they have wider opportunities to be involved in different processes of globalization of innovation. Indeed, with respect to small companies, the size of medium firms allows them to exploit strategically international markets and globally distributed knowledge. Supporting medium firms’ global innovation strategies, and incentivizing their role as district gatekeepers, may strengthen the competitive capability of the local system and provide new opportunities to positively face global competition.Keywords: global innovation network, industrial district, internationalization, innovation, mechatronics, Veneto region
Procedia PDF Downloads 2301912 Mobile Number Portability
Authors: R. Geetha, J. Arunkumar, P. Gopal, D. Loganathan, K. Pavithra, C. Vikashini
Abstract:
Mobile Number Portability is an attempt to switch over from one network to another network facility for mobile based on applications. This facility is currently not available for mobile handsets. This application is intended to assist the mobile network and its service customers in understanding the criteria; this will serve as a universal set of requirements which must be met by the customers. This application helps the user's network portability. Accessing permission from the network provider to enable services to the user and utilizing the available network signals. It is enabling the user to make a temporary switch over to other network. The main aim of this research work is to adapt multiple networks at the time of no network coverage. It can be accessed at rural and geographical areas. This can be achieved by this mobile application. The application is capable of temporary switch over between various networks. With this application both the service provider and the network user are benefited. The service provider is benefited by charging a minimum cost for utilizing other network. It provides security in terms of password that is unique to avoid unauthorized users and to prevent loss of balance. The goal intended to be attained is a complete utilization of available network at significant situations and to provide feature that satisfy the customer needs. The temporary switch over is done to manage emergency calls when user is in rural or geographical area, where there will be a very low network coverage. Since people find it trend in using Android mobile, this application is designed as an Android applications, which can be freely downloaded and installed from Play store. In the current scenario, the service provider enables the user to change their network without shifting their mobile network. This application affords a clarification for users while they are jammed in a critical situation. This application is designed by using Android 4.2 and SQLite Version3.Keywords: mobile number, random number, alarm, imei number, call
Procedia PDF Downloads 3611911 Monitor Student Concentration Levels on Online Education Sessions
Authors: M. K. Wijayarathna, S. M. Buddika Harshanath
Abstract:
Monitoring student engagement has become a crucial part of the educational process and a reliable indicator of the capacity to retain information. As online learning classrooms are now more common these days, students' attention levels have become increasingly important, making it more difficult to check each student's concentration level in an online classroom setting. To profile student attention to various gradients of engagement, a study is a plan to conduct using machine learning models. Using a convolutional neural network, the findings and confidence score of the high accuracy model are obtained. In this research, convolutional neural networks are using to help discover essential emotions that are critical in defining various levels of participation. Students' attention levels were shown to be influenced by emotions such as calm, enjoyment, surprise, and fear. An improved virtual learning system was created as a result of these data, which allowed teachers to focus their support and advise on those students who needed it. Student participation has formed as a crucial component of the learning technique and a consistent predictor of a student's capacity to retain material in the classroom. Convolutional neural networks have a plan to implement the platform. As a preliminary step, a video of the pupil would be taken. In the end, researchers used a convolutional neural network utilizing the Keras toolkit to take pictures of the recordings. Two convolutional neural network methods are planned to use to determine the pupils' attention level. Finally, those predicted student attention level results plan to display on the graphical user interface of the System.Keywords: HTML5, JavaScript, Python flask framework, AI, graphical user
Procedia PDF Downloads 991910 Cooperative Cross Layer Topology for Concurrent Transmission Scheduling Scheme in Broadband Wireless Networks
Authors: Gunasekaran Raja, Ramkumar Jayaraman
Abstract:
