Search results for: full scale measurement
8973 Airport Pavement Crack Measurement Systems and Crack Density for Pavement Evaluation
Authors: Ali Ashtiani, Hamid Shirazi
Abstract:
This paper reviews the status of existing practice and research related to measuring pavement cracking and using crack density as a pavement surface evaluation protocol. Crack density for pavement evaluation is currently not widely used within the airport community and its use by the highway community is limited. However, surface cracking is a distress that is closely monitored by airport staff and significantly influences the development of maintenance, rehabilitation and reconstruction plans for airport pavements. Therefore crack density has the potential to become an important indicator of pavement condition if the type, severity and extent of surface cracking can be accurately measured. A pavement distress survey is an essential component of any pavement assessment. Manual crack surveying has been widely used for decades to measure pavement performance. However, the accuracy and precision of manual surveys can vary depending upon the surveyor and performing surveys may disrupt normal operations. Given the variability of manual surveys, this method has shown inconsistencies in distress classification and measurement. This can potentially impact the planning for pavement maintenance, rehabilitation and reconstruction and the associated funding strategies. A substantial effort has been devoted for the past 20 years to reduce the human intervention and the error associated with it by moving toward automated distress collection methods. The automated methods refer to the systems that identify, classify and quantify pavement distresses through processes that require no or very minimal human intervention. This principally involves the use of a digital recognition software to analyze and characterize pavement distresses. The lack of established protocols for measurement and classification of pavement cracks captured using digital images is a challenge to developing a reliable automated system for distress assessment. Variations in types and severity of distresses, different pavement surface textures and colors and presence of pavement joints and edges all complicate automated image processing and crack measurement and classification. This paper summarizes the commercially available systems and technologies for automated pavement distress evaluation. A comprehensive automated pavement distress survey involves collection, interpretation, and processing of the surface images to identify the type, quantity and severity of the surface distresses. The outputs can be used to quantitatively calculate the crack density. The systems for automated distress survey using digital images reviewed in this paper can assist the airport industry in the development of a pavement evaluation protocol based on crack density. Analysis of automated distress survey data can lead to a crack density index. This index can be used as a means of assessing pavement condition and to predict pavement performance. This can be used by airport owners to determine the type of pavement maintenance and rehabilitation in a more consistent way.Keywords: airport pavement management, crack density, pavement evaluation, pavement management
Procedia PDF Downloads 1858972 Comparisons of Depressive Symptoms and Cognitive Appraisals in Different Age Groups under Abusive Leadership
Authors: Shao-Ying Wang, Shin-I Shih, Chi-Cheng Wu
Abstract:
Background: By following to the maturity theory about age, the manifestation of depression in different age groups under occupational stressors still remains unclear. Therefore, the aim of this study was to examine the depression within four main symptoms clusters: cognition, affect, physical complaints and interpersonal difficulty among the different age groups. Additionally, this study also used the stress appraisal theory, through the examination of challenge and hindrance appraisals, the effects of cognitive factors were expected to give therapeutic indication for the future treatment of depression under abusive leadership. Methods (Participants and Procedure): The data were collected in two waves from employees of local companies in Taiwan. The participants (58 males and 167 females) were native Chinese speakers, ranging in age from 20 to 59 years (M= 36.51). Up to 80% educational level of participants were above senior high. The married population was approximately at 43%. Measures; 1. Abusive Leadership: To measure abusive leadership, we used 15-item scale of abusive supervision which anchored on a 7-point Likert-type scale. (α= .96) 2. Depression: We used Taiwanese Depression Scale to measure the 4 clusters (cognition, affect, physical complaints and interpersonal difficulty) of symptoms. Participants responded for depression anchored on a 7-point Likert-type scale (α= .96). 3. Stress Appraisal Scale: To measure challenge and hindrance types of appraisal, participants responded to 33-item measure anchored on a 7-point Likert-type scale. (Challenge appraisal; α= .90; hindrance appraisal α= .87). Results: The results of correlation showed that there was a significant and negative correlation between abusive leadership and age (r = - .21, p < .01). Abusive leadership was positive correlated significantly with hindrance appraisal (r = .52, p < .01) and depression (r = .20, p < .01). The results also showed that hindrance appraisal was correlated to depression positively (r = .36, p < .01). A one-way ANOVA was conducted to compare the effect of lower/middle/order age groups on each cluster of depressive symptoms. The results showed that the effect of age groups on cognition was significant F (2, 157) =3.66, P < .05. Older age group (M=13.43 SD=6.84) reported less cognitive symptoms of depression than the middle (M=16.77 SD=7.49) and lower age (M=16.91 SD=6.97) groups. Besides, the effect of age groups on affect was also significant F (2,157)= 4.09 P < .05. Older age group (M=18.68 SD=8.98) reported less affective symptoms of depression than the middle (M=22.01 SD=7.96) and lower age (M=23.56 SD=7.67) groups. Moreover, the main effect of hindrance appraisal was found F (2, 157) =3.81, P < .05. Older age group (M=9.44 SD=2.89) reported fewer score on hindrance appraisals than the middle (M=11.06 SD=4.02) and lower age (M=9.62 SD=3.17) groups. To conclude, the severity of depression symptoms varies across different age groups. Maturity seems to be the protective factor to depression, accompanying with lower hindrance appraisals.Keywords: abusive leadership, affective commitment, depression symptoms, psychological well-being
Procedia PDF Downloads 2038971 The Relationship between the Personality Traits and Self-Compassion with Psychological Well-Being in Iranian College Students
Authors: Abdolamir Gatezadeh, Rezvan K. A. Mohamamdi, Arash Jelodari
Abstract:
It has been well established that personality traits and self-compassion are associated with psychological well-being. Thus, the current research aimed to investigate the underlying mechanisms in a collectivist culture. Method: One hundred and fifty college students were chosen and filled out Ryff's Psychological Well-Being Scale, the NEO Personality Inventory, and Neff's Self-Compassion Scale. Results: The results of correlation analysis showed that there were significant relationships between the personality traits (neuroticism, extraversion, agreeableness, and conscientiousness) and self-compassion (self-kindness, isolation, mindfulness, and the total score of self-compassion) with psychological well-being. The regression analysis showed that neuroticism, extraversion, and conscientiousness significantly predicted psychological well-being. Discussion and conclusion: The cultural implications and future orientations have been discussed.Keywords: college students, personality traits, psychological well-being, self-compassion
