Search results for: radial error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2263

Search results for: radial error

943 Ocular Biometry: Common Etiologies of Difference More Than 0.33mm between Axial Lengths of the 2 Eyes

Authors: Ghandehari Motlagh, Mohammad

Abstract:

Purpose: We tried to find the most common etiologies for anisometropia in pre-op cataract cases: axial or refractive. Methods: In this cross-sectional study ,41 pre-op cataract eyes with more than 0.33 difference between axial lengths of 2 eyes were enrolled.Considered for each 1mm difference between axial lengths in long eyes( AXL more than 25):1.75-2.00 D of anisometropia, for normal eyes(AXL: 22- 25):2.50D and for short eyes (AXL less than 22):3.50-3.75 D as axial anisometropia. If there are more or lesser anisometropia, we recorded as refractive anisometropia. Results: Average of anisometropia :4.24 D, prevalence of PK or LK :1 (2.38%), kc:1(2.38%), glaucoma surgery: 1(2.38%), and pseudophakic status of the opposite eye 8(19.04%). Prevalence of axial anisometropia:21 (52.4%) and refractive anisometropia 20(47.6%).Then on basis of this study we can rely on the patient’s refraction exactly before phaco for evaluation of axial length differences between the 2 eyes, because most of the anisometropias are axial. Conclusion: In most cases, cataract does not induce significant change in refractive error (secondary myopia) and AXL difference between the 2 eyes are correlated with anisometropia.so it can be used for cataract patient’s ocular biometry evaluation. Pre-cataract refraction is a valuable variable should be measured and recorded in routin eye examination.

Keywords: ocular axial length, anisometropia, cataract, ophthalmology and optometry

Procedia PDF Downloads 381
942 Prediction of Compressive Strength Using Artificial Neural Network

Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal

Abstract:

Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-Destructive Techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.

Keywords: rebound, ultra-sonic pulse, penetration, ANN, NDT, regression

Procedia PDF Downloads 428
941 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach

Authors: Riznaldi Akbar

Abstract:

In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.

Keywords: debt crisis, external debt, artificial neural network, ANN

Procedia PDF Downloads 440
940 Analysis and Prediction of Fine Particulate Matter in the Air Environment for 2007-2020 in Bangkok Thailand

Authors: Phawichsak Prapassornpitaya, Wanida Jinsart

Abstract:

Daily monitoring PM₁₀ and PM₂.₅ data from 2007 to 2017 were analyzed to provide baseline data for prediction of the air pollution in Bangkok in the period of 2018 -2020. Two statistical models, Autoregressive Integrated Moving Average model (ARIMA) were used to evaluate the trends of pollutions. The prediction concentrations were tested by root means square error (RMSE) and index of agreement (IOA). This evaluation of the traffic PM₂.₅ and PM₁₀ were studied in association with the regulatory control and emission standard changes. The emission factors of particulate matter from diesel vehicles were decreased when applied higher number of euro standard. The trends of ambient air pollutions were expected to decrease. However, the Bangkok smog episode in February 2018 with temperature inversion caused high concentration of PM₂.₅ in the air environment of Bangkok. The impact of traffic pollutants was depended upon the emission sources, temperature variations, and metrological conditions.

Keywords: fine particulate matter, ARIMA, RMSE, Bangkok

Procedia PDF Downloads 278
939 Hierarchical Piecewise Linear Representation of Time Series Data

Authors: Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.

Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation

Procedia PDF Downloads 275
938 Indigenous Patch Clamp Technique: Design of Highly Sensitive Amplifier Circuit for Measuring and Monitoring of Real Time Ultra Low Ionic Current through Cellular Gates

Authors: Moez ul Hassan, Bushra Noman, Sarmad Hameed, Shahab Mehmood, Asma Bashir

Abstract:

The importance of Noble prize winning “Patch Clamp Technique” is well documented. However, Patch Clamp Technique is very expensive and hence hinders research in developing countries. In this paper, detection, processing and recording of ultra low current from induced cells by using transimpedence amplifier is described. The sensitivity of the proposed amplifier is in the range of femto amperes (fA). Capacitive-feedback is used with active load to obtain a 20MΩ transimpedance gain. The challenging task in designing includes achieving adequate performance in gain, noise immunity and stability. The circuit designed by the authors was able to measure current in the rangeof 300fA to 100pA. Adequate performance shown by the amplifier with different input current and outcome result was found to be within the acceptable error range. Results were recorded using LabVIEW 8.5®for further research.

