Search results for: neural smith predictor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2440

Search results for: neural smith predictor

1120 Retirement Planning and Job Satisfaction: Cushion to Avoid Bridge Employment?

Authors: Zaiton Osman, Imbarine Bujang, Azaze-Azizi Abdul Adis, Grace Phang Ing, Mohd Rizwan Abdul Majid, Izyanti Awang Razli

Abstract:

Retirement forces older workers to disconnect with their previous behavioural patterns and economic position. Transition and adjustment from working life to retirement places create psychological pressure and financial distress on older workers, especially those with dependent children. Bridge employment provides a solution for older workers to continue working after retirement while transitioning into retirement slowly and smoothly. As losing the job role has a significant impact on the psychological well-being of retirees, engageing in bridge employment helps to fulfill the important psychological functions of older workers by providing an adaptive style to retirement. This study investigates the influence of retirement planning and job satisfaction on bridge employment. A self-administered questionnaire was used in this study and a total of 523 samples were collected for nine major district in Sabah. Data were analysed using Partial Least Square (PLS) method wersion 2.0. The result shows a significant relationship between retirement planning and job satisfaction on bridge employment, explaining 4.7% the variance in bridge employment and job satisfaction was found to be the strongest predictor of bridge employment.

Keywords: ageing population, retirement planning, job satisfaction, bridge employment

Procedia PDF Downloads 360
1119 Inclusion of Students with Disabilities (SWD) in Higher Education Institutions (HEIs): Self-Advocacy and Engagement as Central

Authors: Tadesse Abera

Abstract:

This study aimed to investigate the contribution of self-advocacy and engagement in the inclusion of SWDs in HEIs. A convergent parallel mixed methods design was employed. This article reports the quantitative strand. A total of 246 SWDs were selected through stratified proportionate random sampling technique from five public HEIs in Ethiopia. Data were collected through Self-advocacy questionnaire, student engagement scale, and college student experience questionnaire and analyzed through frequency, percentage, mean, standard deviation, correlation, one sample t-test and multiple regression. Both self-advocacy and engagement were found to have a predictive power on inclusion of respondents in the HEIs, where engagement was found to be more predictor. From the components of self-advocacy, knowledge of self and leadership and from engagement dimensions sense of belonging, cognitive, and valuing in their respective orders were found to have a stronger predictive power on the inclusion of respondents in the institutions. Based on the findings it was concluded that, if students with disabilities work hard to be self-determined, strive for realizing social justice, exert quality effort and seek active involvement, their inclusion in the institutions would be ensured.

Keywords: self-advocacy, engagement, inclusion, students with disabilities, higher education institution

Procedia PDF Downloads 76
1118 Determination and Qsar Modelling of Partitioning Coefficients for Some Xenobiotics in Soils and Sediments

Authors: Alaa El-Din Rezk

Abstract:

For organic xenobiotics, sorption to Aldrich humic acid is a key process controlling their mobility, bioavailability, toxicity and fate in the soil. Hydrophobic organic compounds possessing either acid or basic groups can be partially ionized (deprotonated or protonated) within the range of natural soil pH. For neutral and ionogenicxenobiotics including (neutral, acids and bases) sorption coefficients normalized to organic carbon content, Koc, have measured at different pH values. To this end, the batch equilibrium technique has been used, employing SPME combined with GC-MSD as an analytical tool. For most ionogenic compounds, sorption has been affected by both pH and pKa and can be explained through Henderson-Hasselbalch equation. The results demonstrate that when assessing the environmental fate of ionogenic compounds, their pKa and speciation under natural conditions should be taken into account. A new model has developed to predict the relationship between log Koc and pH with full statistical evaluation against other existing predictive models. Neutral solutes have displayed a good fit with the classical model using log Kow as log Koc predictor, whereas acidic and basic compounds have displayed a good fit with the LSER approach and the new proposed model. Measurement limitations of the Batch technique and SPME-GC-MSD have been found with ionic compounds.

Keywords: humic acid, log Koc, pH, pKa, SPME-GCMSD

Procedia PDF Downloads 263
1117 Evaluating a Holistic Fitness Program Used by High Performance Athletes and Mass Participants

Authors: Peter Smolianov, Jed Smith, Lisa Chen, Steven Dion, Christopher Schoen, Jaclyn Norberg

Abstract:

This study evaluated the effectiveness of an experimental training program used to improve performance and health of competitive athletes and recreational sport participants. This holistic program integrated and advanced Eastern and Western methods of prolonging elite sports participation and enjoying lifelong fitness, particularly from China, India, Russia, and the United States. The program included outdoor, gym, and water training approaches focused on strengthening while stretching/decompressing and on full body activation-all in order to improve performance as well as treat and prevent common disorders and pains. The study observed and surveyed over 100 users of the program including recreational fitness and sports enthusiasts as well as elite athletes who competed for national teams of different countries and for Division I teams of National Collegiate Athletic Association in the United States. Different types of sport were studied, including territorial games (e.g., American football, basketball, volleyball), endurance/cyclical (athletics/track and field, swimming), and artistic (e.g., gymnastics and synchronized swimming). Results of the study showed positive effects on the participants’ performance and health, particularly for those who used the program for more than two years and especially in reducing spinal disorders and in enabling to perform new training tasks which previously caused back pain.

