Search results for: computational lexicography
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2042

Search results for: computational lexicography

722 Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning

Authors: A. D. Tayal

Abstract:

The energy industry is undergoing significant disruption. This research outlines that, whilst challenging; this disruption is also an emerging opportunity for electricity utilities. One such opportunity is leveraging the developments in data analytics and machine learning. As the uptake of renewable energy technologies and complimentary control systems increases, electricity grids will likely transform towards dense microgrids with high penetration of renewable generation sources, rich in network and customer data, and linked through intelligent, wireless communications. Data digitisation and analytics have already impacted numerous industries, and its influence on the energy sector is growing, as computational capabilities increase to manage big data, and as machines develop algorithms to solve the energy challenges of the future. The objective of this paper is to address how far the uptake of renewable technologies can go given the constraints of existing grid infrastructure and provides a qualitative assessment of how higher levels of renewable energy penetration can be facilitated by incorporating even broader technological advances in the fields of data analytics and machine learning. Western Australia is used as a contextualised case study, given its abundance and diverse renewable resources (solar, wind, biomass, and wave) and isolated networks, making a high penetration of renewables a feasible target for policy makers over coming decades.

Keywords: data, innovation, renewable, solar

Procedia PDF Downloads 365
721 Advanced Driver Assistance System: Veibra

Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins

Abstract:

Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.

Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system

Procedia PDF Downloads 155
720 A Lightweight Pretrained Encrypted Traffic Classification Method with Squeeze-and-Excitation Block and Sharpness-Aware Optimization

Authors: Zhiyan Meng, Dan Liu, Jintao Meng

Abstract:

Dependable encrypted traffic classification is crucial for improving cybersecurity and handling the growing amount of data. Large language models have shown that learning from large datasets can be effective, making pre-trained methods for encrypted traffic classification popular. However, attention-based pre-trained methods face two main issues: their large neural parameters are not suitable for low-computation environments like mobile devices and real-time applications, and they often overfit by getting stuck in local minima. To address these issues, we developed a lightweight transformer model, which reduces the computational parameters through lightweight vocabulary construction and Squeeze-and-Excitation Block. We use sharpness-aware optimization to avoid local minima during pre-training and capture temporal features with relative positional embeddings. Our approach keeps the model's classification accuracy high for downstream tasks. We conducted experiments on four datasets -USTC-TFC2016, VPN 2016, Tor 2016, and CICIOT 2022. Even with fewer than 18 million parameters, our method achieves classification results similar to methods with ten times as many parameters.

Keywords: sharpness-aware optimization, encrypted traffic classification, squeeze-and-excitation block, pretrained model

Procedia PDF Downloads 30
719 Development of a French to Yorùbá Machine Translation System

Authors: Benjamen Nathaniel, Eludiora Safiriyu Ijiyemi, Egume Oneme Lucky

Abstract:

A review on machine translation systems shows that a lot of computational artefacts has been carried out to translate written or spoken texts from a source language to Yorùbá language through Machine Translation systems. However, there are no work on French to Yorùbá language machine translation system; hence, the study investigated the process involved in the translation of French-to-Yorùbá language equivalent with the view to adopting a rule- based MT approach to build a Machine Translation framework from simple sentences administered through questionnaire. Articles and relevant textbooks were reviewed with key speakers of both languages interviewed to find out the processes involved in the translation of French language and their equivalent in Yorùbálanguage simple sentences using home domain terminologies. Achieving this, a model was formulated using phrase grammar structure, re-write rule, parse tree, automata theory- based techniques, designed and implemented respectively with unified modeling language (UML) and python programming language. Analysing the result, it was observed when carrying out the result that, the Machine Translation system performed 18.45% above Experimental Subject Respondent and 2.7% below Linguistics Expert when analysed with word orthography, sentence syntax and semantic correctness of the sentences. And, when compared with Google Machine Translation system, it was noticed that the developed system performed better on lexicons of the target language.

Keywords: machine translation (MT), rule-based, French language, Yoru`ba´ language

Procedia PDF Downloads 77
718 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network

Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui

Abstract:

Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.

Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN

Procedia PDF Downloads 131
717 The Effect of Sorafenibe on Soat1 Protein by Using Molecular Docking Method

Authors: Mahdiyeh Gholaminezhad

Abstract:

Context: The study focuses on the potential impact of Sorafenib on SOAT1 protein in liver cancer treatment, addressing the need for more effective therapeutic options. Research aim: To explore the effects of Sorafenib on the activity of SOAT1 protein in liver cancer cells. Methodology: Molecular docking was employed to analyze the interaction between Sorafenib and SOAT1 protein. Findings: The study revealed a significant effect of Sorafenib on the stability and activity of SOAT1 protein, suggesting its potential as a treatment for liver cancer. Theoretical importance: This research highlights the molecular mechanism underlying Sorafenib's anti-cancer properties, contributing to the understanding of its therapeutic effects. Data collection: Data on the molecular structure of Sorafenib and SOAT1 protein were obtained from computational simulations and databases. Analysis procedures: Molecular docking simulations were performed to predict the binding interactions between Sorafenib and SOAT1 protein. Question addressed: How does Sorafenib influence the activity of SOAT1 protein and what are the implications for liver cancer treatment? Conclusion: The study demonstrates the potential of Sorafenib as a targeted therapy for liver cancer by affecting the activity of SOAT1 protein. Reviewers' Comments: The study provides valuable insights into the molecular basis of Sorafenib's action on SOAT1 protein, suggesting its therapeutic potential. To enhance the methodology, the authors could consider validating the docking results with experimental data for further validation.