Procedia PDF Downloads 2168970 Study on the Non-Contact Sheet Resistance Measuring of Silver Nanowire Coated Film Using Terahertz Wave
Authors: Dong-Hyun Kim, Wan-Ho Chung, Hak-Sung Kim
Abstract:
In this work, non-destructive evaluation was conducted to measure the sheet resistance of silver nanowire coated film and find a damage of that film using terahertz (THz) wave. Pulse type THz instrument was used, and the measurement was performed under transmission and pitch-catch reflection modes with 30 degree of incidence angle. In the transmission mode, the intensity of the THz wave was gradually increased as the conductivity decreased. Meanwhile, the intensity of THz wave was decreased as the conductivity decreased in the pitch-catch reflection mode. To confirm the conductivity of the film, sheet resistance was measured by 4-point probe station. Interaction formula was drawn from a relation between the intensity and the sheet resistance. Through substituting sheet resistance to the formula and comparing the resultant value with measured maximum THz wave intensity, measurement of sheet resistance using THz wave was more suitable than that using 4-point probe station. In addition, the damage on the silver nanowire coated film was detected by applying the THz image system. Therefore, the reliability of the entire film can be also be ensured. In conclusion, real-time monitoring using the THz wave can be applied in the transparent electrodes with detecting the damaged area as well as measuring the sheet resistance.Keywords: terahertz wave, sheet resistance, non-destructive evaluation, silver nanowire
Procedia PDF Downloads 4908969 1D/3D Modeling of a Liquid-Liquid Two-Phase Flow in a Milli-Structured Heat Exchanger/Reactor
Authors: Antoinette Maarawi, Zoe Anxionnaz-Minvielle, Pierre Coste, Nathalie Di Miceli Raimondi, Michel Cabassud
Abstract:
Milli-structured heat exchanger/reactors have been recently widely used, especially in the chemical industry, due to their enhanced performances in heat and mass transfer compared to conventional apparatuses. In our work, the ‘DeanHex’ heat exchanger/reactor with a 2D-meandering channel is investigated both experimentally and numerically. The square cross-sectioned channel has a hydraulic diameter of 2mm. The aim of our study is to model local physico-chemical phenomena (heat and mass transfer, axial dispersion, etc.) for a liquid-liquid two-phase flow in our lab-scale meandering channel, which represents the central part of the heat exchanger/reactor design. The numerical approach of the reactor is based on a 1D model for the flow channel encapsulated in a 3D model for the surrounding solid, using COMSOL Multiphysics V5.5. The use of the 1D approach to model the milli-channel reduces significantly the calculation time compared to 3D approaches, which are generally focused on local effects. Our 1D/3D approach intends to bridge the gap between the simulation at a small scale and the simulation at the reactor scale at a reasonable CPU cost. The heat transfer process between the 1D milli-channel and its 3D surrounding is modeled. The feasibility of this 1D/3D coupling was verified by comparing simulation results to experimental ones originated from two previous works. Temperature profiles along the channel axis obtained by simulation fit the experimental profiles for both cases. The next step is to integrate the liquid-liquid mass transfer model and to validate it with our experimental results. The hydrodynamics of the liquid-liquid two-phase system is modeled using the ‘mixture model approach’. The mass transfer behavior is represented by an overall volumetric mass transfer coefficient ‘kLa’ correlation obtained from our experimental results in the millimetric size meandering channel. The present work is a first step towards the scale-up of our ‘DeanHex’ expecting future industrialization of such equipment. Therefore, a generalized scaled-up model of the reactor comprising all the transfer processes will be built in order to predict the performance of the reactor in terms of conversion rate and energy efficiency at an industrial scale.Keywords: liquid-liquid mass transfer, milli-structured reactor, 1D/3D model, process intensification
Procedia PDF Downloads 1308968 Effect of Aerobics Exercise on the Patient with Anxiety Disorder
Authors: Ahmed A. Abd El Rahim, Andrew Anis Fakhrey Mosaad
Abstract:
Background: An important psychological issue that has an impact on both mental and physical function is anxiety disorders. The general consensus is that aerobic exercise and physical activity are good for lowering anxiety and mood. Purpose: This study's goal was to look into how patients with anxiety disorders responded to aerobic exercise. Subjects: Anxiety disorders were identified in 30 individuals from the psychiatric hospital at Sohag University who were chosen based on inclusive criteria and had ages ranging from 25 to 45. Methods: Patients were split into two equal groups at random: For four weeks, three sessions per week, fifteen patients in group A (the study group), seven men and eight women, underwent medication therapy and aerobic exercise. Age (28.4 ± 2.11 years), weight (72.5 ± 10.06 kg), height (164.8 ± 9.64 cm), and BMI (26.65 ± 2.68 kg/m2) were all mean SD values. And in Group B (Control Group), only medication therapy was administered to 15 patients (9 males and 6 females). Age (29.6 ± 3.68), weight (75 ± 7.07 kg), height (166.9 ± 6.75) cm, and BMI (26.87 ± 1.11) kg/m2 were the mean SD values. Before and after the treatment, the Hamilton Anxiety Scale was used to gauge the patient's degree of anxiety. Results: Within the two groups, there were significant differences both before and after the treatment. Following therapy, there was a significant difference between the two groups; the study group displayed better improvement on the Hamilton Anxiety Scale. Conclusion: Patients with anxiety problems can benefit from aerobic activities and antianxiety drugs as effective treatments for lowering anxiety levels.Keywords: aerobic exercises, anxiety disorders, antianxiety medications, Hamilton anxiety scale
Procedia PDF Downloads 848967 Predictors of Childhood Trauma and Dissociation in University Students
Authors: Erdinc Ozturk, Gizem Akcan
Abstract:
The aim of this study was to determine some psychosocial variables that predict childhood trauma and dissociation in university students. These psychosocial variables were perceived social support, relationship status, gender and life satisfaction. 250 (125 males, 125 females) university students (bachelor, master and postgraduate degree) were enrolled in this study. They were chosen from universities in Istanbul at the education year of 2016-2017. Dissociative Experiences Scale (DES), Childhood Trauma Questionnaire (CTQ), Multidimensional Perceived Social Support Scale, Life Satisfaction Scale and Relationship Scales Questionnaire were used to assess related variables. Demographic information form was given to students in order to have their demographic information. Frequency distribution, multiple linear regression, and t-test analysis were used for statistical analysis. As together, perceived social support, relationship status and life satisfaction were found to have predictive value on trauma among university students. However, as together, these psychosocial variables did not have predictive value on dissociation. Only, trauma and relationship status had significant predictive value on dissociation. Moreover, there was significant difference between males and females in terms of trauma; however, dissociation scores of participants were not significantly different in terms of gender.Keywords: childhood trauma, dissociation, perceived social support, relationship status, life satisfaction