Keywords: lifelong fitness, injury prevention, prolonging sport participation, improving performance and health

Procedia PDF Downloads 155
1116 Between Subscribers of Two Telecommunication Providers in Indonesia: Factors Involved in Customer Retention

Authors: Frista Dearetha Marasabessy, Usep Suhud, Mohammad Rizan

Abstract:

The study objective was to compare influencing factors on customer retention of two brands – SimPATI and IM3 – of telecommunication services owned by Telkomsel and Indosat, two giant mobile telecommunication providers in Indonesia. The authors applied predictor variables including perceived tariff, perceived quality, switching barriers, and customer satisfaction. These variables were used after reviewing literature in quantitative studies on consumer behaviour relating to telecommunication services. This study used indicators adopted and adapted from literature. The quantitative data were gathered in Jakarta, involving 205 subscribers of SimPATI and 202 subscribers of IM3. The authors selected respondents purposively. Data were analysed using both exploratory and confirmatory factor analyses. Two fitted models were developed confirming factors that were involved in customer retention as stated on the proposed model: perceived tariff, perceived quality, switching barriers, and customer satisfaction. However, parts of the hypotheses were rejected.

Keywords: customer retention, switching barriers, telecommunication providers, structural equation model, SimPATI, IM3, Indonesia

Procedia PDF Downloads 351
1115 Rehabilitation Approach for Cancer Patients: Indication, Management and Outcome

Authors: Juliani Rianto, Emma Lumby, Tracey Smith

Abstract:

Cancer patients’ survival are growing with the new approach and therapy in oncology medicine. Cancer is now a new chronic disease, and rehabilitation program has become an ongoing program as part of cancer care. The focus of Cancer rehabilitation is maximising person’s physical and emotional function, stabilising general health and reducing unnecessary hospital admission. In Australia there are 150000 newly diagnosed cancer every year, and the most common Cancer are prostate, Breast, Colorectal, Melanoma and Lung Cancer. Through referral from the oncology team, we recruited cancer patient into our cancer rehabilitation program. Patients are assessed by our multi-disciplinary team including rehabilitation specialist, physiotherapist, occupational therapist, dietician, exercise physiologist, and psychologist. Specific issues are identified, including pain, side effect of chemo and radiation therapy and mental well-being. The goals were identified and reassessed every fortnight. Common goals including nutritional status, improve endurance and exercise performance, working on balance and mobility, improving emotional and vocational state, educational program for insomnia and tiredness, and reducing hospitalisation are identified and assessed. Patients are given 2 hours exercise program twice a week for 6 weeks with focus on aerobic and weight exercises and education sessions. Patients are generally benefited from the program. The quality of life is improved, support and interaction from the therapist has played an important factor in directing patient for their goals.

Keywords: cancer, exercises, benefit, mental health

Procedia PDF Downloads 60
1114 The Limits of Charity: Advancing a Rights-based Justice Model to Remedy Poverty and Hunger

Authors: Tracy Smith-Carrier

Abstract:

In 1995, the World Health Organization declared that poverty was the biggest killer and the greatest cause of suffering in the world. Income is certainly a key social determinant of health, the lack of which causes innumerable health and mental health conditions. In seeking to provide relief from financial hardship for residents within their populace, states in the Global North have largely turned to the non-profit and charitable sector. The stigma and shame of accessing charity is a significant barrier for many, but what is more problematic is that the embrace of the charitable model has let governments off the hook from responding to their international human rights obligations. Although states are signatories to various human rights treaties and conventions internationally, many of these laws have not been implemented domestically. This presentation explores the limits of the charitable model in addressing poverty in countries of the Global North. Unlike in the ages passed, when poverty was thought to be an individual problem, we now know that poverty is largely systemic in nature. In this presentation, we will identify the structural determinants of poverty, outline why people are reticent to access charitable programs and services and how income security is reproduced through the charitable model, and discuss evidence-informed solutions, such as a basic income guarantee, to move beyond the charitable model in favour of a rights-based justice model. To move beyond charity, we must demand that governments recognize our fundamental human rights and address poverty and hunger using a justice model based on substantive human rights.

Keywords: basic income, charity, poverty, income security, hunger, food security, social justice, human rights

Procedia PDF Downloads 117
1113 Optimization of Manufacturing Process Parameters: An Empirical Study from Taiwan's Tech Companies

Authors: Chao-Ton Su, Li-Fei Chen

Abstract:

The parameter design is crucial to improving the uniformity of a product or process. In the product design stage, parameter design aims to determine the optimal settings for the parameters of each element in the system, thereby minimizing the functional deviations of the product. In the process design stage, parameter design aims to determine the operating settings of the manufacturing processes so that non-uniformity in manufacturing processes can be minimized. The parameter design, trying to minimize the influence of noise on the manufacturing system, plays an important role in the high-tech companies. Taiwan has many well-known high-tech companies, which show key roles in the global economy. Quality remains the most important factor that enables these companies to sustain their competitive advantage. In Taiwan however, many high-tech companies face various quality problems. A common challenge is related to root causes and defect patterns. In the R&D stage, root causes are often unknown, and defect patterns are difficult to classify. Additionally, data collection is not easy. Even when high-volume data can be collected, data interpretation is difficult. To overcome these challenges, high-tech companies in Taiwan use more advanced quality improvement tools. In addition to traditional statistical methods and quality tools, the new trend is the application of powerful tools, such as neural network, fuzzy theory, data mining, industrial engineering, operations research, and innovation skills. In this study, several examples of optimizing the parameter settings for the manufacturing process in Taiwan’s tech companies will be presented to illustrate proposed approach’s effectiveness. Finally, a discussion of using traditional experimental design versus the proposed approach for process optimization will be made.