Keywords: drug discovery, ionic current, operational amplifier, patch clamp

Procedia PDF Downloads 519
937 Experimental Assessment of Micromechanical Models for Mechanical Properties of Recycled Short Fiber Composites

Authors: Mohammad S. Rouhi, Magdalena Juntikka

Abstract:

Processing of polymer fiber composites has a remarkable influence on their mechanical performance. These mechanical properties are even more influenced when using recycled reinforcement. Therefore, we place particular attention on the evaluation of micromechanical models to estimate the mechanical properties and compare them against the experimental results of the manufactured composites. For the manufacturing process, an epoxy matrix and carbon fiber production cut-offs as reinforcing material are incorporated using a vacuum infusion process. In addition, continuous textile reinforcement in combination with the epoxy matrix is used as reference material to evaluate the kick-down in mechanical performance of the recycled composite. The experimental results show less degradation of the composite stiffness compared to the strength properties. Observations from the modeling also show the same trend as the error between the theoretical and experimental results is lower for stiffness comparisons than the strength calculations. Yet still, good mechanical performance for specific applications can be expected from these materials.

Keywords: composite recycling, carbon fibers, mechanical properties, micromechanics

Procedia PDF Downloads 161
936 Subband Coding and Glottal Closure Instant (GCI) Using SEDREAMS Algorithm

Authors: Harisudha Kuresan, Dhanalakshmi Samiappan, T. Rama Rao

Abstract:

In modern telecommunication applications, Glottal Closure Instants location finding is important and is directly evaluated from the speech waveform. Here, we study the GCI using Speech Event Detection using Residual Excitation and the Mean Based Signal (SEDREAMS) algorithm. Speech coding uses parameter estimation using audio signal processing techniques to model the speech signal combined with generic data compression algorithms to represent the resulting modeled in a compact bit stream. This paper proposes a sub-band coder SBC, which is a type of transform coding and its performance for GCI detection using SEDREAMS are evaluated. In SBCs code in the speech signal is divided into two or more frequency bands and each of these sub-band signal is coded individually. The sub-bands after being processed are recombined to form the output signal, whose bandwidth covers the whole frequency spectrum. Then the signal is decomposed into low and high-frequency components and decimation and interpolation in frequency domain are performed. The proposed structure significantly reduces error, and precise locations of Glottal Closure Instants (GCIs) are found using SEDREAMS algorithm.

Keywords: SEDREAMS, GCI, SBC, GOI

Procedia PDF Downloads 356
935 Application of Refractometric Methodology for Simultaneous Determination of Alcohol and Residual Sugar Concentrations during Alcoholic Fermentation Bioprocess of Date Juice

Authors: Boukhiar Aissa, Halladj Fatima, Iguergaziz Nadia, Lamrani yasmina, Benamara Salem

Abstract:

Determining the alcohol content in alcoholic fermentation bioprocess is of great importance. In fact, it is a key indicator for monitoring this bioprocess. Several methodologies (chemical, spectrophotometric, chromatographic) are used to the determination of this parameter. However, these techniques are very long and they require: rigorous preparations, sometimes dangerous chemical reagents and/or expensive equipment. In the present study, the date juice is used as the substrate of alcoholic fermentation. The extracted juice undergoes an alcoholic fermentation by Saccharomyces cerevisiae. The study of the possible use of refractometry as a sole means for the in situ control of alcoholic fermentation revealed a good correlation (R2=0.98) between initial and final °Brix: °Brixf=0.377×°Brixi. In addition, the relationship between Δ°Brix and alcoholic content of the final product (A,%) has been determined: Δ°Brix/A=1.1. The obtained results allowed us to establish iso-responses abacus, which can be used for the determination of alcohol and residual sugar content, with a mean relative error (MRE) of 5.35%.