In this paper, we consider CCL-N (Cooperative Cross Layer Network) topology based on the cross layer (both centralized and distributed) environment to form network communities. Various performance metrics related to the IEEE 802.16 networks are discussed to design CCL-N Topology. In CCL-N topology, nodes are classified as master nodes (Master Base Station [MBS]) and serving nodes (Relay Station [RS]). Nodes communities are organized based on the networking terminologies. Based on CCL-N Topology, various simulation analyses for both transparent and non-transparent relays are tabulated and throughput efficiency is calculated. Weighted load balancing problem plays a challenging role in IEEE 802.16 network. CoTS (Concurrent Transmission Scheduling) Scheme is formulated in terms of three aspects – transmission mechanism based on identical communities, different communities and identical node communities. CoTS scheme helps in identifying the weighted load balancing problem. Based on the analytical results, modularity value is inversely proportional to that of the error value. The modularity value plays a key role in solving the CoTS problem based on hop count. The transmission mechanism for identical node community has no impact since modularity value is same for all the network groups. In this paper three aspects of communities based on the modularity value which helps in solving the problem of weighted load balancing and CoTS are discussed.Keywords: cross layer network topology, concurrent scheduling, modularity value, network communities and weighted load balancing
Procedia PDF Downloads 2651909 Comparison of Various Policies under Different Maintenance Strategies on a Multi-Component System
Authors: Demet Ozgur-Unluakin, Busenur Turkali, Ayse Karacaorenli
Abstract:
Maintenance strategies can be classified into two types, which are reactive and proactive, with respect to the time of the failure and maintenance. If the maintenance activity is done after a breakdown, it is called reactive maintenance. On the other hand, proactive maintenance, which is further divided as preventive and predictive, focuses on maintaining components before a failure occurs to prevent expensive halts. Recently, the number of interacting components in a system has increased rapidly and therefore, the structure of the systems have become more complex. This situation has made it difficult to provide the right maintenance decisions. Herewith, determining effective decisions has played a significant role. In multi-component systems, many methodologies and strategies can be applied when a component or a system has already broken down or when it is desired to identify and avoid proactively defects that could lead to future failure. This study focuses on the comparison of various maintenance strategies on a multi-component dynamic system. Components in the system are hidden, although there exists partial observability to the decision maker and they deteriorate in time. Several predefined policies under corrective, preventive and predictive maintenance strategies are considered to minimize the total maintenance cost in a planning horizon. The policies are simulated via Dynamic Bayesian Networks on a multi-component system with different policy parameters and cost scenarios, and their performances are evaluated. Results show that when the difference between the corrective and proactive maintenance cost is low, none of the proactive maintenance policies is significantly better than the corrective maintenance. However, when the difference is increased, at least one policy parameter for each proactive maintenance strategy gives significantly lower cost than the corrective maintenance.Keywords: decision making, dynamic Bayesian networks, maintenance, multi-component systems, reliability
Procedia PDF Downloads 1291908 Approach to Establish Logistics as a Central Scientific Discipline of Tomorrow's Industry
Authors: Johannes Dregger, Michael Schmidt, Christian Prasse, Michael ten Hompel
Abstract:
Most of the today’s companies face increasing need to operate efficiently. Driven by global trends like shorter product cycles, mass customization and the rising speed of delivery, manufacturing value chains are becoming more and more distributed. Manufacturing processes are becoming highly integrated, e.g. 3D printing. All these changes are affecting companies´ organization. They are leading towards individual, small scale, and ad-hoc logistics processes and structures, and finally, towards a significant increase in the importance of logistics itself since traditional value chains transform into agile value networks. In the past logistics has been following manufacturing but in the future industry, this role allocation might change. With this increase in the logistics practice of companies and businesses, the relevance of logistics research as the methodological foundation of logistics networks and processes is gaining importance. Logistics research is evolving into a central and highly interdisciplinary science for the future industry. Using the example of Germany, this paper discusses ways to establish logistics as a central scientific discipline of the future industry. About three million people work in the logistics sector in Germany. Only automotive and retail industry have more employees. Even though there is a bunch of logistics degree programs at more than 100 institutions of higher education, a common understanding of logistics as a research discipline is missing. In this paper an innovative approach will be presented, including; identified perspectives on logistics, such as process orientation, IT orientation or employees orientation, relevant scientific disciplines for logistics science, a concept for interdisciplinary research approaches to unify the perspectives of the different scientific disciplines on logistics and the methodological base of logistics science.Keywords: logistics, logistics science, logistics management, future challenges