Procedia PDF Downloads 2758966 Integration of GIS with Remote Sensing and GPS for Disaster Mitigation
Authors: Sikander Nawaz Khan
Abstract:
Natural disasters like flood, earthquake, cyclone, volcanic eruption and others are causing immense losses to the property and lives every year. Current status and actual loss information of natural hazards can be determined and also prediction for next probable disasters can be made using different remote sensing and mapping technologies. Global Positioning System (GPS) calculates the exact position of damage. It can also communicate with wireless sensor nodes embedded in potentially dangerous places. GPS provide precise and accurate locations and other related information like speed, track, direction and distance of target object to emergency responders. Remote Sensing facilitates to map damages without having physical contact with target area. Now with the addition of more remote sensing satellites and other advancements, early warning system is used very efficiently. Remote sensing is being used both at local and global scale. High Resolution Satellite Imagery (HRSI), airborne remote sensing and space-borne remote sensing is playing vital role in disaster management. Early on Geographic Information System (GIS) was used to collect, arrange, and map the spatial information but now it has capability to analyze spatial data. This analytical ability of GIS is the main cause of its adaption by different emergency services providers like police and ambulance service. Full potential of these so called 3S technologies cannot be used in alone. Integration of GPS and other remote sensing techniques with GIS has pointed new horizons in modeling of earth science activities. Many remote sensing cases including Asian Ocean Tsunami in 2004, Mount Mangart landslides and Pakistan-India earthquake in 2005 are described in this paper.Keywords: disaster mitigation, GIS, GPS, remote sensing
Procedia PDF Downloads 4818965 Sensory Interventions for Dementia: A Review
Authors: Leigh G. Hayden, Susan E. Shepley, Cristina Passarelli, William Tingo
Abstract:
Introduction: Sensory interventions are popular therapeutic and recreational approaches for people living with all stages of dementia. However, it is unknown which sensory interventions are used to achieve which outcomes across all subtypes of dementia. Methods: To address this gap, we conducted a scoping review of sensory interventions for people living with dementia. We conducted a search of the literature for any article published in English from 1 January 1990 to 1 June 2019, on any sensory or multisensory intervention targeted to people living with any kind of dementia, which reported on patient health outcomes. We did not include complex interventions where only a small aspect was related to sensory stimulation. We searched the databases Medline, CINHAL, and Psych Articles using our institutional discovery layer. We conducted all screening in duplicate to reduce Type 1 and Type 2 errors. The data from all included papers were extracted by one team member, and audited by another, to ensure consistency of extraction and completeness of data. Results: Our initial search captured 7654 articles, and the removal of duplicates (n=5329), those that didn’t pass title and abstract screening (n=1840) and those that didn’t pass full-text screening (n=281) resulted in 174 articles included. The countries with the highest publication in this area were the United States (n=59), the United Kingdom (n=26) and Australia (n=15). The most common type of interventions were music therapy (n=36), multisensory rooms (n=27) and multisensory therapies (n=25). Seven articles were published in the 1990’s, 55 in the 2000’s, and the remainder since 2010 (n=112). Discussion: Multisensory rooms have been present in the literature since the early 1990’s. However, more recently, nature/garden therapy, art therapy, and light therapy have emerged since 2008 in the literature, an indication of the increasingly diverse scholarship in the area. The least popular type of intervention is a traditional food intervention. Taste as a sensory intervention is generally avoided for safety reasons, however it shows potential for increasing quality of life. Agitation, behavior, and mood are common outcomes for all sensory interventions. However, light therapy commonly targets sleep. The majority (n=110) of studies have very small sample sizes (n=20 or less), an indicator of the lack of robust data in the field. Additional small-scale studies of the known sensory interventions will likely do little to advance the field. However, there is a need for multi-armed studies which directly compare sensory interventions, and more studies which investigate the use of layering sensory interventions (for example, adding an aromatherapy component to a lighting intervention). In addition, large scale studies which enroll people at early stages of dementia will help us better understand the potential of sensory and multisensory interventions to slow the progression of the disease.Keywords: sensory interventions, dementia, scoping review
Procedia PDF Downloads 1348964 Manual Wheelchair Propulsion Efficiency on Different Slopes
Authors: A. Boonpratatong, J. Pantong, S. Kiattisaksophon, W. Senavongse
Abstract:
In this study, an integrated sensing and modeling system for manual wheelchair propulsion measurement and propulsion efficiency calculation was used to indicate the level of overuse. Seven subjects participated in the measurement. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. By contrast, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5. The results are supported by previously reported wheeling resistance and propulsion torque relationships implying margin of the overuse. Upper limb musculoskeletal injuries and syndromes in manual wheelchair riders are common, chronic, and may be caused at different levels by the overuse i.e. repetitive riding on steep incline. The qualitative analysis such as the mechanical effectiveness on manual wheeling to establish the relationship between the riding difficulties, mechanical efforts and propulsion outputs is scarce, possibly due to the challenge of simultaneous measurement of those factors in conventional manual wheelchairs and everyday environments. In this study, the integrated sensing and modeling system were used to measure manual wheelchair propulsion efficiency in conventional manual wheelchairs and everyday environments. The sensing unit is comprised of the contact pressure and inertia sensors which are portable and universal. Four healthy male and three healthy female subjects participated in the measurement on level and 15-degree incline surface. Subjects were asked to perform manual wheelchair ridings with three different self-selected speeds on level surface and only preferred speed on the 15-degree incline. Five trials were performed in each condition. The kinematic data of the subject’s dominant hand and a spoke and the trunk of the wheelchair were collected through the inertia sensors. The compression force applied from the thumb of the dominant hand to the push rim was collected through the contact pressure sensors. The signals from all sensors were recorded synchronously. The subject-selected speeds for slow, preferred and fast riding on level surface and subject-preferred speed on 15-degree incline were recorded. The propulsion efficiency as a ratio between the pushing force in tangential direction to the push rim and the net force as a result of the three-dimensional riding motion were derived by inverse dynamic problem solving in the modeling unit. The intra-subject variability of the riding speed was not different significantly as the self-selected speed increased on the level surface. Since the riding speed on the 15-degree incline was difficult to regulate, the intra-subject variability was not applied. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. However, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5 for all subjects on their preferred speed. The results are supported by the previously reported relationship between the wheeling resistance and propulsion torque in which the wheelchair axle torque increased but the muscle activities were not increased when the resistance is high. This implies the margin of dynamic efforts on the relatively high resistance being similar to the margin of the overuse indicated by the restricted propulsion efficiency on the 15-degree incline.Keywords: contact pressure sensor, inertia sensor, integrating sensing and modeling system, manual wheelchair propulsion efficiency, manual wheelchair propulsion measurement, tangential force, resultant force, three-dimensional riding motion
Procedia PDF Downloads 2908963 The Spatial Classification of China near Sea for Marine Biodiversity Conservation Based on Bio-Geographical Factors
Abstract:
Global biodiversity continues to decline as a result of global climate change and various human activities, such as habitat destruction, pollution, introduction of alien species and overfishing. Although there are connections between global marine organisms more or less, it is better to have clear geographical boundaries in order to facilitate the assessment and management of different biogeographical zones. And so area based management tools (ABMT) are considered as the most effective means for the conservation and sustainable use of marine biodiversity. On a large scale, the geographical gap (or barrier) is the main factor to influence the connectivity, diffusion, ecological and evolutionary process of marine organisms, which results in different distribution patterns. On a small scale, these factors include geographical location, geology, and geomorphology, water depth, current, temperature, salinity, etc. Therefore, the analysis on geographic and environmental factors is of great significance in the study of biodiversity characteristics. This paper summarizes the marine spatial classification and ABMTs used in coastal area, open oceans and deep sea. And analysis principles and methods of marine spatial classification based on biogeographic related factors, and take China Near Sea (CNS) area as case study, and select key biogeographic related factors, carry out marine spatial classification at biological region scale, ecological regionals scale and biogeographical scale. The research shows that CNS is divided into 5 biological regions by climate and geographical differences, the Yellow Sea, the Bohai Sea, the East China Sea, the Taiwan Straits, and the South China Sea. And the bioregions are then divided into 12 ecological regions according to the typical ecological and administrative factors, and finally the eco-regions are divided into 98 biogeographical units according to the benthic substrate types, depth, coastal types, water temperature, and salinity, given the integrity of biological and ecological process, the area of the biogeographical units is not less than 1,000 km². This research is of great use to the coastal management and biodiversity conservation for local and central government, and provide important scientific support for future spatial planning and management of coastal waters and sustainable use of marine biodiversity.Keywords: spatial classification, marine biodiversity, bio-geographical, conservation
Procedia PDF Downloads 1528962 Somatic Embryogenesis of Lachenalia viridiflora, a Critically Endangered Ornamental Geophyte with High Floricultural Potential
Authors: Vijay Kumar, Mack Moyo, Johannes Van Staden
Abstract:
Lachenalia viridiflora is a critically endangered bulbous plant with high potential on the international floriculture market. In the present study, an efficient protocol for in vitro plantlet regeneration through somatic embryogenesis was developed. Embryogenic callus was established on Murashige and Skoog (MS) basal medium supplemented with various concentrations and combinations of picloram and thidiazuron (TDZ). A high number of SEs (28.5 ± 1.49) with at different developmental stages of somatic embryos (SEs: globular embryos, torpedo and cotyledon embryo with bipolar characteristics) was obtained on Murashige and Skoog (MS) (Murashige and Skoog 1962) medium with 2.5 μM picloram, and 1.0 μM TDZ. Histological and scanning electron microscopic (SEM) analysis confirmed the presence of somatic embryos. Mature somatic embryos germinated and developed into plantlets after 6 weeks on half/full strength MS medium. High plant regeneration frequency (91.11 %) was achieved on full-strength MS medium supplemented with 5 μM phloroglucinol (PG). Well-developed healthy plantlets were successfully acclimatized in the greenhouse with a survival rate of 80%. The result of this study is beneficial in the mass propagation of high-quality Lachenalia viridiflora clonal plants for the commercial horticultural market and also provides a platform for future genetic transformation studies on the plant.Keywords: horticultural plant, Lachenalia viridiflora, phloroglucinol, somatic embryogenesis, thidiazuron
Procedia PDF Downloads 6318961 Investigation of the Material Behaviour of Polymeric Interlayers in Broken Laminated Glass
Authors: Martin Botz, Michael Kraus, Geralt Siebert
Abstract:
The use of laminated glass gains increasing importance in structural engineering. For safety reasons, at least two glass panes are laminated together with a polymeric interlayer. In case of breakage of one or all of the glass panes, the glass fragments are still connected to the interlayer due to adhesion forces and a certain residual load-bearing capacity is left in the system. Polymer interlayers used in the laminated glass show a viscoelastic material behavior, e.g. stresses and strains in the interlayer are dependent on load duration and temperature. In the intact stage only small strains appear in the interlayer, thus the material can be described in a linear way. In the broken stage, large strains can appear and a non-linear viscoelasticity material theory is necessary. Relaxation tests on two different types of polymeric interlayers are performed at different temperatures and strain amplitudes to determine the border to the non-linear material regime. Based on the small-scale specimen results further tests on broken laminated glass panes are conducted. So-called ‘through-crack-bending’ (TCB) tests are performed, in which the laminated glass has a defined crack pattern. The test set-up is realized in a way that one glass layer is still able to transfer compressive stresses but tensile stresses have to be transferred by the interlayer solely. The TCB-tests are also conducted under different temperatures but constant force (creep test). Aims of these experiments are to elaborate if the results of small-scale tests on the interlayer are transferable to a laminated glass system in the broken stage. In this study, limits of the applicability of linear-viscoelasticity are established in the context of two commercially available polymer-interlayers. Furthermore, it is shown that the results of small-scale tests agree to a certain degree to the results of the TCB large-scale experiments. In a future step, the results can be used to develop material models for the post breakage performance of laminated glass.Keywords: glass breakage, laminated glass, relaxation test, viscoelasticity