Keywords: quality engineering, parameter design, neural network, genetic algorithm, experimental design

Procedia PDF Downloads 145
1112 Size Optimization of Microfluidic Polymerase Chain Reaction Devices Using COMSOL

Authors: Foteini Zagklavara, Peter Jimack, Nikil Kapur, Ozz Querin, Harvey Thompson

Abstract:

The invention and development of the Polymerase Chain Reaction (PCR) technology have revolutionised molecular biology and molecular diagnostics. There is an urgent need to optimise their performance of those devices while reducing the total construction and operation costs. The present study proposes a CFD-enabled optimisation methodology for continuous flow (CF) PCR devices with serpentine-channel structure, which enables the trade-offs between competing objectives of DNA amplification efficiency and pressure drop to be explored. This is achieved by using a surrogate-enabled optimisation approach accounting for the geometrical features of a CF μPCR device by performing a series of simulations at a relatively small number of Design of Experiments (DoE) points, with the use of COMSOL Multiphysics 5.4. The values of the objectives are extracted from the CFD solutions, and response surfaces created using the polyharmonic splines and neural networks. After creating the respective response surfaces, genetic algorithm, and a multi-level coordinate search optimisation function are used to locate the optimum design parameters. Both optimisation methods produced similar results for both the neural network and the polyharmonic spline response surfaces. The results indicate that there is the possibility of improving the DNA efficiency by ∼2% in one PCR cycle when doubling the width of the microchannel to 400 μm while maintaining the height at the value of the original design (50μm). Moreover, the increase in the width of the serpentine microchannel is combined with a decrease in its total length in order to obtain the same residence times in all the simulations, resulting in a smaller total substrate volume (32.94% decrease). A multi-objective optimisation is also performed with the use of a Pareto Front plot. Such knowledge will enable designers to maximise the amount of DNA amplified or to minimise the time taken throughout thermal cycling in such devices.

Keywords: PCR, optimisation, microfluidics, COMSOL

Procedia PDF Downloads 161
1111 Uncertainties and Resilience: A Study of Pandemic Impact on the Pastoral-Nomadic Communities in India

Authors: Arati S. Kade, Iftikhar Hussain, Somnath Dadas

Abstract:

The paper studies resilience and uncertainties among nomadic-pastoral communities in India during large events such as pandemics and attempts to understand that with changing times and increased uncertainties, how nomadic communities historically showed their resilience. A review of the literature was performed concerning nomadism and development relations and conflicts by focusing on structural violence on nomadic communities from the caste class and patriarchy as a framework along with the role of the state. Philosophical views on the anti-nomad bias of political theories by Erik Ringmar, along with the decolonial approach by Linda Smith and debrahmanization by Braj Ranjan Mani were used to analyze criminalization of nomads. Data were collected using in-depth telephonic interviews and news reports published during the COVID-19 lockdown in India. Focusing on historical context of current crises, the paper leads to the discussion on how nomadic communities negotiate with the sedentary society during the COVID-19 pandemic. Findings of the current paper approve the hypotheses that the COVID-19 pandemic followed by lockdown deeply impacted the pastoral production system, building on the continued cycle of marginalization by the state and caste society in India, while traditional knowledge stood the test of time. Be it developmental states or pandemics, the nomadic communities have shown their resilience in a number of ways, such as keeping distance from sedentary society, usage of traditional medicine, and relying on traditional leadership.

Keywords: COVID-19, criminalization, India, nomadism, pandemic, pastoralism, resilience, traditional knowledge

Procedia PDF Downloads 97
1110 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network

Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy

Abstract:

The properties of memory representations in artificial neural networks have cognitive implications. Distributed representations that encode instances as a pattern of activity across layers of nodes afford memory compression and enforce the selection of a single point in instance space. These encoding schemes also appear to distort the representational space, as well as trading off the ability to validate that input information is within the bounds of past experience. In contrast, a localist representation which encodes some meaningful information into individual nodes in a network layer affords less memory compression while retaining the integrity of the representational space. This allows the validity of an input to be determined. The validity (or familiarity) of input along with the capacity of localist representation for multiple instance selections affords a memory sampling approach that dynamically balances the bias-variance trade-off. When the input is familiar, bias may be high by referring only to the most similar instances in memory. When the input is less familiar, variance can be increased by referring to more instances that capture a broader range of features. Using this approach in a localist instance memory network, an experiment demonstrates a relationship between representational conflict, generalization performance, and memorization demand. Relatively small sampling ranges produce the best performance on a classic machine learning dataset of visual objects. Combining memory validity with conflict detection produces a reliable confidence judgement that can separate responses with high and low error rates. Confidence can also be used to signal the need for supervisory input. Using this judgement, the need for supervised learning as well as memory encoding can be substantially reduced with only a trivial detriment to classification performance.

