Search results for: job selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2366

Search results for: job selection

1046 Analysing Representations of ‘Leftover’ Women in Chinese Media: Taking the Film ‘The Last Woman Standing’ and ‘I Do’ as Examples

Authors: Ting Li Liu

Abstract:

‘Leftover woman’ or ‘3S’ woman is the term used to describe a well-educated, high income, independent woman who is single and never married around 30 years in Chinese society. With the naming of this demographic of ‘leftover women’, their family, dating culture, mate selection and marriage attract public concern. Massive media representations of ‘leftover women’ occur daily; the research aims to present several media representations of women’s anxiety about their singlehood and related marital issues around thirty. The research triangulates two areas of media representation of ‘leftover women’: films and audience reviews on ‘Douban Movie’ website. Drawing on traditional media studies, Fairclough’s critical discourse analysis combined with multimodal techniques is applied to the research to analyze the representations of ‘leftover women’ and their implications for marital culture in China, in conjunction with a feminist perspective. The conference paper will discuss two case studies: the film ‘The last woman standing’ and ‘I Do’. Paying attention to different aspects of ‘leftover women’, the research aims to re-examine the representations of ‘leftover women’ in selected scenes, such as their age anxiety, family, marriage, dating process, careers, etc. The paper also includes public beliefs about ‘leftover women’ from online audience reviews. In conclusion, the emergence of ‘leftover women’ is a reflection of Chinese tradition’s impact on people’s lives and new changes in Chinese families and their attitude to marriage.

Keywords: leftover women, marriage, family, media culture, China

Procedia PDF Downloads 254
1045 Applying Theory of Inventive Problem Solving to Develop Innovative Solutions: A Case Study

Authors: Y. H. Wang, C. C. Hsieh

Abstract:

Good service design can increase organization revenue and consumer satisfaction while reducing labor and time costs. The problems facing consumers in the original serve model for eyewear and optical industry includes the following issues: 1. Insufficient information on eyewear products 2. Passively dependent on recommendations, insufficient selection 3. Incomplete records on progression of vision conditions 4. Lack of complete customer records. This study investigates the case of Kobayashi Optical, applying the Theory of Inventive Problem Solving (TRIZ) to develop innovative solutions for eyewear and optical industry. Analysis results raise the following conclusions and management implications: In order to provide customers with improved professional information and recommendations, Kobayashi Optical is suggested to establish customer purchasing records. Overall service efficiency can be enhanced by applying data mining techniques to analyze past consumer preferences and purchase histories. Furthermore, Kobayashi Optical should continue to develop a 3D virtual trial service which can allow customers for easy browsing of different frame styles and colors. This 3D virtual trial service will save customer waiting times in during peak service times at stores.

Keywords: theory of inventive problem solving (TRIZ), service design, augmented reality (AR), eyewear and optical industry

Procedia PDF Downloads 279
1044 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.

Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO

Procedia PDF Downloads 419
1043 Composite Laminate and Thin-Walled Beam Correlations for Aircraft Wing Box Design

Authors: S. J. M. Mohd Saleh, S. Guo

Abstract:

Composite materials have become an important option for the primary structure of aircraft due to their design flexibility and ability to improve the overall performance. At present, the option for composite usage in aircraft component is largely based on experience, knowledge, benchmarking and partly market driven. An inevitable iterative design during the design stage and validation process will increase the development time and cost. This paper aims at presenting the correlation between laminate and composite thin-wall beam structure, which contains the theoretical and numerical investigations on stiffness estimation of composite aerostructures with applications to aircraft wings. Classical laminate theory and thin-walled beam theory were applied to define the correlation between 1-dimensional composite laminate and 2-dimensional composite beam structure, respectively. Then FE model was created to represent the 3-dimensional structure. A detailed study on stiffness matrix of composite laminates has been carried out to understand the effects of stacking sequence on the coupling between extension, shear, bending and torsional deformation of wing box structures for 1-dimensional, 2-dimensional and 3-dimensional structures. Relationships amongst composite laminates and composite wing box structures of the same material have been developed in this study. These correlations will be guidelines for the design engineers to predict the stiffness of the wing box structure during the material selection process and laminate design stage.

Keywords: aircraft design, aircraft structures, classical lamination theory, composite structures, laminate theory, structural design, thin-walled beam theory, wing box design

Procedia PDF Downloads 233
1042 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier

Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu

Abstract:

Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.