Procedia PDF Downloads 1228960 Optical Flow Technique for Supersonic Jet Measurements
Authors: Haoxiang Desmond Lim, Jie Wu, Tze How Daniel New, Shengxian Shi
Abstract:
This paper outlines the development of a novel experimental technique in quantifying supersonic jet flows, in an attempt to avoid seeding particle problems frequently associated with particle-image velocimetry (PIV) techniques at high Mach numbers. Based on optical flow algorithms, the idea behind the technique involves using high speed cameras to capture Schlieren images of the supersonic jet shear layers, before they are subjected to an adapted optical flow algorithm based on the Horn-Schnuck method to determine the associated flow fields. The proposed method is capable of offering full-field unsteady flow information with potentially higher accuracy and resolution than existing point-measurements or PIV techniques. Preliminary study via numerical simulations of a circular de Laval jet nozzle successfully reveals flow and shock structures typically associated with supersonic jet flows, which serve as useful data for subsequent validation of the optical flow based experimental results. For experimental technique, a Z-type Schlieren setup is proposed with supersonic jet operated in cold mode, stagnation pressure of 8.2 bar and exit velocity of Mach 1.5. High-speed single-frame or double-frame cameras are used to capture successive Schlieren images. As implementation of optical flow technique to supersonic flows remains rare, the current focus revolves around methodology validation through synthetic images. The results of validation test offers valuable insight into how the optical flow algorithm can be further improved to improve robustness and accuracy. Details of the methodology employed and challenges faced will be further elaborated in the final conference paper should the abstract be accepted. Despite these challenges however, this novel supersonic flow measurement technique may potentially offer a simpler way to identify and quantify the fine spatial structures within the shock shear layer.Keywords: Schlieren, optical flow, supersonic jets, shock shear layer
Procedia PDF Downloads 3128959 Multiple Relaxation Times in the Gibbs Ensemble Monte Carlo Simulation of Phase Separation
Authors: Bina Kumari, Subir K. Sarkar, Pradipta Bandyopadhyay
Abstract:
The autocorrelation function of the density fluctuation is studied in each of the two phases in a Gibbs Ensemble Monte Carlo (GEMC) simulation of the problem of phase separation for a square well potential with various values of its range. We find that the normalized autocorrelation function is described very well as a linear combination of an exponential function with a time scale τ₂ and a stretched exponential function with a time scale τ₁ and an exponent α. Dependence of (α, τ₁, τ₂) on the parameters of the GEMC algorithm and the range of the square well potential is investigated and interpreted. We also analyse the issue of how to choose the parameters of the GEMC simulation optimally.Keywords: autocorrelation function, density fluctuation, GEMC, simulation
Procedia PDF Downloads 1898958 Practical Experiences in the Development of a Lab-Scale Process for the Production and Recovery of Fucoxanthin
Authors: Alma Gómez-Loredo, José González-Valdez, Jorge Benavides, Marco Rito-Palomares
Abstract:
Fucoxanthin is a carotenoid that exerts multiple beneficial effects on human health, including antioxidant, anti-cancer, antidiabetic and anti-obesity activity; making the development of a whole process for its production and recovery an important contribution. In this work, the lab-scale production and purification of fucoxanthin in Isocrhysis galbana have been studied. In batch cultures, low light intensities (13.5 μmol/m2s) and bubble agitation were the best conditions for production of the carotenoid with product yields of up to 0.143 mg/g. After fucoxanthin ethanolic extraction from biomass and hexane partition, further recovery and purification of the carotenoid has been accomplished by means of alcohol – salt Aqueous Two-Phase System (ATPS) extraction followed by an ultrafiltration (UF) step. An ATPS comprised of ethanol and potassium phosphate (Volume Ratio (VR) =3; Tie-line Length (TLL) 60% w/w) presented a fucoxanthin recovery yield of 76.24 ± 1.60% among the studied systems and was able to remove 64.89 ± 2.64% of the carotenoid and chlorophyll pollutants. For UF, the addition of ethanol to the original recovered ethanolic ATPS stream to a final relation of 74.15% (w/w) resulted in a reduction of approximately 16% of the protein contents, increasing product purity with a recovery yield of about 63% of the compound in the permeate stream. Considering the production, extraction and primary recovery (ATPS and UF) steps, around a 45% global fucoxanthin recovery should be expected. Although other purification technologies, such as Centrifugal Partition Chromatography are able to obtain fucoxanthin recoveries of up to 83%, the process developed in the present work does not require large volumes of solvents or expensive equipment. Moreover, it has a potential for scale up to commercial scale and represents a cost-effective strategy when compared to traditional separation techniques like chromatography.Keywords: aqueous two-phase systems, fucoxanthin, Isochrysis galbana, microalgae, ultrafiltration
Procedia PDF Downloads 4248957 Field Evaluation of Fusarium Head Blight in Durum Wheat Caused by Fusarium culmorum in Algeria
Authors: Salah Hadjout, Mohamed Zouidi
Abstract:
In Algeria, several works carried out in recent years have shown the importance of fusarium head blight in durum wheat. Indeed, this disease is caused by a complex of Fusarium genus pathogens. The research carried out reports that F. culmorum is the main species infecting cereals. These informations motivated our interest in the field evaluation of the behavior of some durum wheat genotypes (parental varieties and lines) with regard to fusarium head blight, mainly caused by four F. culmorum isolates. Our research work focused on following the evolution of symptom development throughout the grain filling, after artificial inoculation of ears by Fusarium isolates in order to establish a first image on the differences in genotype behavior to fusarium haed blight. Field disease assessment criteria are: disease assessment using a grading scale, thousand grain weight measurement and AUDPC. The results obtained revealed that the varieties and lines resulting from crosses had a quite different level of sensitivity to F. culmorum species and no genotype showed complete resistance in our culture conditions. Among the material tested, some lines showed higher resistance than their parents. The results also show a slight behavioral variability also linked to the aggressiveness of the Fusarium species studied in this work. Our results open very important research perspectives on fusarium head blight, in particular the search for toxins produced by Fusarium species.Keywords: fusarium head blight, durum wheat, Fusarium culmorum, field disease assessment criteria, Algeria
Procedia PDF Downloads 1008956 Density Measurement of Underexpanded Jet Using Stripe Patterned Background Oriented Schlieren Method