Keywords: alcoholic fermentation, date juice, refractometry, residual sugar

Procedia PDF Downloads 341
934 Deflection Effect on Mirror for Space Applications

Authors: Maamar Fatouma

Abstract:

Mirror optical performance can experience varying levels of stress and tolerances, which can have a notable impact on optical parametric systems. to ensure proper optical figure and position of mirror mounting within design tolerances, it is crucial to have a robust support structure in place for optical systems. The optical figure tolerance determines the allowable deviation from the ideal form of the mirror and the position tolerance determines the location and orientations of the optical axis of the optical systems. A variety of factors influence the optical figure of the mirror. Included are self-weight (Deflection), excitation from temperature change, temperature gradients and dimensional instability. This study employs an analytical approach and finite element method to examine the effects of stress resulting from mirror mounting on the wavefront passing through the mirror. The combined effect of tolerance and deflection on mirror performance is represented by an error budget. Numerical mirror mounting is presented to illustrate the space application of performance techniques.

Keywords: opto-mechanical, bonded optic, tolerance, self-weight distortion, Rayleigh criteria

Procedia PDF Downloads 89
933 R Software for Parameter Estimation of Spatio-Temporal Model

Authors: Budi Nurani Ruchjana, Atje Setiawan Abdullah, I. Gede Nyoman Mindra Jaya, Eddy Hermawan

Abstract:

In this paper, we propose the application package to estimate parameters of spatiotemporal model based on the multivariate time series analysis using the R open-source software. We build packages mainly to estimate the parameters of the Generalized Space Time Autoregressive (GSTAR) model. GSTAR is a combination of time series and spatial models that have parameters vary per location. We use the method of Ordinary Least Squares (OLS) and use the Mean Average Percentage Error (MAPE) to fit the model to spatiotemporal real phenomenon. For case study, we use oil production data from volcanic layer at Jatibarang Indonesia or climate data such as rainfall in Indonesia. Software R is very user-friendly and it is making calculation easier, processing the data is accurate and faster. Limitations R script for the estimation of model parameters spatiotemporal GSTAR built is still limited to a stationary time series model. Therefore, the R program under windows can be developed either for theoretical studies and application.

Keywords: GSTAR Model, MAPE, OLS method, oil production, R software

Procedia PDF Downloads 242
932 Application of Association Rule Using Apriori Algorithm for Analysis of Industrial Accidents in 2013-2014 in Indonesia

Authors: Triano Nurhikmat

Abstract:

Along with the progress of science and technology, the development of the industrialized world in Indonesia took place very rapidly. This leads to a process of industrialization of society Indonesia faster with the establishment of the company and the workplace are diverse. Development of the industry relates to the activity of the worker. Where in these work activities do not cover the possibility of an impending crash on either the workers or on a construction project. The cause of the occurrence of industrial accidents was the fault of electrical damage, work procedures, and error technique. The method of an association rule is one of the main techniques in data mining and is the most common form used in finding the patterns of data collection. In this research would like to know how relations of the association between the incidence of any industrial accidents. Therefore, by using methods of analysis association rule patterns associated with combination obtained two iterations item set (2 large item set) when every factor of industrial accidents with a West Jakarta so industrial accidents caused by the occurrence of an electrical value damage = 0.2 support and confidence value = 1, and the reverse pattern with value = 0.2 support and confidence = 0.75.

Keywords: association rule, data mining, industrial accidents, rules

Procedia PDF Downloads 299
931 Power Supply Feedback Regulation Loop Design Using Cadence PSpice Tool: Determining Converter Stability by Simulation

Authors: Debabrata Das

Abstract:

This paper explains how to design a regulation loop for a power supply circuit. It also discusses the need of a regulation loop and the improvement of a circuit with regulation loop. A sample design is used to demonstrate how to use PSpice to design feedback loop to control output voltage of a power supply and how to check if the power supply is stable or oscillatory. A sample design is made using a specific Integrated Circuit (IC) available in the PSpice library. A designer can experiment feedback loop design using Cadence Pspice tool. PSpice is easy to use, reliable, and convenient. To test a feedback loop, generally, engineers use trial and error method with the hardware which takes a lot of time and manpower. Moreover, it is expensive because component and Printed Circuit Board (PCB) may go bad. PSpice can be used by designers to test their loop designs without using hardware circuits. A designer can save time, cost, manpower and simulate his/her power supply circuit accurately before making a real hardware using this software package.