Keywords: artificial neural networks, representation, memory, conflict monitoring, confidence

Procedia PDF Downloads 128
1109 Factors Predicting Individual Health among Pilgrims of Kurdistan County: An Application of Health Belief Model

Authors: Arsalan Ghaderi, Behzad Karami Matin, Abdolrahim Afkhamzadeh, Abouzar Keshavarzi, Parvin Nokhasi

Abstract:

Background: Lack of individual health as one of the major health problems among the pilgrims can be followed by several complications. The main aim of this study was to determine factors predicting individual health among pilgrims of Kurdistan County; in the west of Iran and health belief model (HBM) was applied as theoretical framework. Methods: A cross-sectional study was conducted among 100 pilgrims who referred in the red crescent of Kurdistan County, the west of Iran which was randomly selected for participation in this study. A structured questionnaire was applied for collecting data and data were analyzed by SPSS version 21 using bivariate correlations and linear regression statistical tests. Results: The mean age of respondents was 59.45 years [SD: 11.56], ranged from 50 to 73 years. The HBM predictor variables accounted for 47% of the variation in the outcome measure of the individual health. The best predictors for individual health were perceived severity and cause to action. Conclusion: Based on our result, it seems that designing and implementation of educational programs to increase seriousness about complications of lack of individual health and increasing cause to action among the pilgrims may be useful in order to promote individual health among pilgrims.

Keywords: individual health, pilgrims, Iran, health belief model

Procedia PDF Downloads 529
1108 Implementing Service Learning in the Health Education Curriculum

Authors: Karen Butler

Abstract:

Johnson C. Smith University, one of the nation’s oldest Historically Black Colleges and Universities, has a strong history of service learning and community service. We first integrated service learning and peer education into health education courses in the spring of 2000. Students enrolled in the classes served as peer educators for the semester. Since then, the program has evolved and expanded but remains an integral part of several courses. The purpose of this session is to describe our program in terms of development, successes, and obstacles, and feedback received. A detailed description of the service learning component in HED 235: Drugs and Drug Education and HED 337: Environmental Health will be provided. These classes are required of our Community Health majors but are also popular electives for students in other disciplines. Three sources of student feedback were used to evaluate and continually modify the component: the SIR II course evaluation, service learning reflection papers, and focus group interviews. Student feedback has been largely positive. When criticism was given, it was thoughtful and constructive – given in the spirit of making it better for the next group. Students consistently agreed that the service learning program increased their awareness of pertinent health issues; that both the service providers and service recipients benefited from the project; and that the goals/issues targeted by the service learning component fit the objectives of the course. Also, evidence of curriculum and learning enhancement was found in the reflection papers and focus group sessions. Service learning sets up a win-win situation. It provides a way to respond to campus and community health needs while enhancing the curriculum, as students learn more by doing things that benefit the health and wellness of others. Service learning is suitable for any health education course and any target audience would welcome the effort.

Keywords: black colleges, community health, health education, service learning

Procedia PDF Downloads 341
1107 Determination of the Pull-Out/ Holding Strength at the Taper-Trunnion Junction of Hip Implants

Authors: Obinna K. Ihesiulor, Krishna Shankar, Paul Smith, Alan Fien

Abstract:

Excessive fretting wear at the taper-trunnion junction (trunnionosis) apparently contributes to the high failure rates of hip implants. Implant wear and corrosion lead to the release of metal particulate debris and subsequent release of metal ions at the taper-trunnion surface. This results in a type of metal poisoning referred to as metallosis. The consequences of metal poisoning include; osteolysis (bone loss), osteoarthritis (pain), aseptic loosening of the prosthesis and revision surgery. Follow up after revision surgery, metal debris particles are commonly found in numerous locations. Background: A stable connection between the femoral ball head (taper) and stem (trunnion) is necessary to prevent relative motions and corrosion at the taper junction. Hence, the importance of component assembly cannot be over-emphasized. Therefore, the aim of this study is to determine the influence of head-stem junction assembly by press fitting and the subsequent disengagement/disassembly on the connection strength between the taper ball head and stem. Methods: CoCr femoral heads were assembled with High stainless hydrogen steel stem (trunnion) by Push-in i.e. press fit; and disengaged by Pull-out test. The strength and stability of the two connections were evaluated by measuring the head pull-out forces according to ISO 7206-10 standards. Findings: The head-stem junction strength linearly increases with assembly forces.

Keywords: wear, modular hip prosthesis, taper head-stem, force assembly and disassembly

Procedia PDF Downloads 401
1106 Prevention of the Post – Intensive Care Syndrome (PICS) by Implementation of an ICU Delirium Prevention Strategy (DPB)

Authors: Paul M. H. J. Roekaerts

Abstract:

In recent years, it became clear that much intensive care (ICU) survivors develop a post-intensive care syndrome (PICS) consisting of psychiatric, cognitive and physical problems for a prolonged period after their ICU stay. Physical inactivity and delirium during the ICU stay are the main determinants of the post-ICU PICS. This presentation will focus on delirium, its epidemiology, prevalence, effect on outcome, risk factors and the current standard of care for managing delirium. Because ICU delirium is a predictor of prolonged length-of-stay in the ICU and of death, the use of a delirium prevention bundle (DPB) becomes mandatory in every ICU. In this presentation, a DPB bundle will be discussed consisting of six components: pain, sedation, sleep, sensory and intellectual stimulation, early mobilization, and hydration. For every of the six components, what to do and what not to do will be discussed. The author will present his own institutional policy on pharmacological and non-pharmacological interventions in the management of delirium. The component ‘early mobilization’ will be discussed more in detail, as this component is extremely important in the prevention of delirium as well as in the prevention of the PICS. The author will conclude his presentation with the remaining areas of uncertainties/work and research to be done.