Procedia PDF Downloads 3141907 Fast Switching Mechanism for Multicasting Failure in OpenFlow Networks
Authors: Alaa Allakany, Koji Okamura
Abstract:
Multicast technology is an efficient and scalable technology for data distribution in order to optimize network resources. However, in the IP network, the responsibility for management of multicast groups is distributed among network routers, which causes some limitations such as delays in processing group events, high bandwidth consumption and redundant tree calculation. Software Defined Networking (SDN) represented by OpenFlow presented as a solution for many problems, in SDN the control plane and data plane are separated by shifting the control and management to a remote centralized controller, and the routers are used as a forwarder only. In this paper we will proposed fast switching mechanism for solving the problem of link failure in multicast tree based on Tabu Search heuristic algorithm and modifying the functions of OpenFlow switch to fasts switch to the pack up sub tree rather than sending to the controller. In this work we will implement multicasting OpenFlow controller, this centralized controller is a core part in our multicasting approach, which is responsible for 1- constructing the multicast tree, 2- handling the multicast group events and multicast state maintenance. And finally modifying OpenFlow switch functions for fasts switch to pack up paths. Forwarders, forward the multicast packet based on multicast routing entries which were generated by the centralized controller. Tabu search will be used as heuristic algorithm for construction near optimum multicast tree and maintain multicast tree to still near optimum in case of join or leave any members from multicast group (group events).Keywords: multicast tree, software define networks, tabu search, OpenFlow
Procedia PDF Downloads 2631906 Role of IT Systems in Corporate Recruitment: Challenges and Constraints
Authors: Brahim Bellali, Fatima Bellali
Abstract:
The integration of information technology systems (ITS) into a company's human resources processes seems to be the appropriate solution to the problem of evolving and adapting its human resources management practices in order to be both more strategic and more efficient in terms of costs and service quality. In this context, the aim of this work is to study the impact of information technology systems (ITS) on the recruitment process. In this study, we targeted candidates who had recruited using IT tools. The target population consists of 34 candidates based in Casablanca, Morocco. In order to collect the data, a questionnaire had to be drawn up. The survey is based on a data sheet and a questionnaire that is divided into several sections to make it more structured and comprehensible. The results show that the majority of respondents say that companies are making greater use of online CV libraries and social networks as digital solutions during the recruitment process. The results also show that 50% of candidates say that the use of digital tools by companies would not slow them down when applying for a job and that these IT tools improve manual recruitment processes, while 44.1% think that they facilitate recruitment without any human intervention. The majority of respondents (52.9%) think that social networks are the digital solutions most often used by recruiters in the sourcing phase. The constraints of digital recruitment encountered are the dehumanization of human resources (44.1%) and the limited interaction during remote interviews (44.1%), which leaves no room for informal exchanges. Digital recruitment can be a highly effective strategy for finding qualified candidates in a variety of fields. Here are a few recommendations for optimizing your digital recruitment process: (1) Use online recruitment platforms: LinkedIn, Twitter, and Facebook ; (2) Use applicant tracking systems (ATS) ; (3) Develop a content marketing strategy.Keywords: IT systems, recruitment, challenges, constraints
Procedia PDF Downloads 331905 The Challenges of Cloud Computing Adoption in Nigeria
Authors: Chapman Eze Nnadozie
Abstract:
Cloud computing, a technology that is made possible through virtualization within networks represents a shift from the traditional ownership of infrastructure and other resources by distinct organization to a more scalable pattern in which computer resources are rented online to organizations on either as a pay-as-you-use basis or by subscription. In other words, cloud computing entails the renting of computing resources (such as storage space, memory, servers, applications, networks, etc.) by a third party to its clients on a pay-as-go basis. It is a new innovative technology that is globally embraced because of its renowned benefits, profound of which is its cost effectiveness on the part of organizations engaged with its services. In Nigeria, the services are provided either directly to companies mostly by the key IT players such as Microsoft, IBM, and Google; or in partnership with some other players such as Infoware, Descasio, and Sunnet. This action enables organizations to rent IT resources on a pay-as-you-go basis thereby salvaging them from wastages accruable on acquisition and maintenance of IT resources such as