Keywords: power electronics, feedback loop, regulation, stability, pole, zero, oscillation

Procedia PDF Downloads 346
930 Modification of Underwood's Equation to Calculate Minimum Reflux Ratio for Column with One Side Stream Upper Than Feed

Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi

Abstract:

Distillation is one of the most important and utilized separation methods in the industrial practice. There are different ways to design of distillation column. One of these ways is short cut method. In short cut method, material balance and equilibrium are employed to calculate number of tray in distillation column. There are different methods that are classified in short cut method. One of these methods is Fenske-Underwood-Gilliland method. In this method, minimum reflux ratio should be calculated by underwood equation. Underwood proposed an equation that is useful for simple distillation column with one feed and one top and bottom product. In this study, underwood method is developed to predict minimum reflux ratio for column with one side stream upper than feed. The result of this model compared with McCabe-Thiele method. The result shows that proposed method able to calculate minimum reflux ratio with very small error.

Keywords: minimum reflux ratio, side stream, distillation, Underwood’s method

Procedia PDF Downloads 406
929 Estimation of Synchronous Machine Synchronizing and Damping Torque Coefficients

Authors: Khaled M. EL-Naggar

Abstract:

Synchronizing and damping torque coefficients of a synchronous machine can give a quite clear picture for machine behavior during transients. These coefficients are used as a power system transient stability measurement. In this paper, a crow search optimization algorithm is presented and implemented to study the power system stability during transients. The algorithm makes use of the machine responses to perform the stability study in time domain. The problem is formulated as a dynamic estimation problem. An objective function that minimizes the error square in the estimated coefficients is designed. The method is tested using practical system with different study cases. Results are reported and a thorough discussion is presented. The study illustrates that the proposed method can estimate the stability coefficients for the critical stable cases where other methods may fail. The tests proved that the proposed tool is an accurate and reliable tool for estimating the machine coefficients for assessment of power system stability.

Keywords: optimization, estimation, synchronous, machine, crow search

Procedia PDF Downloads 140
928 Blind Super-Resolution Reconstruction Based on PSF Estimation

Authors: Osama A. Omer, Amal Hamed

Abstract:

Successful blind image Super-Resolution algorithms require the exact estimation of the Point Spread Function (PSF). In the absence of any prior information about the imagery system and the true image; this estimation is normally done by trial and error experimentation until an acceptable restored image quality is obtained. Multi-frame blind Super-Resolution algorithms often have disadvantages of slow convergence and sensitiveness to complex noises. This paper presents a Super-Resolution image reconstruction algorithm based on estimation of the PSF that yields the optimum restored image quality. The estimation of PSF is performed by the knife-edge method and it is implemented by measuring spreading of the edges in the reproduced HR image itself during the reconstruction process. The proposed image reconstruction approach is using L1 norm minimization and robust regularization based on a bilateral prior to deal with different data and noise models. A series of experiment results show that the proposed method can outperform other previous work robustly and efficiently.

Keywords: blind, PSF, super-resolution, knife-edge, blurring, bilateral, L1 norm

Procedia PDF Downloads 365
927 The Application of Maintenance Strategy in Energy Power Plant: A Case Study

Authors: Steven Vusmuzi Mashego, Opeyeolu Timothy Laseinde

Abstract:

This paper presents a case study on applying maintenance strategies observed in a turbo-generator at a coal power plant. Turbo generators are one of the primary and critical components in energy generation. It is essential to apply correct maintenance strategies and apply operational procedures accordingly. The maintenance strategies are implemented to ensure the high reliability of the equipment. The study was carried out at a coal power station which will transit to a cleaner energy source in the nearest future. The study is relevant as lessons learned in this system will support plans and operational models implemented when cleaner energy sources replace coal-powered turbines. This paper first outlines different maintenance strategies executed on the turbo-generator modules. Secondly, the impacts of human factors on a coal power station are discussed, and the findings prompted recommendations for future actions.