Keywords: delirium, delirium prevention bundle, early mobilisation in intensive care (ICU), post-intensive care syndrome (PICS)

Procedia PDF Downloads 318
1105 Ifrs Adoption, Enforcement, and the Value Relevant of Accounting Amounts: The Particular Case of South Africa

Authors: Edward Chamisa, Colin C. Smith, Hamutyinei H. Pamburai, Abdul C. Abdulla

Abstract:

South Africa (SA) adopted International Financial Reporting Standards (IFRS) for listed firms effective 1 January 2005. However, it was not until 2011 that substantial financial reporting enforcement changes were introduced, which were meant to ensure compliance with IFRS. This innovative setting allows us to examine the value relevance of accounting amounts during the (1) pre-IFRS adoption period (2002-2004); (2) post-IFRS adoption, but pre-enforcement changes period (2006-2010); and (3) post-enforcement changes period (2011-2012). The results show that accounting amounts were most value relevant in the post-enforcement changes period (R2, 75.5%) compared to both the pre-IFRS adoption period (adjusted R2 is 24.3%) and the period after IFRS adoption but before enforcement changes (adjusted R2 is 37.5%). Also, during the 2008 financial crisis, the equity book value per share was significantly value relevant (at 1%) but not earnings per share, whereas before the crisis, the opposite was true. We make two important contributions to the literature. First, we identify SA as an innovative setting that allows researchers to examine separately the effects of IFRS adoption and enforcement changes on capital markets and accounting quality. This is a departure from prior studies that are dominated by the European Union setting, where IFRS adoption occurred contemporaneously with enforcement and other regulatory changes. Second, we provide preliminary findings which suggest that while the adoption of IFRS seems to have improved the financial reporting quality of accounting amounts of SA listed firms, its impact appears to be limited unless combined with effective enforcement.

Keywords: international financial reporting standards (ifrs), ifrs adoption, financial reporting enforcement, value relevance, price model, equity book value, earnings per share

Procedia PDF Downloads 70
1104 The Impact of Nurse-Physician Interprofessional Relationship on Nurses' Willingness to Engage in Leadership Roles: A Multilevel Modelling Approach

Authors: Sulaiman D. Al Sabei, Amy M. Ross, Christopher S. Lee

Abstract:

Nurse leaders play a fundamental role in transforming healthcare system and improving quality of patient care. Several healthcare organizations have called to increase the number of nurse leaders across all levels and in every practice setting. Identification of factors influencing nurses’ willingness to lead can inform healthcare leaders and policy makers of potentially illuminating strategies for establishing favorable work environments that motivate nurses to engage in leadership roles. The aim of this study was to investigate determinants of nurses’ willingness to engage in future leadership roles. The study was conducted at a public hospital in the Sultanate of Oman. A total of 171 registered nurses participated. A multilevel modeling was conducted. Findings revealed that 80% of nurses were likely to seek out opportunities to engage in leadership roles. The quality of the nurse-physician collegial relationships was a significant predictor of nurses’ willingness to lead. Establishing a work environment’s culture of positive nurse-physician relationships is critical to enhance nurses’ work attitude and engage them in leadership roles.

Keywords: interprofessional relationship, leadership, motivation, nurses

Procedia PDF Downloads 193
1103 Correlation between Sprint Performance and Vertical Jump Height in Elite Female Football Players

Authors: Svetlana Missina, Anatoliy Shipilov, Alexandr Vavaev

Abstract:

The purpose of the present study was to investigate the relationship between sprint and vertical jump performance in elite female football players. Twenty four professional female football players (age, 18.6±3.1 years; height, 168.3±6.3 cm, body mass 61.6±7.4 kg; mean±SD) were tested for 30-m sprint time, 10-m sprint time and vertical countermovement (CMJ) and squat (SJ) jumps height. Participants performed three countermovement jumps and three squat jumps for maximal height on a force platform. Mean values of three trials were used in statistical analysis. The displacement of center of mass (COM) during flight phase (e.g. jump height) was calculated using the vertical velocity of the COM at the moment of take-off. 30-m and 10-m sprint time were measured using OptoGait optical system. The best of three trials were used for analysis. A significant negative correlation was found between 30-m sprint time and CMJ, SJ height (r = -0.85, r = -0.79 respectively), between 10-m sprint time and CMJ, SJ height (r = -0.73, r = -0.8 respectively), and step frequency was significantly related to CMJ peak power (r = -0.57). Our study indicates that there is strong correlation between sprint and jump performance in elite female football players, thus vertical jump test can be considered as a good sprint and agility predictor in female football.