Authors: Shinsuke Udagawa, Masato Yamagishi, Masanori Ota
Abstract:
The Schlieren method, which has been conventionally used to visualize high-speed flows, has disadvantages such as the complexity of the experimental setup and the inability to quantitatively analyze the amount of refraction of light. The Background Oriented Schlieren (BOS) method proposed by Meier is one of the measurement methods that solves the problems, as mentioned above. The refraction of light is used for BOS method same as the Schlieren method. The BOS method is characterized using a digital camera to capture the images of the background behind the observation area. The images are later analyzed by a computer to quantitatively detect the amount of shift of the background image. The experimental setup for BOS does not require concave mirrors, pinholes, or color filters, which are necessary in the conventional Schlieren method, thus simplifying the experimental setup. However, the defocusing of the observation results is caused in case of using BOS method. Since the focus of camera on the background image leads to defocusing of the observed object. The defocusing of object becomes greater with increasing the distance between the background and the object. On the other hand, the higher sensitivity can be obtained. Therefore, it is necessary to adjust the distance between the background and the object to be appropriate for the experiment, considering the relation between the defocus and the sensitivity. The purpose of this study is to experimentally clarify the effect of defocus on density field reconstruction. In this study, the visualization experiment of underexpanded jet using BOS measurement system with ronchi ruling as the background that we constructed, have been performed. The reservoir pressure of the jet and the distance between camera and axis of jet is fixed, and the distance between background and axis of jet has been changed as the parameter. The images have been later analyzed by using personal computer to quantitatively detect the amount of shift of the background image from the comparison between the background pattern and the captured image of underexpanded jet. The quantitatively measured amount of shift have been reconstructed into a density flow field using the Abel transformation and the Gradstone-Dale equation. From the experimental results, it is found that the reconstructed density image becomes blurring, and noise becomes decreasing with increasing the distance between background and axis of underexpanded jet. Consequently, it is cralified that the sensitivity constant should be greater than 20, and the circle of confusion diameter should be less than 2.7mm at least in this experimental setup.Keywords: BOS method, underexpanded jet, abel transformation, density field visualization
Procedia PDF Downloads 788955 A Quantitative Survey Research on the Development and Assessment of Attitude toward Mathematics Instrument
Authors: Soofia Malik
Abstract:
The purpose of this study is to develop an instrument to measure undergraduate students’ attitudes toward mathematics (MAT) and to assess the data collected from the instrument for validity and reliability. The instrument is developed using five subscales: anxiety, enjoyment, self-confidence, value, and technology. The technology dimension is added as the fifth subscale of attitude toward mathematics because of the recent trend of incorporating online homework in mathematics courses as well as due to heavy reliance of higher education on using online learning management systems, such as Blackboard and Moodle. The sample consists of 163 (M = 82, F = 81) undergraduates enrolled in College Algebra course in the summer 2017 semester at a university in the USA. The data is analyzed to answer the research question: if and how do undergraduate students’ attitudes toward mathematics load using Principal Components Analysis (PCA)? As a result of PCA, three subscales emerged namely: anxiety/self-confidence scale, enjoyment, and value scale. After deleting the last five items or the last two subscales from the initial MAT scale, the Cronbach’s alpha was recalculated using the scores from 20 items and was found to be α = .95. It is important to note that the reliability of the initial MAT form was α = .93. This means that employing the final MAT survey form would yield consistent results in repeated uses. The final MAT form is, therefore, more reliable as compared to the initial MAT form.Keywords: college algebra, Cronbach's alpha reliability coefficient, Principal Components Analysis, PCA, technology in mathematics
Procedia PDF Downloads 1238954 Enhanced Calibration Map for a Four-Hole Probe for Measuring High Flow Angles
Authors: Jafar Mortadha, Imran Qureshi
Abstract:
This research explains and compares the modern techniques used for measuring the flow angles of a flowing fluid with the traditional technique of using multi-hole pressure probes. In particular, the focus of the study is on four-hole probes, which offer great reliability and benefits in several applications where the use of modern measurement techniques is either inconvenient or impractical. Due to modern advancements in manufacturing, small multi-hole pressure probes can be made with high precision, which eliminates the need for calibrating every manufactured probe. This study aims to improve the range of calibration maps for a four-hole probe to allow high flow angles to be measured accurately. The research methodology comprises a literature review of the successful calibration definitions that have been implemented on five-hole probes. These definitions are then adapted and applied on a four-hole probe using a set of raw pressures data. A comparison of the different definitions will be carried out in Matlab and the results will be analyzed to determine the best calibration definition. Taking simplicity of implementation into account as well as the reliability of flow angles estimation, an adapted technique from a research paper written in 2002 offered the most promising outcome. Consequently, the method is seen as a good enhancement for four-hole probes and it can substitute for the existing calibration definitions that offer less accuracy.Keywords: calibration definitions, calibration maps, flow measurement techniques, four-hole probes, multi-hole pressure probes
Procedia PDF Downloads 2958953 A Retrospective Study of Suicidal Deaths in Madinah for Ten Years
Authors: Radah Yousuf, Ashraf Shebl
Abstract:
Suicide is a tragic event with strong emotional repercussions for its survivors and for families of its victims. There were thousands of cases all over the world. There are many risk factors include mental disorders such as depression, and substance abuse, including alcoholism and use of benzodiazepines. Other suicides are impulsive acts due to stress such as from financial difficulties, troubles with relationships, or from bullying. The aim of work in this study is making a survey from archives of the suicidal cases, which had a medicolegal examination, in forensic medicine center in Al Madinah Almunawarah-KSA, for ten years in the period between 1428-1438h. In each case, some data are collected such as age, sex, time and place of an act, method of suicide, the presence of the witness, medical history. This study demonstrates that suicide is more common in male than female, and the 4th decade was the most period of age. The most common method of suicide was hanging followed by falling from the height. These results indicated that cultural and religious beliefs that discourage suicide and support self-preservation instinct, and suicide education programs provide information to students in high school, builds awareness, one of the most important issues in solving that problem. From the forensic view, circumstantial evidence of every forensic case must take and record, full history about the social, medical and psychological problems, attend the scene of death is a very important, complete medicolegal investigation for every case, and full autopsy with very skilled techniques and facilities can help in diagnosing what type of crimes.Keywords: suicide, age, sex, hanging