Keywords: bias, augmentation, melanoma, convolutional neural network

Procedia PDF Downloads 211
1041 Microscopic Analysis of Bulk, High-Tc Superconductors by Transmission Kikuchi Diffraction

Authors: Anjela Koblischka-Veneva, Michael R. Koblischka

Abstract:

In this contribution, the Transmission-Kikuchi Diffraction (TKD, or sometimes called t-EBSD) is applied to bulk, melt-grown YBa₂Cu₃O₇ (YBCO) superconductors prepared by the MTMG (melt-textured melt-grown) technique and the infiltration growth (IG) technique. TEM slices required for the analysis were prepared by means of Focused Ion-Beam (FIB) milling using mechanically polished sample surfaces, which enable a proper selection of the interesting regions for investigations. The required optical transparency was reached by an additional polishing step of the resulting surfaces using FIB-Ga-ion and Ar-ion milling. The improved spatial resolution of TKD enabled the investigation of the tiny YBa₂Cu₃O₅ (Y-211) particles having a diameter of about 50-100 nm embedded within the YBCO matrix and of other added secondary phase particles. With the TKD technique, the microstructural properties of the YBCO matrix are studied in detail. It is observed that the matrix shows the effects of stress/strain, depending on the size and distribution of the embedded particles, which are important for providing additional flux pinning centers in such superconducting bulk samples. Using the Kernel Average Misorientation (KAM) maps, the strain induced in the superconducting matrix around the particles, which increases the flux pinning effectivity, can be clearly revealed. This type of analysis of the EBSD/TKD data is, therefore, also important for other material systems, where nanoparticles are embedded in a matrix.

Keywords: transmission Kikuchi diffraction, EBSD, TKD, embedded particles, superconductors YBa₂Cu₃O₇

Procedia PDF Downloads 135
1040 Saudi Arabia Border Security Informatics: Challenges of a Harsh Environment

Authors: Syed Ahsan, Saleh Alshomrani, Ishtiaq Rasool, Ali Hassan

Abstract:

In this oral presentation, we will provide an overview of the technical and semantic architecture of a desert border security and critical infrastructure protection security system. Modern border security systems are designed to reduce the dependability and intrusion of human operators. To achieve this, different types of sensors are use along with video surveillance technologies. Application of these technologies in a harsh desert environment of Saudi Arabia poses unique challenges. Environmental and geographical factors including high temperatures, desert storms, temperature variations and remoteness adversely affect the reliability of surveillance systems. To successfully implement a reliable, effective system in a harsh desert environment, the following must be achieved: i) Selection of technology including sensors, video cameras, and communication infrastructure that suit desert environments. ii) Reduced power consumption and efficient usage of equipment to increase the battery life of the equipment. iii) A reliable and robust communication network with efficient usage of bandwidth. Also, to reduce the expert bottleneck, an ontology-based intelligent information systems needs to be developed. Domain knowledge unique and peculiar to Saudi Arabia needs to be formalized to develop an expert system that can detect abnormal activities and any intrusion.

Keywords: border security, sensors, abnormal activity detection, ontologies

Procedia PDF Downloads 481
1039 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area

Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya

Abstract:

In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.

Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area

Procedia PDF Downloads 272
1038 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls

Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu

Abstract:

Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.

Keywords: android, API Calls, machine learning, permissions combination

Procedia PDF Downloads 329
1037 Consumer Behavior and Knowledge on Organic Products in Thailand

Authors: Warunpun Kongsom, Chaiwat Kongsom

Abstract:

The objective of this study was to investigate the awareness, knowledge and consumer behavior towards organic products in Thailand. For this study, a purposive sampling technique was used to identify a sample group of 2,575 consumers over the age of 20 years who intended or made purchases from 1) green shops; 2) supermarkets with branches; and, 3) green markets. A questionnaire was used for data collection across the country. Descriptive statistics were used for data analysis. The results showed that more than 92% of consumers were aware of organic agriculture, but had less knowledge about it. More than 60% of consumers knew that organic agriculture production and processing did not allow the use of chemicals. And about 40% of consumers were confused between the food safety logo and the certified organic logo, and whether GMO was allowed in organic agriculture practice or not. In addition, most consumers perceived that organic agricultural products, good agricultural practice (GAP) products, agricultural chemicals free products, and hydroponic vegetable products had the same standard. In the view of organic consumers, the organic Thailand label was the most seen and reliable among various organic labels. Less than 3% of consumers thought that the International Federation of Organic Agriculture Movements (IFOAM) Global Organic Mark (GOM) was the most seen and reliable. For the behaviors of organic consumers, they purchased organic products mainly at the supermarket and green shop (55.4%), one to two times per month, and with a total expenditure of about 200 to 400 baht each time. The main reason for buying organic products was safety and free from agricultural chemicals. The considered factors in organic product selection were price (29.5%), convenience (22.4%), and a reliable certification system (21.3%). The demands for organic products were mainly rice, vegetables and fruits. Processed organic products were relatively small in quantity.