Keywords: maintenance strategies, turbo generator, operational error, human factor, electricity generation

Procedia PDF Downloads 112
926 Identification of Shocks from Unconventional Monetary Policy Measures

Authors: Margarita Grushanina

Abstract:

After several prominent central banks including European Central Bank (ECB), Federal Reserve System (Fed), Bank of Japan and Bank of England employed unconventional monetary policies in the aftermath of the financial crisis of 2008-2009 the problem of identification of the effects from such policies became of great interest. One of the main difficulties in identification of shocks from unconventional monetary policy measures in structural VAR analysis is that they often are anticipated, which leads to a non-fundamental MA representation of the VAR model. Moreover, the unconventional monetary policy actions may indirectly transmit to markets information about the future stance of the interest rate, which raises a question of the plausibility of the assumption of orthogonality between shocks from unconventional and conventional policy measures. This paper offers a method of identification that takes into account the abovementioned issues. The author uses factor-augmented VARs to increase the information set and identification through heteroskedasticity of error terms and rank restrictions on the errors’ second moments’ matrix to deal with the cross-correlation of the structural shocks.

Keywords: factor-augmented VARs, identification through heteroskedasticity, monetary policy, structural VARs

Procedia PDF Downloads 348
925 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection

Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari

Abstract:

In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.

Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs

Procedia PDF Downloads 364
924 Simulation of Kinetic Friction in L-Bending of Sheet Metals

Authors: Maziar Ramezani, Thomas Neitzert, Timotius Pasang

Abstract:

This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed.

Keywords: friction, L-bending, springback, Stribeck curves

Procedia PDF Downloads 491
923 The Functions of “Question” and Its Role in Education Process: Quranic Approach

Authors: Sara Tusian, Zahra Salehi Motaahed, Narges Sajjadie, Nikoo Dialame

Abstract:

One of the methods which have frequently been used in Quran is the “question”. In the Quran, in addition to the content, methods are also important. Using analysis-interpretation method, the present study has investigated Quranic questions, and extracted its functions from educational perspective. In so doing, it has first investigated all the questions in Quran and then taking the three-stage classification of education into account, it has offered question functions. The results obtained from this study suggest that question functions in Quran are presented in three categories: the preparation stage (including preparation of the audience, revising the insights, and internal Evolution); main body (including the granting the insight, and elimination of intellectual negligence and the question of innate and logical axioms, the introducting of the realm of thinking, creating emotional arousal and alleged in the claim) and the third stage as modification and revision (including invitation to move in the framework of tasks using the individual beliefs to reveal the contradictions and, Error detection and contribution to change the function) that each of which has a special role in the education process.

Keywords: education, question, Quranic questions, Quran

Procedia PDF Downloads 503
922 Fracture Pressure Predict Based on Well Logs of Depleted Reservoir in Southern Iraqi Oilfield

Authors: Raed H. Allawi

Abstract:

Formation pressure is the most critical parameter in hydrocarbon exploration and exploitation. Specifically, predicting abnormal pressures (high formation pressures) and subnormal pressure zones can provide valuable information to minimize uncertainty for anticipated drilling challenges and risks. This study aims to interpret and delineate the pore and fracture pressure of the Mishrif reservoir in the southern Iraq Oilfield. The data required to implement this study included acoustic compression wave, gamma-ray, bulk density, and drilling events. Furthermore, supporting these models needs the pore pressure measurement from the Modular Formation Dynamics Tester (MDT). Many measured values of pore pressure were used to validate the accurate model. Using sonic velocity approaches, the mean absolute percentage error (MAPE) was about 4%. The fracture pressure results were consistent with the measurement data, actual drilling report, and events. The model's results will be a guide for successful drilling in future wells in the same oilfield.

Keywords: pore pressure, fracture pressure, overburden pressure, effective stress, drilling events

Procedia PDF Downloads 83
921 Representativity Based Wasserstein Active Regression

Authors: Benjamin Bobbia, Matthias Picard

Abstract:

In recent years active learning methodologies based on the representativity of the data seems more promising to limit overfitting. The presented query methodology for regression using the Wasserstein distance measuring the representativity of our labelled dataset compared to the global distribution. In this work a crucial use of GroupSort Neural Networks is made therewith to draw a double advantage. The Wasserstein distance can be exactly expressed in terms of such neural networks. Moreover, one can provide explicit bounds for their size and depth together with rates of convergence. However, heterogeneity of the dataset is also considered by weighting the Wasserstein distance with the error of approximation at the previous step of active learning. Such an approach leads to a reduction of overfitting and high prediction performance after few steps of query. After having detailed the methodology and algorithm, an empirical study is presented in order to investigate the range of our hyperparameters. The performances of this method are compared, in terms of numbers of query needed, with other classical and recent query methods on several UCI datasets.