ownership of a separate data centre. This paper intends to appraise the challenges of cloud computing adoption in Nigeria, bearing in mind the country’s peculiarities’ in terms of infrastructural development. The methodologies used in this paper include the use of research questionnaires, formulated hypothesis, and the testing of the formulated hypothesis. The major findings of this paper include the fact that there are some addressable challenges to the adoption of cloud computing in Nigeria. Furthermore, the country will gain significantly if the challenges especially in the area of infrastructural development are well addressed. This is because the research established the fact that there are significant gains derivable by the adoption of cloud computing by organizations in Nigeria. However, these challenges can be overturned by concerted efforts in the part of government and other stakeholders.Keywords: cloud computing, data centre, infrastructure, it resources, virtualization
Procedia PDF Downloads 3511904 Comparison of Different Machine Learning Algorithms for Solubility Prediction
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.Keywords: random forest, machine learning, comparison, feature extraction
Procedia PDF Downloads 401903 Atmospheric Transport Modeling of Radio-Xenon Detections Possibly Related to the Announced Nuclear Test in North Korea on February 12, 2013
Authors: Kobi Kutsher
Abstract:
On February 12th 2013, monitoring stations of the Preparatory Commission of the Comprehensive Nuclear Test-Ban Treaty Organization (CTBTO) detected a seismic event with explosion-like underground characteristics in the Democratic People’s Republic of Korea (DPRK). The location was found to be in the vicinity of the two previous announced nuclear tests in 2006 and 2009.The nuclear test was also announced by the government of the DPRK.After an underground nuclear explosion, radioactive fission products (mostly noble gases) can seep through layers of rock and sediment until they escape into the atmosphere. The fission products are dispersed in the atmosphere and may be detected thousands of kilometers downwind from the test site. Indeed, more than 7 weeks after the explosion, unusual detections of noble gases was reported at the radionuclide station in Takasaki, Japan. The radionuclide station is a part of the International Monitoring System, operated to verify the CTBT. This study provides an estimation of the possible source region and the total radioactivity of the release using Atmospheric Transport Modeling.Keywords: atmospheric transport modeling, CTBTO, nuclear tests, radioactive fission products
Procedia PDF Downloads 4251902 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modelling and Solving
Authors: Yasin Tadayonrad
Abstract:
Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading /unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is loading/unloading capacity in each source/ destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.Keywords: supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming
Procedia PDF Downloads 911901 Impact of Information Technology Systems on the Recruitment Process in Morocco
Authors: Brahim Bellali, Fatima Bellali
Abstract:
The integration of information technology systems (ITS) into a company's ‘human resources processes seems to be the appropriate solution to the problem of evolving and adapting its human resources management practices in order to be both more strategic and more efficient in terms of costs and service quality. In this context, the aim of this work is to study the impact of information technology systems (ITS) on the recruitment process. In this study, we targeted candidates who had recruited using IT tools. The target population consists of 34 candidates based in Casablanca, Morocco. In order to collect the data, a questionnaire had to be drawn up. The survey is based on a data sheet and a questionnaire that is divided into several sections to make it more structured and comprehensible. The results show that the majority of respondents say that companies are making greater use of online CV libraries and social networks as digital solutions during the recruitment process. The results also show that 50% of candidates say that the use of digital tools by companies would not slow them down when applying for a job and that these IT tools improve manual recruitment processes, while 44.1% think that they facilitate recruitment without any human intervention. The majority of respondents (52.9%) think that social networks are the digital solutions most often used by recruiters in the sourcing phase. The constraints of digital recruitment encountered are the dehumanization of human resources (44.1%) and the limited interaction during remote interviews (44.1%), which leaves no room for informal exchanges. Digital recruitment can be a highly effective strategy for finding qualified candidates in a variety of fields. Here are a few recommendations for optimizing your digital recruitment process: (1) Use online recruitment platforms: LinkedIn, Twitter, and Facebook ; (2) Use applicant tracking systems (ATS) ; (3) Develop a content marketing strategy.Keywords: IT systems, recruitment, challenges, constraints
Procedia PDF Downloads 91900 Impact of Information Technology Systems on the Recruitment Process in Morocco
Authors: Bellali Brahim, Bellali Fatima