Keywords: consumer behavior, consumer knowledge, organic products, Thailand

Procedia PDF Downloads 296
1036 Detection and Classification of Mammogram Images Using Principle Component Analysis and Lazy Classifiers

Authors: Rajkumar Kolangarakandy

Abstract:

Feature extraction and selection is the primary part of any mammogram classification algorithms. The choice of feature, attribute or measurements have an important influence in any classification system. Discrete Wavelet Transformation (DWT) coefficients are one of the prominent features for representing images in frequency domain. The features obtained after the decomposition of the mammogram images using wavelet transformations have higher dimension. Even though the features are higher in dimension, they were highly correlated and redundant in nature. The dimensionality reduction techniques play an important role in selecting the optimum number of features from the higher dimension data, which are highly correlated. PCA is a mathematical tool that reduces the dimensionality of the data while retaining most of the variation in the dataset. In this paper, a multilevel classification of mammogram images using reduced discrete wavelet transformation coefficients and lazy classifiers is proposed. The classification is accomplished in two different levels. In the first level, mammogram ROIs extracted from the dataset is classified as normal and abnormal types. In the second level, all the abnormal mammogram ROIs is classified into benign and malignant too. A further classification is also accomplished based on the variation in structure and intensity distribution of the images in the dataset. The Lazy classifiers called Kstar, IBL and LWL are used for classification. The classification results obtained with the reduced feature set is highly promising and the result is also compared with the performance obtained without dimension reduction.

Keywords: PCA, wavelet transformation, lazy classifiers, Kstar, IBL, LWL

Procedia PDF Downloads 335
1035 System-level Factors, Presidential Coattails and Mass Preferences: Dynamics of Party Nationalization in Contemporary Brazil (1990-2014)

Authors: Kazuma Mizukoshi

Abstract:

Are electoral politics in contemporary Brazil still local in organization and focus? The importance of this question lies in its paradoxical trajectories. First, often coupled with institutional and sociological ‘barriers’ (e.g. the selection and election of candidates relatively loyal to the local party leadership, the predominance of territorialized electoral campaigns, and the resilience of political clientelism), the regionalization of electoral politics has been a viable and practical solution especially for pragmatic politicians in some Latin American countries. On the other hand, some leftist parties that once served as minor opposition forces at the time of foundational or initial elections have certainly expanded vote shares. Some were eventually capable of holding most (if not a majority) legislative seats since the 1990s. Though not yet rigorously demonstrated, theoretically implicit in the rise of leftist parties in legislative elections is the gradual (if not complete) nationalization of electoral support—meaning the growing equality of a party’s vote share across electoral districts and its change over time. This study will develop four hypotheses to explain the dynamics of party nationalization in contemporary Brazil: district magnitude, ethnic and class fractionalization of each district, voting intentions in federal and state executive elections, and finally the left-right stances of electorates. The study will demonstrate these hypotheses by closely working with the Brazilian Electoral Study (2002-2014).

Keywords: party nationalization, presidential coattails, Left, Brazil

Procedia PDF Downloads 138
1034 Automatic Multi-Label Image Annotation System Guided by Firefly Algorithm and Bayesian Method

Authors: Saad M. Darwish, Mohamed A. El-Iskandarani, Guitar M. Shawkat

Abstract:

Nowadays, the amount of available multimedia data is continuously on the rise. The need to find a required image for an ordinary user is a challenging task. Content based image retrieval (CBIR) computes relevance based on the visual similarity of low-level image features such as color, textures, etc. However, there is a gap between low-level visual features and semantic meanings required by applications. The typical method of bridging the semantic gap is through the automatic image annotation (AIA) that extracts semantic features using machine learning techniques. In this paper, a multi-label image annotation system guided by Firefly and Bayesian method is proposed. Firstly, images are segmented using the maximum variance intra cluster and Firefly algorithm, which is a swarm-based approach with high convergence speed, less computation rate and search for the optimal multiple threshold. Feature extraction techniques based on color features and region properties are applied to obtain the representative features. After that, the images are annotated using translation model based on the Net Bayes system, which is efficient for multi-label learning with high precision and less complexity. Experiments are performed using Corel Database. The results show that the proposed system is better than traditional ones for automatic image annotation and retrieval.

Keywords: feature extraction, feature selection, image annotation, classification

Procedia PDF Downloads 586
1033 Sex Work Practice and Health Seeking Behavior among Hiv Positive Female Sex Workers in Rural Karnataka, India

Authors: Rajeshwari Biradar

Abstract:

Background: The anecdotal evidences indicate that utilization of HIV services especially in Government facilities is affected by stigma and discrimination among HIV positive female sex workers (FSWs) in Karnataka. To our knowledge, there is no quantitative study on this issue. In this study an attempt is made to examine these aspects among positive FSWs exposed to prevention programs. Methods: This is a cross‐ sectional quantitative survey of HIV positive FSWs in the 3 districts of northern Karnataka using a structured questionnaire. The list of HIV Positive FSWs was organized by stratification, and 607 positive FSWs were selected using a systematic random selection. The data were analyzed using both bivariate and multivariate statistical techniques. Results: Half of the sex workers (52%) are traditional (devadasi, dedicated to the temple), 22% are widowed and the mean age is 33 years. The FSWs practice sex work on an average 13 days a month with 2.3 clients per day and was in sex work for about 13 years. Almost all of them (97%) used condom with the clients they had on the last day of sex work. About 74% were ever registered in the ART center and 47% of them reported being ever on ART, of which 6% dropped out. Multivariate results support the hypothesis that the interventions addressing stigma and discrimination enabled accessing health services in the government facilities (AOR=1.37; p=0.17). Conclusions: Based on the results of the study, programs addressing stigma, discrimination and positive prevention can be implemented in places where government health services are not utilized by HIV positive FSWs. However, the study may be limited by the fact that majority of the FSWs entered into sex work through the traditional devadasi system, which may not be the case in other parts of India.

Keywords: sex work, HIV/AIDS, female sex workers, health

Procedia PDF Downloads 187
1032 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem

Authors: Brandon Foggo, Nanpeng Yu

Abstract:

Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.

Keywords: distribution network, machine learning, network topology, phase identification, smart grid

Procedia PDF Downloads 300
1031 A Review on the Studies on Mechanical and Tribological Properties of Aluminum and Magnesium Alloys Welded by Friction Stir Welding

Authors: Sukhdeep Singh Gill, Gurbhinder Singh Brar

Abstract:

In recent years, friction stir welding (FSW) has attracted the main attention of the concerned researcher especially in case of joining of nonferrous alloys like aluminum and magnesium due to its unmatchable properties with respect to other welding techniques. Friction stir welding is a solid state welding process which is most suitable for the welding of nonferrous alloys, especially aluminum and magnesium alloys. Aluminum and magnesium alloys are widely used for structural applications of all types of automobiles due to their superior mechanical properties with their low density. This paper deals with the critical review of the different properties (like tensile strength, microhardness, impact strength, corrosion resistance, and metallurgical investigation on SEM) obtained by the FSW of aluminum and magnesium alloys. After a critical review of the existing published literature on concerned topics, all the properties of welding joins are compared in the tabulated manner to optimize the selection of materials and FSW parameters according to mechanical and tribological properties. Different tool designs used for the FSW process are also thoroughly studied, and the influence of the design of the tool used in FSW on the different properties has also been incorporated in this paper. It has been observed from the existing published literature that FSW is the most effective and practical technique for joining the non ferrous alloys especially aluminum and magnesium alloys, and among the different FSW tools, left hand threaded tri-flute (LHTTF) tool is best for the welding of non ferrous alloys like aluminum and magnesium alloys which gives the superior mechanical properties to welding joint.

Keywords: aluminum, friction stir welding, magnesium, structural applications, tool design

Procedia PDF Downloads 179
1030 Current Practices of Permitted Daily Exposure (PDE) Calculation and Selection

Authors: Annie Ramanbhai Mecwan

Abstract:

Cleaning validation in a pharmaceutical manufacturing facility is documented evidence that a cleaning process has effectively removed contaminants, residues from previous drug products and cleaning agents below a pre-defined threshold from the reusable tools and parts of equipment. In shared manufacturing facilities more than one drug product is prepared. After cleaning of reusable tools and parts of equipment after one drug product manufacturing, there are chances that some residues of drug substance from previously manufactured drug products may be retained on the equipment and can carried forward to the next drug product and thus cause cross-contamination. Health-based limits through the derivation of a safe threshold value called permitted daily exposure (PDE) for the residues of drug substances should be employed to identify the risks posed at these manufacturing facilities. The PDE represents a substance-specific dose that is unlikely to cause an adverse effect if an individual is exposed to or below this dose every day for a lifetime. There are different practices to calculate PDE. Data for all APIs in the public domain are considered to calculate PDE value though, company to company may vary the final PDE value based on different toxicologist’s perspective or their subjective evaluation. Hence, Regulatory agencies should take responsibility for publishing PDE values for all APIs as it is done for elemental PDEs. This will harmonize the PDE values all over the world and prevent the unnecessary load on manufacturers for cleaning validation

Keywords: active pharmaceutical ingredient, good manufacturing practice, NOAEL, no observed adverse effect level, permitted daily exposure

Procedia PDF Downloads 90
1029 Analysis and Experimental Research on the Influence of Lubricating Oil on the Transmission Efficiency of New Energy Vehicle Gearbox

Authors: Chen Yong, Bi Wangyang, Zang Libin, Li Jinkai, Cheng Xiaowei, Liu Jinmin, Yu Miao

Abstract:

New energy vehicle power transmission systems continue to develop in the direction of high torque, high speed, and high efficiency. The cooling and lubrication of the motor and the transmission system are integrated, and new requirements are placed on the lubricants for the transmission system. The effects of traditional lubricants and special lubricants for new energy vehicles on transmission efficiency were studied through experiments and simulation methods. A mathematical model of the transmission efficiency of the lubricating oil in the gearbox was established. The power loss of each part was analyzed according to the working conditions. The relationship between the speed and the characteristics of different lubricating oil products on the power loss of the stirring oil was discussed. The minimum oil film thickness was required for the life of the gearbox. The accuracy of the calculation results was verified by the transmission efficiency test conducted on the two-motor integrated test bench. The results show that the efficiency increases first and then decreases with the increase of the speed and decreases with the increase of the kinematic viscosity of the lubricant. The increase of the kinematic viscosity amplifies the transmission power loss caused by the high speed. New energy vehicle special lubricants have less attenuation of transmission efficiency in the range above mid-speed. The research results provide a theoretical basis and guidance for the evaluation and selection of transmission efficiency of gearbox lubricants for new energy vehicles.

Keywords: new energy vehicles, lubricants, transmission efficiency, kinematic viscosity, test and simulation

Procedia PDF Downloads 131
1028 Dynamic Stability Assessment of Different Wheel Sized Bicycles Based on Current Frame Design Practice with ISO Requirement for Bicycle Safety

Authors: Milan Paudel, Fook Fah Yap, Anil K. Bastola

Abstract:

The difficulties in riding small wheel bicycles and their lesser stability have been perceived for a long time. Although small wheel bicycles are designed using the similar approach and guidelines that have worked well for big wheel bicycles, the performance of the big wheelers and the smaller wheelers are markedly different. Since both the big wheelers and small wheelers have same fundamental geometry, most blame the small wheel for this discrepancy in the performance. This paper reviews existing guidelines for bicycle design, especially the front steering geometry for the bicycle, and provides a systematic and quantitative analysis of different wheel sized bicycles. A validated mathematical model has been used as a tool to assess the dynamic performance of the bicycles in term of their self-stability. The results obtained were found to corroborate the subjective perception of cyclists for small wheel bicycles. The current approach for small wheel bicycle design requires higher speed to be self-stable. However, it was found that increasing the headtube angle and selecting a proper trail could improve the dynamic performance of small wheel bicycles. A range of parameters for front steering geometry has been identified for small wheel bicycles that have comparable stability as big wheel bicycles. Interestingly, most of the identified geometries are found to be beyond the ISO recommended range and seem to counter the current approach of small wheel bicycle design. Therefore, it was successfully shown that the guidelines for big wheelers do not translate directly to small wheelers, but careful selection of the front geometry could make small wheel bicycles as stable as big wheel bicycles.

Keywords: big wheel bicycle, design approach, ISO requirements, small wheel bicycle, stability and performance

Procedia PDF Downloads 194
1027 Enhanced Planar Pattern Tracking for an Outdoor Augmented Reality System

Authors: L. Yu, W. K. Li, S. K. Ong, A. Y. C. Nee

Abstract:

In this paper, a scalable augmented reality framework for handheld devices is presented. The presented framework is enabled by using a server-client data communication structure, in which the search for tracking targets among a database of images is performed on the server-side while pixel-wise 3D tracking is performed on the client-side, which, in this case, is a handheld mobile device. Image search on the server-side adopts a residual-enhanced image descriptors representation that gives the framework a scalability property. The tracking algorithm on the client-side is based on a gravity-aligned feature descriptor which takes the advantage of a sensor-equipped mobile device and an optimized intensity-based image alignment approach that ensures the accuracy of 3D tracking. Automatic content streaming is achieved by using a key-frame selection algorithm, client working phase monitoring and standardized rules for content communication between the server and client. The recognition accuracy test performed on a standard dataset shows that the method adopted in the presented framework outperforms the Bag-of-Words (BoW) method that has been used in some of the previous systems. Experimental test conducted on a set of video sequences indicated the real-time performance of the tracking system with a frame rate at 15-30 frames per second. The presented framework is exposed to be functional in practical situations with a demonstration application on a campus walk-around.