Keywords: agility, female football players, sprint performance, vertical jump height

Procedia PDF Downloads 470
1102 Diabetes Diagnosis Model Using Rough Set and K- Nearest Neighbor Classifier

Authors: Usiobaifo Agharese Rosemary, Osaseri Roseline Oghogho

Abstract:

Diabetes is a complex group of disease with a variety of causes; it is a disorder of the body metabolism in the digestion of carbohydrates food. The application of machine learning in the field of medical diagnosis has been the focus of many researchers and the use of recognition and classification model as a decision support tools has help the medical expert in diagnosis of diseases. Considering the large volume of medical data which require special techniques, experience, and high diagnostic skill in the diagnosis of diseases, the application of an artificial intelligent system to assist medical personnel in order to enhance their efficiency and accuracy in diagnosis will be an invaluable tool. In this study will propose a diabetes diagnosis model using rough set and K-nearest Neighbor classifier algorithm. The system consists of two modules: the feature extraction module and predictor module, rough data set is used to preprocess the attributes while K-nearest neighbor classifier is used to classify the given data. The dataset used for this model was taken for University of Benin Teaching Hospital (UBTH) database. Half of the data was used in the training while the other half was used in testing the system. The proposed model was able to achieve over 80% accuracy.

Keywords: classifier algorithm, diabetes, diagnostic model, machine learning

Procedia PDF Downloads 336
1101 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals

Authors: Christine F. Boos, Fernando M. Azevedo

Abstract:

Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.

Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing

Procedia PDF Downloads 528
1100 Associations between Parental Divorce Process Variables and Parent-Child Relationships Quality in Young Adulthood

Authors: Klara Smith-Etxeberria

Abstract:

main goal of this study was to analyze the predictive ability of some variables associated with the parental divorce process alongside attachment history with parents on both, mother-child and father-child relationship quality. Our sample consisted of 173 undergraduate and vocational school students from the Autonomous Community of the Basque Country. All of them belonged to a divorced family. Results showed that adequate maternal strategies during the divorce process (e.g.: stable, continuous and positive role as a mother) was the variable with greater predictive ability on mother-child relationships quality. In addition, secure attachment history with mother also predicted positive mother-child relationships. On the other hand, father-child relationship quality was predicted by adequate paternal strategies during the divorce process, such as his stable, continuous and positive role as a father, along with not badmouthing the mother and promoting good mother-child relationships. Furthermore, paternal negative emotional state due to divorce was positively associated with father-child relationships quality, and both, history of attachment with mother and with father predicted father-child relationships quality. In conclusion, our data indicate that both, paternal and maternal strategies for children´s adequate adjustment during the divorce process influence on mother-child and father-child relationships quality. However, these results suggest that paternal strategies during the divorce process have a greater predictive ability on father-child relationships quality, whereas maternal positive strategies during divorce determine positive mother-child relationships among young adults.

Keywords: father-child relationships quality, mother-child relationships quality, parental divorce process, young adulthood

Procedia PDF Downloads 258
1099 Effect of Iron Oxide Addition on the Solid-State Synthesis of Ye’Elimite

Authors: F. Z. Abir, M. Mesnaoui, Y. Abouliatim, L. Nibou, Y. El Hafiane, A. Smith

Abstract:

The cement industry has been taking significant steps for years to reduce its carbon footprint by opting for an eco-friendly alternative such as Calcium Sulfoaluminate Cements (CSA). These binders, compared to Ordinary Portland Cements (OPC), have two advantages: reduction of the CO2 emissions and energy-saving because the sintering temperature of CSA cements is between 1250 and 1350 °C, which means 100 to 200 °C less than OPC. The aim of this work is to study the impurities effect, such as iron oxide, on the formation of the ye'elimite phase, which represents the main phase of Calcium Sulfoaluminate Cements and the consequence on its hydration. Several elaborations and characterization techniques were used to study the structure and microstructure of ye'elimite, such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), thermal analysis, specific surface area measurement, and electrical conductivity of diluted solutions. This study details the protocol for the solid-state synthesis of ye'elimite containing increasing amounts of iron (general formula: Ca4Al(6-2x)Fe2xSO16 with x = 0.00 to 1.13). Ye'elimite is formed by solid-state reactions between Al2O3, CaO and CaSO4 and the maximum ye'elimite content is reached at a sintering temperature of 1300 °C. The presence of iron promotes the formation of cubic ye'elimite at the expense of the orthorhombic phase. The total incorporation of iron in ye'elimite structure is possible when x < 0.12. Beyond this content, the ferritic phase (CaO)2(Al2O3,Fe2O3) appears as a minor phase and develops two different morphologies during cooling: dendritic crystals and melt morphology. The formation of the ferrous liquid phase affects the evolution of grain size of the ye’elimite and calcium aluminates.

Keywords: calcium sulfoaluminate cement, ferritic phase, sintering, solid-state synthesis, ye’elimite

Procedia PDF Downloads 189
1098 Prototype of an Interactive Toy from Lego Robotics Kits for Children with Autism

Authors: Ricardo A. Martins, Matheus S. da Silva, Gabriel H. F. Iarossi, Helen C. M. Senefonte, Cinthyan R. S. C. de Barbosa

Abstract:

This paper is the development of a concept of the man/robot interaction. More accurately in developing of an autistic child that have more troubles with interaction, here offers an efficient solution, even though simple; however, less studied for this public. This concept is based on code applied thought out the Lego NXT kit, built for the interpretation of the robot, thereby can create this interaction in a constructive way for children suffering with Autism.