Abstract:
The integration of information technology systems (ITS) into a company's ‘human resources processes seems to be the appropriate solution to the problem of evolving and adapting its human resources management practices in order to be both more strategic and more efficient in terms of costs and service quality. In this context, the aim of this work is to study the impact of nformation technology systems (ITS) on the recruitment process. In this study, we targeted candidates who had recruited using IT tools. The target population consists of 34 candidates based in Casablanca, Morocco. In order to collect the data, a questionnaire had to be drawn up. The survey is based on a data sheet and a questionnaire that is divided into several sections to make it more structured and comprehensible. The results show that the majority of respondents say that companies are making greater use of online CV libraries and social networks as digital solutions during the recruitment process. The results also show that 50% of candidates say that the use of digital tools by companies would not slow them down when applying for a job and that these IT tools improve manual recruitment processes, while 44.1% think that they facilitate recruitment without any human intervention. The majority of respondents (52.9%) think that social networks are the digital solutions most often used by recruiters in the sourcing phase. The constraints of digital recruitment encountered are the dehumanization of human resources (44.1%) and the limited interaction during remote interviews (44.1%), which leaves no room for informal exchanges. Digital recruitment can be a highly effective strategy for finding qualified candidates in a variety of fields. Here are a few recommendations for optimizing your digital recruitment process: (1) Use online recruitment platforms: LinkedIn, Twitter, and Facebook ; (2) Use applicant tracking systems (ATS) ; (3) Develop a content marketing strategy.Keywords: IT systems, recruitment, challenges, constraints
Procedia PDF Downloads 261899 The Effects of Qigong Exercise Intervention on the Cognitive Function in Aging Adults
Authors: D. Y. Fong, C. Y. Kuo, Y. T. Chiang, W. C. Lin
Abstract:
Objectives: Qigong is an ancient Chinese practice in pursuit of a healthier body and a more peaceful mindset. It emphasizes on the restoration of vital energy (Qi) in body, mind, and spirit. The practice is the combination of gentle movements and mild breathing which help the doers reach the condition of tranquility. On account of the features of Qigong, first, we use cross-sectional methodology to compare the differences among the varied levels of Qigong practitioners on cognitive function with event-related potential (ERP) and electroencephalography (EEG). Second, we use the longitudinal methodology to explore the effects on the Qigong trainees for pretest and posttest on ERP and EEG. Current study adopts Attentional Network Test (ANT) task to examine the participants’ cognitive function, and aging-related researches demonstrated a declined tread on the cognition in older adults and exercise might ameliorate the deterioration. Qigong exercise integrates physical posture (muscle strength), breathing technique (aerobic ability) and focused intention (attention) that researchers hypothesize it might improve the cognitive function in aging adults. Method: Sixty participants were involved in this study, including 20 young adults (21.65±2.41 y) with normal physical activity (YA), 20 Qigong experts (60.69 ± 12.42 y) with over 7 years Qigong practice experience (QE), and 20 normal and healthy adults (52.90±12.37 y) with no Qigong practice experience as experimental group (EG). The EG participants took Qigong classes 2 times a week and 2 hours per time for 24 weeks with the purpose of examining the effect of Qigong intervention on cognitive function. ANT tasks (alert network, orient network, and executive control) were adopted to evaluate participants’ cognitive function via ERP’s P300 components and P300 amplitude topography. Results: Behavioral data: 1.The reaction time (RT) of YA is faster than the other two groups, and EG was faster than QE in the cue and flanker conditions of ANT task. 2. The RT of posttest was faster than pretest in EG in the cue and flanker conditions. 3. No difference among the three groups on orient, alert, and execute control networks. ERP data: 1. P300 amplitude detection in QE was larger than EG at Fz electrode in orient, alert, and execute control networks. 2. P300 amplitude in EG was larger at pretest than posttest on the orient network. 3. P300 Latency revealed no difference among the three groups in the three networks. Conclusion: Taken together these findings, they provide neuro-electrical evidence that older adults involved in Qigong practice may develop a more overall compensatory mechanism and also benefit the performance of behavior.Keywords: Qigong, cognitive function, aging, event-related potential (ERP)
Procedia PDF Downloads 3931898 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids
Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone
Abstract:
Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain
Procedia PDF Downloads 4681897 Effect of Media on Psycho-Social Interaction among the Children with Their Parents of Urban People in Dhaka
Authors: Nazma Sultana
Abstract:
Social media has become an important part of our daily life. It has a significance influences on the people who use them in their daily life frequently. The number of people using social network sites has been increasing continuously. For this frequent utilization has started to affect our social life. This study examine whether the use of social network sites affects the psychosocial interaction between children and their parents. At first parents introduce their children to the internet and different type of device in their early childhood. Many parents use device for feeding their children by watching rhyme or cartoon. As a result children are habituate with it. In Bangladesh 70% people are heavy internet users. About 23 percent of them spend more than five hours on the social networking sites a day. Media are increasing pervasive in the lives of children-roughly the average child today spends nearly about 45 hours per week with media, compared with 17 hours with parents and 30 hours in school. According to a social learning theory, children & adolescents learn by observing & imitating what they see on screen particularly when these behaviors are realistic or are rewarded. The influence of the media on the psychosocial development of children is profound. Thus it is important for parents to provide guidance on age-appropriate use of all media, including television, radio, music, video games and the internet.Keywords: social media, psychosocial, Technology, Parent, Social Relationship, Adolescents, Teenage, Youth
Procedia PDF Downloads 1121896 Evaluation of Railway Network and Service Performance Based on Transportation Sustainability in DKI Jakarta
Authors: Nur Bella Octoria Bella, Ayomi Dita Rarasati
Abstract:
DKI Jakarta is Indonesia's capital city with the 10th highest congestion rate in the world based on the 2019 traffic index. Other than that based on World Air Quality Report in 2019 showed DKI Jakarta's air pollutant concentrate 49.4 µg and the 5th highest air pollutant in the world. In the urban city nowadays, the mobility rate is high enough and the efficiency for sustainability assessment in transport infrastructure development is needed. This efficiency is the important key for sustainable infrastructure development. DKI Jakarta is nowadays in the process of constructing the railway infrastructure to support the transportation system. The problems appearing are the railway infrastructure networks and the service in DKI Jakarta already planned based on sustainability factors or not. Therefore, the aim of this research is to make the evaluation of railways infrastructure networks performance and services in DKI Jakarta regards on the railway sustainability key factors. Further, this evaluation will be used to make the railway sustainability assessment framework and to offer some of the alternative solutions to improve railway transportation sustainability in DKI Jakarta. Firstly a very detailed literature review of papers that have focused on railway sustainability factors and their improvements of railway sustainability, published in the scientific journal in the period 2011 until 2021. Regarding the sustainability factors from the literature review, further, it is used to assess the current condition of railway infrastructure in DKI Jakarta. The evaluation will be using a Likert rate questionnaire and directed to the transportation railway expert and the passenger. Furthermore, the mapping and evaluation rate based on the sustainability factors will be compared to the effect factors using the Analytical Hierarchical Process (AHP). This research offers the network's performance and service rate impact on the sustainability aspect and the passenger willingness for using the rail public transportation in DKI Jakarta.Keywords: transportation sustainability, railway transportation, sustainability, DKI Jakarta
Procedia PDF Downloads 1631895 Traditional versus New Media: Creating Awareness on Environment Protection in Pakistan
Authors: Hafsah Javed
Abstract:
Environment protection is a major issue grabbing widespread attention of policymakers, both, locally and globally. Pakistan is among the countries most affected by global climate changes; media, besides governments, have a prime responsibility to create awareness among people about its hazards, and managing strategies. Advances in Information Communication Technologies have eased people's access to information and created an interactive space to discuss environment related issues and influence the policy decisions on the issue. This study, therefore, aims to examine, from the perspective of the audience, the contribution of Pakistani traditional and social media in creating awareness about Environment Protection and its implications. The objectives are achieved through quantitative survey method. Young university students are selected as ‘audience’ for the study. The findings show lack of awareness among people regarding environment protection. Neither traditional media outlets like radio, TV and newspapers prioritize the issue on their agenda, nor audience pull information about the issue from social media. A stark indifference and non-serious attitude is being exercised towards the issue from two quarters. People do not know much about local and international laws on environment; media are used more than a source of entertainment than awareness. The study implicates that there is an exigency to launch a nationwide awareness campaign on the issue, and for that media need to be on the driving seat.Keywords: awareness, climate change, environment protection, new media, role of media, youngsters