Keywords: augmented reality framework, server-client model, vision-based tracking, image search

Procedia PDF Downloads 275
1026 Correlates of Peer Influence and Resistance to HIV/AIDS Counselling and Testing among Students in Tertiary Institutions in Kano State, Nigeria

Authors: A. S. Haruna, M. U. Tambawal, A. A. Salawu

Abstract:

The psychological impact of peer influence on its individual group members, can make them resist HIV/AIDS counselling and testing. This study investigated the correlate of peer influence and resistance to HIV/AIDS counselling and testing among students in tertiary institutions in Kano state, Nigeria. To achieve this, three null hypotheses were postulated and tested. Cross-Sectional Survey Design was employed in which 1512 sample was selected from a student population of 104,841.Simple Random Sampling was used in the selection. A self-developed 20-item scale called Peer Influence and Psychological Resistance Inventory (PIPRI) was used for data collection. Pearson Product Moment Correlation (PPMCC) via test-retest method was applied to estimate a reliability coefficient of 0.86 for the scale. Data obtained was analyzed using t-test and PPMCC at 0.05 level of confidence. Results reveal 26.3% (397) of the respondents being influenced by their peer group, while 39.8% showed resistance. Also, the t-tests and PPMCC statistics were greater than their respective critical values. This shows that there was a significant gender difference in peer influence and a difference between peer influence and resistance to HIV/AIDS counselling and testing. However, a positive relationship between peer influence and resistance to HIV/AIDS counselling and testing was shown. A major recommendation offered suggests the use of reinforcement and social support for positive attitudes and maintenance of safe behaviour among students who patronize HIV/AIDS counselling.

Keywords: peer group influence, HIV/AIDS counselling and testing, psychological resistance, students

Procedia PDF Downloads 392
1025 Thermochemical Modelling for Extraction of Lithium from Spodumene and Prediction of Promising Reagents for the Roasting Process

Authors: Allen Yushark Fosu, Ndue Kanari, James Vaughan, Alexandre Changes

Abstract:

Spodumene is a lithium-bearing mineral of great interest due to increasing demand of lithium in emerging electric and hybrid vehicles. The conventional method of processing the mineral for the metal requires inevitable thermal transformation of α-phase to the β-phase followed by roasting with suitable reagents to produce lithium salts for downstream processes. The selection of appropriate reagent for roasting is key for the success of the process and overall lithium recovery. Several researches have been conducted to identify good reagents for the process efficiency, leading to sulfation, alkaline, chlorination, fluorination, and carbonizing as the methods of lithium recovery from the mineral.HSC Chemistry is a thermochemical software that can be used to model metallurgical process feasibility and predict possible reaction products prior to experimental investigation. The software was employed to investigate and explain the various reagent characteristics as employed in literature during spodumene roasting up to 1200°C. The simulation indicated that all used reagents for sulfation and alkaline were feasible in the direction of lithium salt production. Chlorination was only feasible when Cl2 and CaCl2 were used as chlorination agents but not NaCl nor KCl. Depending on the kind of lithium salt formed during carbonizing and fluorination, the process was either spontaneous or nonspontaneous throughout the temperature range investigated. The HSC software was further used to simulate and predict some promising reagents which may be equally good for roasting the mineral for efficient lithium extraction but have not yet been considered by researchers.

Keywords: thermochemical modelling, HSC chemistry software, lithium, spodumene, roasting

Procedia PDF Downloads 159
1024 Accentuation Moods of Blaming Utterances in Egyptian Arabic: A Pragmatic Study of Prosodic Focus

Authors: Reda A. H. Mahmoud

Abstract:

This paper investigates the pragmatic meaning of prosodic focus through four accentuation moods of blaming utterances in Egyptian Arabic. Prosodic focus results in various pragmatic meanings when the speaker utters the same blaming expression in different emotional moods: the angry, the mocking, the frustrated, and the informative moods. The main objective of this study is to interpret the meanings of these four accentuation moods in relation to their illocutionary forces and pre-locutionary effects, the integrated features of prosodic focus (e.g., tone movement distributions, pitch accents, lengthening of vowels, deaccentuation of certain syllables/words, and tempo), and the consonance between the former prosodic features and certain lexico-grammatical components to communicate the intentions of the speaker. The data on blaming utterances has been collected via elicitation and pre-recorded material, and the selection of blaming utterances is based on the criteria of lexical and prosodic regularity to be processed and verified by three computer programs, Praat, Speech Analyzer, and Spectrogram Freeware. A dual pragmatic approach is established to interpret expressive blaming utterance and their lexico-grammatical distributions into intonational focus structure units. The pragmatic component of this approach explains the variable psychological attitudes through the expressions of blaming and their effects whereas the analysis of prosodic focus structure is used to describe the intonational contours of blaming utterances and other prosodic features. The study concludes that every accentuation mood has its different prosodic configuration which influences the listener’s interpretation of the pragmatic meanings of blaming utterances.