Keywords: active learning, Lipschitz regularization, neural networks, optimal transport, regression

Procedia PDF Downloads 80
920 Comparative Study of Different Enhancement Techniques for Computed Tomography Images

Authors: C. G. Jinimole, A. Harsha

Abstract:

One of the key problems facing in the analysis of Computed Tomography (CT) images is the poor contrast of the images. Image enhancement can be used to improve the visual clarity and quality of the images or to provide a better transformation representation for further processing. Contrast enhancement of images is one of the acceptable methods used for image enhancement in various applications in the medical field. This will be helpful to visualize and extract details of brain infarctions, tumors, and cancers from the CT image. This paper presents a comparison study of five contrast enhancement techniques suitable for the contrast enhancement of CT images. The types of techniques include Power Law Transformation, Logarithmic Transformation, Histogram Equalization, Contrast Stretching, and Laplacian Transformation. All these techniques are compared with each other to find out which enhancement provides better contrast of CT image. For the comparison of the techniques, the parameters Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are used. Logarithmic Transformation provided the clearer and best quality image compared to all other techniques studied and has got the highest value of PSNR. Comparison concludes with better approach for its future research especially for mapping abnormalities from CT images resulting from Brain Injuries.

Keywords: computed tomography, enhancement techniques, increasing contrast, PSNR and MSE

Procedia PDF Downloads 314
919 Optimal Configuration for Polarimetric Surface Plasmon Resonance Sensors

Authors: Ibrahim Watad, Ibrahim Abdulhalim

Abstract:

Conventional spectroscopic surface plasmon resonance (SPR) sensors are widely used, both in fundamental research and environmental monitoring as well as healthcare diagnostics. However, they still lack the low limit of detection (LOD) and there still a place for improvement. SPR conventional sensors are based on the detection of a dip in the reflectivity spectrum which is relatively wide. To improve the performance of these sensors, many techniques and methods proposed either to reduce the width of the dip or to increase the sensitivity. Together with that, profiting from the sharp jump in the phase spectrum under SPR, several works suggested the extraction of the phase of the reflected wave. However, existing phase measurement setups are in general more complicated compared to the conventional setups, require more stability and are very sensitive to external vibrations and noises. In this study, a simple polarimetric technique for phase extraction under SPR is presented, followed by a theoretical error analysis and an experimental verification. The advantages of the proposed technique upon existing techniques will be elaborated, together with conclusions regarding the best polarimetric function, and its corresponding optimal metal layer range of thicknesses to use under the conventional Kretschmann-Raether configuration.

Keywords: plasmonics, polarimetry, thin films, optical sensors

Procedia PDF Downloads 404
918 Cross Coupling Sliding Mode Synchronization Control of Dual-Driving Feed System

Authors: Hong Lu, Wei Fan, Yongquan Zhang, Junbo Zhang

Abstract:

A cross coupling sliding synchronization control strategy is proposed for the dual-driving feed system. This technology will minimize the position error oscillation and achieve the precise synchronization performance in the high speed and high precision drive system, especially some high speed and high precision machine. Moreover, a cross coupling compensation matrix is provided to offset the mismatched disturbance and the disturbance observer is established to eliminate the chattering phenomenon. Performance comparisons of proposed dual-driving cross coupling sliding mode control (CCSMC), normal cross coupling control (CCC) strategy with PID control, and electronic virtual main shaft control (EVMSC) strategy with SMC control are investigated by simulation and a dual-driving control system; the results show the effectiveness of the proposed control scheme.