Procedia PDF Downloads 1471894 Visible Light Communication and Challenges
Authors: Hamid Sharif, Nazish Saleem Abbas, Muhammad Haris Jamil
Abstract:
Visible light communication is an emerging technology for almost a decade now; there is a growing need for VLC systems to overcome the challenges faced by radio frequency RF communication systems. With the advancement in the development of solid-state sources, in the future would replace incandescent and fluorescent light sources. These solid-state devices are not only to be used for illumination but can also be employed for communication and navigational purposes. The replacement of conventional illumination sources with highly efficient light-emitting diodes (LED's) (generally white light) will reduce energy consumption as well as environmental pollution. White LEDs dissipate very less power as compared to conventional light sources. The use of LED's is not only beneficial in terms of power consumption, but it also has an intrinsic capability for indoor wireless communication as compared to indoor RF communication. It is considerably low in cost to operate than the RF systems such as Wi-Fi routers, allows convenient means of reusing the bandwidth, and there is a huge potential for high data rate transmissions with enhanced data security. This paper provides an overview of some of the current challenges with VLC and proposes a possible solution to deal with these challenges; it also examines some joint protocols to optimize the joint illumination and communication functionality.Keywords: visible light communication, line of sight, root mean square delay spread, light emitting diodes
Procedia PDF Downloads 711893 Effect of Atmospheric Turbulence on Hybrid FSO/RF Link Availability under Qatar's Harsh Climate
Authors: Abir Touati, Syed Jawad Hussain, Farid Touati, Ammar Bouallegue
Abstract:
Although there has been a growing interest in the hybrid free-space optical link and radio frequency FSO/RF communication system, the current literature is limited to results obtained in moderate or cold environment. In this paper, using a soft switching approach, we investigate the effect of weather inhomogeneities on the strength of turbulence hence the channel refractive index under Qatar harsh environment and their influence on the hybrid FSO/RF availability. In this approach, either FSO/RF or simultaneous or none of them can be active. Based on soft switching approach and a finite state Markov Chain (FSMC) process, we model the channel fading for the two links and derive a mathematical expression for the outage probability of the hybrid system. Then, we evaluate the behavior of the hybrid FSO/RF under hazy and harsh weather. Results show that the FSO/RF soft switching renders the system outage probability less than that of each link individually. A soft switching algorithm is being implemented on FPGAs using Raptor code interfaced to the two terminals of a 1Gbps/100 Mbps FSO/RF hybrid system, the first being implemented in the region. Experimental results are compared to the above simulation results.Keywords: atmospheric turbulence, haze, hybrid FSO/RF, outage probability, refractive index
Procedia PDF Downloads 4191892 Recent Developments in the Application of Deep Learning to Stock Market Prediction
Authors: Shraddha Jain Sharma, Ratnalata Gupta
Abstract:
Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume
Procedia PDF Downloads 901891 Remote Sensing through Deep Neural Networks for Satellite Image Classification
Authors: Teja Sai Puligadda
Abstract:
Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss
Procedia PDF Downloads 1591890 Leveraging Li-Fi to Enhance Security and Performance of Medical Devices
Authors: Trevor Kroeger, Hayden Williams, Edward Holzinger, David Coleman, Brian Haberman
Abstract:
The network connectivity of medical devices is increasing at a rapid rate. Many medical devices, such as vital sign monitors, share information via wireless or wired connections. However, these connectivity options suffer from a variety of well-known limitations. Wireless connectivity, especially in the unlicensed radio frequency bands, can be disrupted. Such disruption could be due to benign reasons, such as a crowded spectrum, or to malicious intent. While wired connections are less susceptible to interference, they inhibit the mobility of the medical devices, which could be critical in a variety of scenarios. This work explores the application of Light Fidelity (Li-Fi) communication to enhance the security, performance, and mobility of medical devices in connected healthcare scenarios. A simple bridge for connected devices serves as an avenue to connect traditional medical devices to the Li-Fi network. This bridge was utilized to conduct bandwidth tests on a small Li-Fi network installed into a Mock-ICU setting with a backend enterprise network similar to that of a hospital. Mobile and stationary tests were conducted to replicate various different situations that might occur within a hospital setting. Results show that in room Li-Fi connectivity provides reasonable bandwidth and latency within a hospital like setting.Keywords: hospital, light fidelity, Li-Fi, medical devices, security