Keywords: pragmatics, pragmatic interpretation, prosody, prosodic focus

Procedia PDF Downloads 153
1023 Enhancement of Seed Longevity in Japonica Rice Cultivars Using Weed Rice

Authors: Jun-Hyeon Cho, Ji-Yoon Lee, Young-Bo Sohn, Dong-Jin Shin, You-Chun Song, Dong-Soo Park, Min-Hee Nam, Young-Up Kwon

Abstract:

Seed germination is a main factor in japonica rice cultivation. For japonica strains unlike indica lines, fast loss of germination ability during storage leads to risk of seeding and deterioration in the quality. To resolve these problems, germplasms screening for longevity was conducted using six days of compulsory aging stress of high temperature (50℃) and humidity (~95% RH). ‘Dharial’, a weedy rice collected in Bangladesh, was chosen as a source of seed longevity for long term storage. The strong germination trait originated from ‘Dharial’ was incorporated into Korean elite japonica cultivars, ‘Ilmi’ and ‘Gopum’, through backcross method. The germination ratio was evaluated after two years of room temperature storage conditions. A high germination ratio of 80.5% in donor plant of ‘Dharial’ and 77.3% in an introgression line were observed based on the two years of storage while the recurrent japonica cultivars, ‘Ilmi’ and ‘Gopum’, were failed in germination. As a result, we investigated the changes of quality affected by germination ability during storage. A gentle slope of palatability which is one of the measurement items for indirect selection indicator of high eating quality in japonica varieties was studied in a high germination ratio introgression line during storage. The introgression line could be useful to increase longevity and quality of japonica rice seed if molecular breeding strategy such as QTLs analysis is combined.

Keywords: rice, longevity, germination, storage

Procedia PDF Downloads 426
1022 Balancing Aesthetics, Sustainability, and Safety in Handmade Fabric Face Masks: A Testimony of Creativity and Adaptability

Authors: Anne Mastamet-Mason, Oluwatosin Onakoya, Karla Tissiman

Abstract:

The COVID-19 pandemic that ravaged the world in 2020 brought about the need for handmade fabric face masks in South Africa and beyond. These masks showcased individuality and environmental responsibility and effectively aided our battle against the virus. These practical masks held significant meaning, representing human creativity, resilience, and commitment to sustainability in adversity. This paper examines how aesthetics, sustainability, and safety were achieved in the Handmade Fabric Face Masks. It analyses how their integration signified human agility and resilience to the pandemic while promoting dignity and environmental welfare. The research conducted a qualitative analysis to choose handmade fabric face masks and assess their aesthetic, sustainable, and safety features. The study involved interviewing a group of mask designers and users who evaluated the masks' efficacy in providing protection, aesthetics, and environmental sustainability. Although the designers demonstrated a high level of knowledge in the design aspects, the results indicated a need for more information regarding the functional safety measures and some environmental factors in mask selection and production. The mask analysis also revealed that the masks available in the market combined aesthetics and environmental protection but had limited safety measures. Despite the lack of balance of aesthetics, sustainability, and safety among the designers and the users of hand-fabric masks, functional aspects of fabrics and sustainability literacy are essential

Keywords: sustainable fashion, fabric mask, aesthetics, safety measures

Procedia PDF Downloads 64
1021 Tomato-Weed Classification by RetinaNet One-Step Neural Network

Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri

Abstract:

The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.

Keywords: deep learning, object detection, cnn, tomato, weeds

Procedia PDF Downloads 103
1020 Production of Oral Vowels by Chinese Learners of Portuguese: Problems and Didactic Implications

Authors: Adelina Castelo

Abstract:

The increasing number of learners of Portuguese as Foreign Language in China justifies the need to define the phonetic profile of these learners and to design didactic materials that are adjusted to their specific problems in pronunciation. Different aspects of this topic have been studied, but the production of oral vowels still needs to be investigated. This study aims: (i) to identify the problems the Chinese learners of Portuguese experience in the pronunciation of oral vowels; (ii) to discuss the didactic implications drawn from those problems. The participants were eight native speakers of Mandarin Chinese that had been learning Portuguese in College for almost a year. They named pictured objects and their oral productions were recorded and phonetically transcribed. The selection of the objects to name took into account some linguistic variables (e.g. stress pattern, syllable structure, presence of the Portuguese oral vowels in different word positions according to stress location). The results are analysed in two ways: the impact of linguistic variables on the success rate in the vowels' production; the replacement strategies used in the non-target productions. Both analyses show that the Chinese learners of Portuguese (i) have significantly more difficulties with the mid vowels as well as the high central vowel and (ii) do not master the vowel height feature. These findings contribute to define the phonetic profile of these learners in terms of oral vowel production. Besides, they have important didactic implications for the pronunciation teaching to these specific learners. Those implications are discussed and exemplified.