Keywords: lego NXT, interaction, BricX, autismo, ANN (Artificial Neural Network), MLP back propagation, hidden layers

Procedia PDF Downloads 569
1097 Assessment of Image Databases Used for Human Skin Detection Methods

Authors: Saleh Alshehri

Abstract:

Human skin detection is a vital step in many applications. Some of the applications are critical especially those related to security. This leverages the importance of a high-performance detection algorithm. To validate the accuracy of the algorithm, image databases are usually used. However, the suitability of these image databases is still questionable. It is suggested that the suitability can be measured mainly by the span the database covers of the color space. This research investigates the validity of three famous image databases.

Keywords: image databases, image processing, pattern recognition, neural networks

Procedia PDF Downloads 271
1096 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features

Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh

Abstract:

In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.

Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve

Procedia PDF Downloads 262
1095 Electrophysiological Correlates of Statistical Learning in Children with and without Developmental Language Disorder

Authors: Ana Paula Soares, Alexandrina Lages, Helena Oliveira, Francisco-Javier Gutiérrez-Domínguez, Marisa Lousada

Abstract:

From an early age, exposure to a spoken language allows us to implicitly capture the structure underlying the succession of the speech sounds in that language and to segment it into meaningful units (words). Statistical learning (SL), i.e., the ability to pick up patterns in the sensory environment even without intention or consciousness of doing it, is thus assumed to play a central role in the acquisition of the rule-governed aspects of language and possibly to lie behind the language difficulties exhibited by children with development language disorder (DLD). The research conducted so far has, however, led to inconsistent results, which might stem from the behavioral tasks used to test SL. In a classic SL experiment, participants are first exposed to a continuous stream (e.g., syllables) in which, unbeknownst to the participants, stimuli are grouped into triplets that always appear together in the stream (e.g., ‘tokibu’, ‘tipolu’), with no pauses between each other (e.g., ‘tokibutipolugopilatokibu’) and without any information regarding the task or the stimuli. Following exposure, SL is assessed by asking participants to discriminate between triplets previously presented (‘tokibu’) from new sequences never presented together during exposure (‘kipopi’), i.e., to perform a two-alternative-forced-choice (2-AFC) task. Despite the widespread use of the 2-AFC to test SL, it has come under increasing criticism as it is an offline post-learning task that only assesses the result of the learning that had occurred during the previous exposure phase and that might be affected by other factors beyond the computation of regularities embedded in the input, typically the likelihood two syllables occurring together, a statistic known as transitional probability (TP). One solution to overcome these limitations is to assess SL as exposure to the stream unfolds using online techniques such as event-related potentials (ERP) that is highly sensitive to the time-course of the learning in the brain. Here we collected ERPs to examine the neurofunctional correlates of SL in preschool children with DLD, and chronological-age typical language development (TLD) controls who were exposed to an auditory stream in which eight three-syllable nonsense words, four of which presenting high-TPs and the other four low-TPs, to further analyze whether the ability of DLD and TLD children to extract-word-like units from the steam was modulated by words’ predictability. Moreover, to ascertain if the previous knowledge of the to-be-learned-regularities affected the neural responses to high- and low-TP words, children performed the auditory SL task, firstly, under implicit, and, subsequently, under explicit conditions. Although behavioral evidence of SL was not obtained in either group, the neural responses elicited during the exposure phases of the SL tasks differentiated children with DLD from children with TLD. Specifically, the results indicated that only children from the TDL group showed neural evidence of SL, particularly in the SL task performed under explicit conditions, firstly, for the low-TP, and, subsequently, for the high-TP ‘words’. Taken together, these findings support the view that children with DLD showed deficits in the extraction of the regularities embedded in the auditory input which might underlie the language difficulties.

Keywords: development language disorder, statistical learning, transitional probabilities, word segmentation

Procedia PDF Downloads 188
1094 Real-Time Optimisation and Minimal Energy Use for Water and Environment Efficient Irrigation

Authors: Kanya L. Khatri, Ashfaque A. Memon, Rod J. Smith, Shamas Bilal

Abstract:

The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed in this context are efficient water use and conversion of surface irrigation to pressurized systems. By replacing furrow irrigation with drip or centre pivot systems, the water efficiency can be improved by up to 30 to 45%. However, the installation and application of pumps and pipes, and the associated fuels needed for these alternatives increase energy consumption and cause significant greenhouse gas emissions. Hence, a balance between the improvement in water use and the potential increase in energy consumption is required keeping in view adverse impact of increased carbon emissions on the environment. When surface water is used, pressurized systems increase energy consumption substantially, by between 65% to 75%, and produce greenhouse gas emissions around 1.75 times higher than that of gravity based irrigation. With gravity based surface irrigation methods the energy consumption is assumed to be negligible. This study has shown that a novel real-time infiltration model REIP has enabled implementation of real-time optimization and control of surface irrigation and surface irrigation with real-time optimization has potential to bring significant improvements in irrigation performance along with substantial water savings of 2.92 ML/ha which is almost equivalent to that given by pressurized systems. Thus real-time optimization and control offers a modern, environment friendly and water efficient system with close to zero increase in energy consumption and minimal greenhouse gas emissions.