Procedia PDF Downloads 1021889 Chipless RFID Capacity Enhancement Using the E-pulse Technique
Authors: Haythem H. Abdullah, Hesham Elkady
Abstract:
With the fast increase in radio frequency identification (RFID) applications such as medical recording, library management, etc., the limitation of active tags stems from its need to external batteries as well as passive or active chips. The chipless RFID tag reduces the cost to a large extent but at the expense of utilizing the spectrum. The reduction of the cost of chipless RFID is due to the absence of the chip itself. The identification is done by utilizing the spectrum in such a way that the frequency response of the tags consists of some resonance frequencies that represent the bits. The system capacity is decided by the number of resonators within the pre-specified band. It is important to find a solution to enhance the spectrum utilization when using chipless RFID. Target identification is a process that results in a decision that a specific target is present or not. Several target identification schemes are present, but one of the most successful techniques in radar target identification in the oscillatory region is the extinction pulse technique (E-Pulse). The E-Pulse technique is used to identify targets via its characteristics (natural) modes. By introducing an innovative solution for chipless RFID reader and tag designs, the spectrum utilization goes to the optimum case. In this paper, a novel capacity enhancement scheme based on the E-pulse technique is introduced to improve the performance of the chipless RFID system.Keywords: chipless RFID, E-pulse, natural modes, resonators
Procedia PDF Downloads 801888 Protection of Minor's Privacy in Bosnian Herzegovinian Media (Legal Regulation and Current Media Reporting)
Authors: Ilija Musa
Abstract:
Positive legal regulation of juvenile privacy protection, current state of showing a child in BH media and possibilities of a child’s privacy protection by more adequate media legislature which should be arranged in accordance to recommendations of the UN Committee on the Rights of the Child for Bosnia and Herzegovina. Privacy of the minors in Bosnian-Herzegovinian media is insufficiently legally arranged. Due to the fact that there is no law on media area arrangement at the state level, electronic media are under jurisdiction of Communications regulatory agency, which at least partially, regulated the sector of radio and television broadcasting by adequate protection of child’s privacy. However, print and online media are under jurisdiction of non-governmental association Print and online media council in B&H which is not authorized to punish violators of this body’s Codex, what points out the necessity of passing the unique media law which would enable sanctioning the child’s privacy violation. The analysis of media content, which is a common violation of the child's privacy, analysis of positive legislation which regulates the media, confirmed the working hypothesis by which the minor’s protection policy in BH media is not protected at the appropriate level. Taking this into consideration, in the conclusion of this article the author gives recommendations for the regulation of legal protection of minor’s privacy in BH media.Keywords: children, media, legislation, privacy protection, Bosnia Herzegovina
Procedia PDF Downloads 4921887 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images
Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu
Abstract:
Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning
Procedia PDF Downloads 1861886 Managing the Magnetic Protection of Workers in Magnetic Resonance Imaging
Authors: Safoin Aktaou, Aya Al Masri, Kamel Guerchouche, Malorie Martin, Fouad Maaloul
Abstract:
Introduction: In the ‘Magnetic Resonance Imaging (MRI)’ department, all workers involved in preparing the patient, setting it up, tunnel cleaning, etc. are likely to be exposed to ‘ElectroMagnetic fields (EMF)’ emitted by the MRI device. Exposure to EMF can cause adverse radio-biological effects to workers. The purpose of this study is to propose an organizational process to manage and control EMF risks. Materials and methods: The study was conducted at seven MRI departments using machines with 1.5 and 3 Tesla magnetic fields. We assessed the exposure of each one by measuring the two electromagnetic fields (static and dynamic) at different distances from the MRI machine both inside and around the examination room. Measurement values were compared with British and American references (those of the UK's ‘Medicines and Healthcare Regulatory Agency (MHRA)’ and the ‘American Radiology Society (ACR)’). Results: Following the results of EMF measurements and their comparison with the recommendations of learned societies, a zoning system that adapts to needs of different MRI services across the country has been proposed. In effect, three risk areas have been identified within the MRI services. This has led to the development of a good practice guide related to the magnetic protection of MRI workers. Conclusion: The guide established by our study is a standard that allows MRI workers to protect themselves against the risk of electromagnetic fields.Keywords: comparison with international references, measurement of electromagnetic fields, magnetic protection of workers, magnetic resonance imaging
Procedia PDF Downloads 164