Keywords: Chinese learners, learners’ phonetic profile, linguistic variables, Portuguese as foreign language, production data, pronunciation teaching, oral vowels

Procedia PDF Downloads 223
1019 Borate Crosslinked Fracturing Fluids: Laboratory Determination of Rheology

Authors: Lalnuntluanga Hmar, Hardik Vyas

Abstract:

Hydraulic fracturing has become an essential procedure to break apart the rock and release the oil or gas which are trapped tightly in the rock by pumping fracturing fluids at high pressure down into the well. To open the fracture and to transport propping agent along the fracture, proper selection of fracturing fluids is the most crucial components in fracturing operations. Rheology properties of the fluids are usually considered the most important. Among various fracturing fluids, Borate crosslinked fluids have proved to be highly effective. Borate in the form of Boric Acid, borate ion is the most commonly use to crosslink the hydrated polymers and to produce very viscous gels that can stable at high temperature. Guar and HPG (Hydroxypropyl Guar) polymers are the most often used in these fluids. Borate gel rheology is known to be a function of polymer concentration, borate ion concentration, pH, and temperature. The crosslinking using Borate is a function of pH which means it can be formed or reversed simply by altering the pH of the fluid system. The fluid system was prepared by mixing base polymer with water at pH ranging between 8 to 11 and the optimum borate crosslinker efficiency was found to be pH of about 10. The rheology of laboratory prepared Borate crosslinked fracturing fluid was determined using Anton Paar Rheometer and Fann Viscometer. The viscosity was measured at high temperature ranging from 200ᵒF to 250ᵒF and pressures in order to partially stimulate the downhole condition. Rheological measurements reported that the crosslinking increases the viscosity, elasticity and thus fluid capability to transport propping agent.

Keywords: borate, crosslinker, Guar, Hydroxypropyl Guar (HPG), rheology

Procedia PDF Downloads 202
1018 Peripheral Nerves Cross-Sectional Area for the Diagnosis of Diabetic Polyneuropathy: A Meta-Analysis of Ultrasonographic Measurements

Authors: Saeed Pourhassan, Nastaran Maghbouli

Abstract:

1) Background It has been hypothesized that, in individuals with diabetes mellitus, the peripheral nerve is swollen due to sorbitol over-accumulation. Additionally growing evidence supported electro diagnostic study of diabetes induced neuropathy as a method having some challenges. 2) Objective To examine the performance of sonographic cross-sectional area (CSA) measurements in the diagnosis of diabetic polyneuropathy (DPN). 3) Data Sources Electronic databases, comprising PubMed and EMBASE and Google scholar, were searched for the appropriate studies before Jan 1, 2020. 4) Study Selection Eleven trials comparing different peripheral nerve CSA measurements between participants with and without DPN were included. 5) Data Extraction Study design, participants' demographic characteristics, diagnostic reference of DPN, and evaluated peripheral nerves and methods of CSA measurement. 6) Data Synthesis Among different peripheral nerves, Tibial nerve diagnostic odds ratios pooled from five studies (713 participants) were 4.46 (95% CI, 0.35–8.57) and the largest one with P<0.0001, I²:64%. Median nerve CSA at wrist and mid-arm took second and third place with ORs= 2.82 (1.50-4.15), 2.02(0.26-3.77) respectively. The sensitivities and specificities pooled from two studies for Sural nerve were 0.78 (95% CI, 0.68–0.89), and 0.68 (95% CI, 0.53–0.74). Included studies for other nerves were limited to one study. The largest sensitivity was for Sural nerve and the largest specificity was for Tibial nerve. 7) Conclusions The peripheral nerves CSA measured by ultrasound imaging is useful for the diagnosis of DPN and is most significantly different between patients and participants without DPN at the Tibial nerve. Because the Tibial nerve CSA in healthy participants, at various locations, rarely exceeds 24 mm2, this value can be considered as a cutoff point for diagnosing DPN.

Keywords: diabetes, diagnosis, polyneuropathy, ultrasound

Procedia PDF Downloads 135
1017 The Impact of Data Science on Geography: A Review

Authors: Roberto Machado

Abstract:

We conducted a systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology, analyzing 2,996 studies and synthesizing 41 of them to explore the evolution of data science and its integration into geography. By employing optimization algorithms, we accelerated the review process, significantly enhancing the efficiency and precision of literature selection. Our findings indicate that data science has developed over five decades, facing challenges such as the diversified integration of data and the need for advanced statistical and computational skills. In geography, the integration of data science underscores the importance of interdisciplinary collaboration and methodological innovation. Techniques like large-scale spatial data analysis and predictive algorithms show promise in natural disaster management and transportation route optimization, enabling faster and more effective responses. These advancements highlight the transformative potential of data science in geography, providing tools and methodologies to address complex spatial problems. The relevance of this study lies in the use of optimization algorithms in systematic reviews and the demonstrated need for deeper integration of data science into geography. Key contributions include identifying specific challenges in combining diverse spatial data and the necessity for advanced computational skills. Examples of connections between these two fields encompass significant improvements in natural disaster management and transportation efficiency, promoting more effective and sustainable environmental solutions with a positive societal impact.

Keywords: data science, geography, systematic review, optimization algorithms, supervised learning

Procedia PDF Downloads 31