Procedia PDF Downloads 1488952 Reliability Evidence of the Child Behavior Checklist (CBCL) Based on a Chinese Sample
Authors: Zhidong Zhang, Zhi-Chao Zhang, Georgiana Duarte
Abstract:
The Chinese version of the Child Behavior Checklist (CBCL) is the one of the Achenbach systems of empirically based assessment (ASEBA) scales, by which behavioral and emotional problems of early adolescents were examined. In order to further understand the robustness of the scale, its reliability has been examined. CBCL consists of 8 problems to measure internalizing, externalizing and social problems. In internalizing problem, there are Anxious, Withdrawn and Somatic Complaints. In this study, as an example, we only examined the anxious aspect which consisted of 13 questions. Cronbach alpha and factor analysis methods were used to examine the reliability of the scale. The result indicated that Cronbach alpha value was above 0.80.Keywords: anxious/depressed problems, ASEBA, CBCL, Cronbach Alpha, reliability
Procedia PDF Downloads 4638951 Self-Organized TiO₂–Nb₂O₅–ZrO₂ Nanotubes on β-Ti Alloy by Anodization
Authors: Muhammad Qadir, Yuncang Li, Cuie Wen
Abstract:
Surface properties such as topography and physicochemistry of metallic implants determine the cell behavior. The surface of titanium (Ti)-based implant can be modified to enhance the bioactivity and biocompatibility. In this study, a self-organized titania–niobium pentoxide–zirconia (TiO₂–Nb₂O₅–ZrO₂) nanotubular layer on β phase Ti35Zr28Nb alloy was fabricated via electrochemical anodization. Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement techniques were used to investigate the nanotubes dimensions (i.e., the inner and outer diameters, and wall thicknesses), microstructural features and evolution of the hydrophilic properties. The in vitro biocompatibility of the TiO₂–Nb₂O₅–ZrO₂ nanotubes (NTs) was assessed by using osteoblast cells (SaOS2). Influence of anodization parameters on the morphology of TiO₂–Nb₂O₅–ZrO₂ NTs has been studied. The results indicated that the average inner diameter, outer diameter and the wall thickness of the TiO₂–Nb₂O₅–ZrO₂ NTs were ranged from 25–70 nm, 45–90 nm and 5–13 nm, respectively, and were directly influenced by the applied voltage during anodization. The average inner and outer diameters of NTs increased with increasing applied voltage, and the length of NTs increased with increasing anodization time and water content of the electrolyte. In addition, the size distribution of the NTs noticeably affected the hydrophilic properties and enhanced the biocompatibility as compared with the uncoated substrate. The results of this study could be considered for developing nano-scale coatings for a wide range of biomedical applications.Keywords: Titanium alloy, TiO₂–Nb₂O₅–ZrO₂ nanotubes, anodization, surface wettability, biocompatibility
Procedia PDF Downloads 1558950 A Test Methodology to Measure the Open-Loop Voltage Gain of an Operational Amplifier
Authors: Maninder Kaur Gill, Alpana Agarwal
Abstract:
It is practically not feasible to measure the open-loop voltage gain of the operational amplifier in the open loop configuration. It is because the open-loop voltage gain of the operational amplifier is very large. In order to avoid the saturation of the output voltage, a very small input should be given to operational amplifier which is not possible to be measured practically by a digital multimeter. A test circuit for measurement of open loop voltage gain of an operational amplifier has been proposed and verified using simulation tools as well as by experimental methods on breadboard. The main advantage of this test circuit is that it is simple, fast, accurate, cost effective, and easy to handle even on a breadboard. The test circuit requires only the device under test (DUT) along with resistors. This circuit has been tested for measurement of open loop voltage gain for different operational amplifiers. The underlying goal is to design testable circuits for various analog devices that are simple to realize in VLSI systems, giving accurate results and without changing the characteristics of the original system. The DUTs used are LM741CN and UA741CP. For LM741CN, the simulated gain and experimentally measured gain (average) are calculated as 89.71 dB and 87.71 dB, respectively. For UA741CP, the simulated gain and experimentally measured gain (average) are calculated as 101.15 dB and 105.15 dB, respectively. These values are found to be close to the datasheet values.Keywords: Device Under Test (DUT), open loop voltage gain, operational amplifier, test circuit
Procedia PDF Downloads 4478949 A Low Cost Non-Destructive Grain Moisture Embedded System for Food Safety and Quality
Authors: Ritula Thakur, Babankumar S. Bansod, Puneet Mehta, S. Chatterji
Abstract:
Moisture plays an important role in storage, harvesting and processing of food grains and related agricultural products. It is an important characteristic of most agricultural products for maintenance of quality. Accurate knowledge of the moisture content can be of significant value in maintaining quality and preventing contamination of cereal grains. The present work reports the design and development of microcontroller based low cost non-destructive moisture meter, which uses complex impedance measurement method for moisture measurement of wheat using parallel plate capacitor arrangement. Moisture can conveniently be sensed by measuring the complex impedance using a small parallel-plate capacitor sensor filled with the kernels in-between the two plates of sensor, exciting the sensor at 30 KHz and 100 KHz frequencies. The effects of density and temperature variations were compensated by providing suitable compensations in the developed algorithm. The results were compared with standard dry oven technique and the developed method was found to be highly accurate with less than 1% error. The developed moisture meter is low cost, highly accurate, non-destructible method for determining the moisture of grains utilizing the fast computing capabilities of microcontroller.Keywords: complex impedance, moisture content, electrical properties, safety of food
Procedia PDF Downloads 4628948 Ultrasonic Evaluation of Periodic Rough Inaccessible Surfaces from Back Side
Authors: Chanh Nghia Nguyen, Yu Kurokawa, Hirotsugu Inoue
Abstract:
The surface roughness is an important parameter for evaluating the quality of material surfaces since it affects functions and performance of industrial components. Although stylus and optical techniques are commonly used for measuring the surface roughness, they are applicable only to accessible surfaces. In practice, surface roughness measurement from the back side is sometimes demanded, for example, in inspection of safety-critical parts such as inner surface of pipes. However, little attention has been paid to the measurement of back surface roughness so far. Since back surface is usually inaccessible by stylus or optical techniques, ultrasonic technique is one of the most effective among others. In this research, an ultrasonic pulse-echo technique is considered for evaluating the pitch and the height of back surface having periodic triangular profile as a very first step. The pitch of the surface profile is measured by applying the diffraction grating theory for oblique incidence; then the height is evaluated by numerical analysis based on the Kirchhoff theory for normal incidence. The validity of the proposed method was verified by both numerical simulation and experiment. It was confirmed that the pitch is accurately measured in most cases. The height was also evaluated with good accuracy when it is smaller than a half of the pitch because of the approximation in the Kirchhoff theory.Keywords: back side, inaccessible surface, periodic roughness, pulse-echo technique, ultrasonic NDE
Procedia PDF Downloads 2758947 Reversibility of Photosynthetic Activity and Pigment-protein Complexes Expression During Seed Development of Soybean and Black Soybean
Authors: Tzan-Chain Lee
Abstract:
Seeds are non-leaves green tissues. Photosynthesis begins with light absorption by chlorophyll and then the energy transfer between two pigment-protein complexes (PPC). Most studies of photosynthesis and PPC expression were focused on leaves; however, during seeds’ development were rare. Developed seeds from beginning pod (stage R3) to dried seed (stage R8), and the dried seed after sowing for 1-4 day, were analyzed for their chlorophyll contents. Thornber and MARS gel systems analysis compositions of PPC. Chlorophyll fluorescence was used to detect maximal photosynthetic efficiency (Fv/Fm). During soybean and black soybean seeds development (stages R3-R6), Fv/Fm up to 0.8, and then down-regulated after full seed (stage R7). In dried seed (stage R8), the two plant seeds lost photosynthetic activity (Fv/Fm=0), but chlorophyll degradation only occurred in soybean after full seed. After seeds sowing for 4 days, chlorophyll drastically increased in soybean seeds, and Fv/Fm recovered to 0.8 in the two seeds. In PPC, the two soybean seeds contained all PPC during seeds development (stages R3-R6), including CPI, CPII, A1, AB1, AB2, and AB3. However, many proteins A1, AB1, AB2, and CPI were totally missing in the two dried seeds (stage R8). The deficiency of these proteins in dried seeds might be caused by the incomplete photosynthetic activity. After seeds germination and seedling exposed to light for 4 days, all PPC were recovered, suggesting that completed PPC took place in the two soybean seeds. This study showed the reversibility of photosynthetic activity and pigment-protein complexes during soybean and black soybean seeds development.Keywords: light-harvesting complex, pigment–protein complexes, soybean cotyledon, grana development
Procedia PDF Downloads 1498946 Graph Cuts Segmentation Approach Using a Patch-Based Similarity Measure Applied for Interactive CT Lung Image Segmentation
Authors: Aicha Majda, Abdelhamid El Hassani
Abstract:
Lung CT image segmentation is a prerequisite in lung CT image analysis. Most of the conventional methods need a post-processing to deal with the abnormal lung CT scans such as lung nodules or other lesions. The simplest similarity measure in the standard Graph Cuts Algorithm consists of directly comparing the pixel values of the two neighboring regions, which is not accurate because this kind of metrics is extremely sensitive to minor transformations such as noise or other artifacts problems. In this work, we propose an improved version of the standard graph cuts algorithm based on the Patch-Based similarity metric. The boundary penalty term in the graph cut algorithm is defined Based on Patch-Based similarity measurement instead of the simple intensity measurement in the standard method. The weights between each pixel and its neighboring pixels are Based on the obtained new term. The graph is then created using theses weights between its nodes. Finally, the segmentation is completed with the minimum cut/Max-Flow algorithm. Experimental results show that the proposed method is very accurate and efficient, and can directly provide explicit lung regions without any post-processing operations compared to the standard method.Keywords: graph cuts, lung CT scan, lung parenchyma segmentation, patch-based similarity metric
Procedia PDF Downloads 1698945 A Method Intensive Top-down Approach for Generating Guidelines for an Energy-Efficient Neighbourhood: A Case of Amaravati, Andhra Pradesh, India
Authors: Rituparna Pal, Faiz Ahmed
Abstract:
Neighbourhood energy efficiency is a newly emerged term to address the quality of urban strata of built environment in terms of various covariates of sustainability. The concept of sustainability paradigm in developed nations has encouraged the policymakers for developing urban scale cities to envision plans under the aegis of urban scale sustainability. The concept of neighbourhood energy efficiency is realized a lot lately just when the cities, towns and other areas comprising this massive global urban strata have started facing a strong blow from climate change, energy crisis, cost hike and an alarming shortfall in the justice which the urban areas required. So this step of urban sustainability can be easily referred more as a ‘Retrofit Action’ which is to cover up the already affected urban structure. So even if we start energy efficiency for existing cities and urban areas the initial layer remains, for which a complete model of urban sustainability still lacks definition. Urban sustainability is a broadly spoken off word with end number of parameters and policies through which the loop can be met. Out of which neighbourhood energy efficiency can be an integral part where the concept and index of neighbourhood scale indicators, block level indicators and building physics parameters can be understood, analyzed and concluded to help emerge guidelines for urban scale sustainability. The future of neighbourhood energy efficiency not only lies in energy efficiency but also important parameters like quality of life, access to green, access to daylight, outdoor comfort, natural ventilation etc. So apart from designing less energy-hungry buildings, it is required to create a built environment which will create less stress on buildings to consume more energy. A lot of literary analysis has been done in the Western countries prominently in Spain, Paris and also Hong Kong, leaving a distinct gap in the Indian scenario in exploring the sustainability at the urban strata. The site for the study has been selected in the upcoming capital city of Amaravati which can be replicated with similar neighbourhood typologies in the area. The paper suggests a methodical intent to quantify energy and sustainability indices in detail taking by involving several macro, meso and micro level covariates and parameters. Several iterations have been made both at macro and micro level and have been subjected to simulation, computation and mathematical models and finally to comparative analysis. Parameters at all levels are analyzed to suggest the best case scenarios which in turn is extrapolated to the macro level finally coming out with a proposal model for energy efficient neighbourhood and worked out guidelines with significance and correlations derived.Keywords: energy quantification, macro scale parameters, meso scale parameters, micro scale parameters
Procedia PDF Downloads 1768944 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm
Authors: Xiang Jianhong, Wang Cong, Wang Linyu
Abstract:
With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.Keywords: telemedicine, fetal ECG, compressed sensing, joint sparse reconstruction, block sparse signal
Procedia PDF Downloads 128