Keywords: cross coupling matrix, dual motors, synchronization control, sliding mode control

Procedia PDF Downloads 365
917 Relative Navigation with Laser-Based Intermittent Measurement for Formation Flying Satellites

Authors: Jongwoo Lee, Dae-Eun Kang, Sang-Young Park

Abstract:

This study presents a precise relative navigational method for satellites flying in formation using laser-based intermittent measurement data. The measurement data for the relative navigation between two satellites consist of a relative distance measured by a laser instrument and relative attitude angles measured by attitude determination. The relative navigation solutions are estimated by both the Extended Kalman filter (EKF) and unscented Kalman filter (UKF). The solutions estimated by the EKF may become inaccurate or even diverge as measurement outage time gets longer because the EKF utilizes a linearization approach. However, this study shows that the UKF with the appropriate scaling parameters provides a stable and accurate relative navigation solutions despite the long measurement outage time and large initial error as compared to the relative navigation solutions of the EKF. Various navigation results have been analyzed by adjusting the scaling parameters of the UKF.

Keywords: satellite relative navigation, laser-based measurement, intermittent measurement, unscented Kalman filter

Procedia PDF Downloads 357
916 Interaction between Trapezoidal Hill and Subsurface Cavity under SH Wave Incidence

Authors: Yuanrui Xu, Zailin Yang, Yunqiu Song, Guanxixi Jiang

Abstract:

It is an important subject of seismology on the influence of local topography on ground motion during earthquake. In mountainous areas with complex terrain, the construction of the tunnel is often the most effective transportation scheme. In these projects, the local terrain can be simplified into hills with different shapes, and the underground tunnel structure can be regarded as a subsurface cavity. The presence of the subsurface cavity affects the strength of the rock mass and changes the deformation and failure characteristics. Moreover, the scattering of the elastic waves by underground structures usually interacts with local terrains, which leads to a significant influence on the surface displacement of the terrains. Therefore, it is of great practical significance to study the surface displacement of local terrains with underground tunnels in earthquake engineering and seismology. In this work, the region is divided into three regions by the method of region matching. By using the fractional Bessel function and Hankel function, the complex function method, and the wave function expansion method, the wavefield expression of SH waves is introduced. With the help of a constitutive relation between the displacement and the stress components, the hoop stress and radial stress is obtained subsequently. Then, utilizing the continuous condition at different region boundaries, the undetermined coefficients in wave fields are solved by the Fourier series expansion and truncation of the finite term. Finally, the validity of the method is verified, and the surface displacement amplitude is calculated. The surface displacement amplitude curve is discussed in the numerical results. The results show that different parameters, such as radius and buried depth of the tunnel, wave number, and incident angle of the SH wave, have a significant influence on the amplitude of surface displacement. For the underground tunnel, the increase of buried depth will make the response of surface displacement amplitude increases at first and then decreases. However, the increase of radius leads the response of surface displacement amplitude to appear an opposite phenomenon. The increase of SH wave number can enlarge the amplitude of surface displacement, and the change of incident angle can obviously affect the amplitude fluctuation.

Keywords: method of region matching, scattering of SH wave, subsurface cavity, trapezoidal hill

Procedia PDF Downloads 133
915 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection

Authors: Ashkan Zakaryazad, Ekrem Duman

Abstract:

A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.

Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent

Procedia PDF Downloads 475
914 Instability Index Method and Logistic Regression to Assess Landslide Susceptibility in County Route 89, Taiwan

Authors: Y. H. Wu, Ji-Yuan Lin, Yu-Ming Liou

Abstract:

This study aims to set up the landslide susceptibility map of County Route 89 at Ren-Ai Township in Nantou County using the Instability Index Method and Logistic regression. Seven susceptibility factors including Slope Angle, Aspect, Elevation, Distance to fold, Distance to River, Distance to Road and Accumulated Rainfall were obtained by GIS based on the Typhoon Toraji landslide area identified by Industrial Technology Research Institute in 2001. To calculate the landslide percentage of each factor and acquire the weight and grade the grid by means of Instability Index Method. In this study, landslide susceptibility can be classified into four grades: high, medium high, medium low and low, in order to determine the advantages and disadvantages of the two models. The precision of this model is verified by classification error matrix and SRC curve. These results suggest that the logistic regression model is a preferred method than instability index in the assessment of landslide susceptibility. It is suitable for the landslide prediction and precaution in this area in the future.

Keywords: instability index method, logistic regression, landslide susceptibility, SRC curve

Procedia PDF Downloads 291