Keywords: pressurised irrigation, carbon emissions, real-time, environmentally-friendly, REIP

Procedia PDF Downloads 503
1093 The Proposal for a Framework to Face Opacity and Discrimination ‘Sins’ Caused by Consumer Creditworthiness Machines in the EU

Authors: Diogo José Morgado Rebelo, Francisco António Carneiro Pacheco de Andrade, Paulo Jorge Freitas de Oliveira Novais

Abstract:

Not everything in AI-power consumer credit scoring turns out to be a wonder. When using AI in Creditworthiness Assessment (CWA), opacity and unfairness ‘sins’ must be considered to the task be deemed Responsible. AI software is not always 100% accurate, which can lead to misclassification. Discrimination of some groups can be exponentiated. A hetero personalized identity can be imposed on the individual(s) affected. Also, autonomous CWA sometimes lacks transparency when using black box models. However, for this intended purpose, human analysts ‘on-the-loop’ might not be the best remedy consumers are looking for in credit. This study seeks to explore the legality of implementing a Multi-Agent System (MAS) framework in consumer CWA to ensure compliance with the regulation outlined in Article 14(4) of the Proposal for an Artificial Intelligence Act (AIA), dated 21 April 2021 (as per the last corrigendum by the European Parliament on 19 April 2024), Especially with the adoption of Art. 18(8)(9) of the EU Directive 2023/2225, of 18 October, which will go into effect on 20 November 2026, there should be more emphasis on the need for hybrid oversight in AI-driven scoring to ensure fairness and transparency. In fact, the range of EU regulations on AI-based consumer credit will soon impact the AI lending industry locally and globally, as shown by the broad territorial scope of AIA’s Art. 2. Consequently, engineering the law of consumer’s CWA is imperative. Generally, the proposed MAS framework consists of several layers arranged in a specific sequence, as follows: firstly, the Data Layer gathers legitimate predictor sets from traditional sources; then, the Decision Support System Layer, whose Neural Network model is trained using k-fold Cross Validation, provides recommendations based on the feeder data; the eXplainability (XAI) multi-structure comprises Three-Step-Agents; and, lastly, the Oversight Layer has a 'Bottom Stop' for analysts to intervene in a timely manner. From the analysis, one can assure a vital component of this software is the XAY layer. It appears as a transparent curtain covering the AI’s decision-making process, enabling comprehension, reflection, and further feasible oversight. Local Interpretable Model-agnostic Explanations (LIME) might act as a pillar by offering counterfactual insights. SHapley Additive exPlanation (SHAP), another agent in the XAI layer, could address potential discrimination issues, identifying the contribution of each feature to the prediction. Alternatively, for thin or no file consumers, the Suggestion Agent can promote financial inclusion. It uses lawful alternative sources such as the share of wallet, among others, to search for more advantageous solutions to incomplete evaluation appraisals based on genetic programming. Overall, this research aspires to bring the concept of Machine-Centered Anthropocentrism to the table of EU policymaking. It acknowledges that, when put into service, credit analysts no longer exert full control over the data-driven entities programmers have given ‘birth’ to. With similar explanatory agents under supervision, AI itself can become self-accountable, prioritizing human concerns and values. AI decisions should not be vilified inherently. The issue lies in how they are integrated into decision-making and whether they align with non-discrimination principles and transparency rules.

Keywords: creditworthiness assessment, hybrid oversight, machine-centered anthropocentrism, EU policymaking

Procedia PDF Downloads 34
1092 The Parental Involvement as Predictor of Happiness in School-Aged Children

Authors: Giedre Sirvinskiene, Kastytis Smigelskas

Abstract:

Quality of family relations is an important factor of child development, however, the role of joint family activities on adolescent happiness still needs investigation. The aim of this study is to analyze associations between happiness of school-aged children and parental involvement. The analysis involves Lithuanian data from the cross-sectional Health Behaviour in School Aged Children (HBSC) study. The sample comprised 5730 children aged 11–15 years. Results: The odds of happiness was 2.38 times higher if children were living together with mother (95% CI: 1.81–3.13) and 1.81 times – with father (95% CI: 1.53–2.15). However, the likelihood of happiness was 7.21 times lower if adolescent had difficulties to talk with mother (95% CI: 5.42–9.61) and 6.40 times – with father (95% CI: 4.80–8.56). The joint daily adolescents-parents activities also predict the odds for happiness: joint TV watching by 5.96 times (95% CI: 4.21–8.43), having meals together by 7.02 times (95% CI: 4.77–10.32), going for a walk together 4.30 times (95% CI: 2.96–6.26), visiting places by 6.85 times (95% CI: 4.74–9.90), visiting friends and relatives by 7.13 times (95% CI: 4.87–10.43), sporting by 2.76 (95% CI: 1.83–4.18) as well as discussing various things by 7.35 times (95% CI: 5.50–9.82). Conclusions: Joint parents-adolescents activities and communication are related with greater happiness of adolescent. Though adolescence is a period when the relationships with peers get more importance, the communication and joint activities with parents remain a significant factor of adolescent happiness.

Keywords: adolescent, family, happiness, school-age

Procedia PDF Downloads 252
1091 Implementation of Deep Neural Networks for Pavement Condition Index Prediction

Authors: M. Sirhan, S. Bekhor, A. Sidess

Abstract:

In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.

Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction

Procedia PDF Downloads 137