Keywords: liver cancer, sorafenib, SOAT1, molecular docking

Procedia PDF Downloads 27
716 A Study of Using Multiple Subproblems in Dantzig-Wolfe Decomposition of Linear Programming

Authors: William Chung

Abstract:

This paper is to study the use of multiple subproblems in Dantzig-Wolfe decomposition of linear programming (DW-LP). Traditionally, the decomposed LP consists of one LP master problem and one LP subproblem. The master problem and the subproblem is solved alternatively by exchanging the dual prices of the master problem and the proposals of the subproblem until the LP is solved. It is well known that convergence is slow with a long tail of near-optimal solutions (asymptotic convergence). Hence, the performance of DW-LP highly depends upon the number of decomposition steps. If the decomposition steps can be greatly reduced, the performance of DW-LP can be improved significantly. To reduce the number of decomposition steps, one of the methods is to increase the number of proposals from the subproblem to the master problem. To do so, we propose to add a quadratic approximation function to the LP subproblem in order to develop a set of approximate-LP subproblems (multiple subproblems). Consequently, in each decomposition step, multiple subproblems are solved for providing multiple proposals to the master problem. The number of decomposition steps can be reduced greatly. Note that each approximate-LP subproblem is nonlinear programming, and solving the LP subproblem must faster than solving the nonlinear multiple subproblems. Hence, using multiple subproblems in DW-LP is the tradeoff between the number of approximate-LP subproblems being formed and the decomposition steps. In this paper, we derive the corresponding algorithms and provide some simple computational results. Some properties of the resulting algorithms are also given.

Keywords: approximate subproblem, Dantzig-Wolfe decomposition, large-scale models, multiple subproblems

Procedia PDF Downloads 166
715 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning

Authors: Eiman Kattan

Abstract:

This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.

Keywords: conventional neural network, remote sensing, land cover, land use

Procedia PDF Downloads 370
714 A Flexible Bayesian State-Space Modelling for Population Dynamics of Wildlife and Livestock Populations

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Hans-Peter Piepho

Abstract:

We aim to model dynamics of wildlife or pastoral livestock population for understanding of their population change and hence for wildlife conservation and promoting human welfare. The study is motivated by an age-sex structured population counts in different regions of Serengeti-Mara during the period 1989-2003. Developing reliable and realistic models for population dynamics of large herbivore population can be a very complex and challenging exercise. However, the Bayesian statistical domain offers some flexible computational methods that enable the development and efficient implementation of complex population dynamics models. In this work, we have used a novel Bayesian state-space model to analyse the dynamics of topi and hartebeest populations in the Serengeti-Mara Ecosystem of East Africa. The state-space model involves survival probabilities of the animals which further depend on various factors like monthly rainfall, size of habitat, etc. that cause recent declines in numbers of the herbivore populations and potentially threaten their future population viability in the ecosystem. Our study shows that seasonal rainfall is the most important factors shaping the population size of animals and indicates the age-class which most severely affected by any change in weather conditions.

Keywords: bayesian state-space model, Markov Chain Monte Carlo, population dynamics, conservation

Procedia PDF Downloads 209
713 Accelerated Structural Reliability Analysis under Earthquake-Induced Tsunamis by Advanced Stochastic Simulation

Authors: Sai Hung Cheung, Zhe Shao

Abstract:

Recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 brought huge losses of lives and properties. Maintaining vertical evacuation systems is the most crucial strategy to effectively reduce casualty during the tsunami event. Thus, it is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability (or its complement failure probability) of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of the Subset Simulation algorithm and a recently proposed moving least squares response surface approach for stochastic sampling is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach.

Keywords: response surface model, subset simulation, structural reliability, Tsunami risk

Procedia PDF Downloads 383
712 Towards Developing Social Assessment Tool for Siwan Ecolodge Case Study: Babenshal Ecolodge

Authors: Amr Ali Bayoumi, Ola Ali Bayoumi

Abstract:

The aim of this research is enhancing one of the main aspects (Social Aspect) for developing an eco-lodge in Siwa oasis in Egyptian Western Desert. According to credible weightings built in this research through formal and informal questionnaires, the researcher detected one of the highest credible aspects, 'Social Aspect': through which it carries the maximum priorities among the total environmental and economic categories. From here, the researcher suggested the usage of ethnographic design approach and Space Syntax as observational and computational methods for developing future Eco-lodge in Siwa Oasis. These methods are used to study social spaces of Babenshal eco-lodge as a case study. This hybrid method is considered as a beginning of building Social Assessment Tool (SAT) for ecological tourism buildings located in Siwa as a case of Egyptian Western desert community. Towards livable social spaces, the proposed SAT was planned to be the optimum measurable weightings for social aspect's priorities of future Siwan eco-lodge(s). Finally, recommendations are proposed for enhancing SAT to be more correlated with sensitive desert biome (Siwa Oasis) to be adapted with the continuous social and environmental changes of the oasis.

Keywords: ecolodge, social aspect, space syntax, Siwa Oasis

Procedia PDF Downloads 128
711 Multi-Scale Control Model for Network Group Behavior

Authors: Fuyuan Ma, Ying Wang, Xin Wang

Abstract:

Social networks have become breeding grounds for the rapid spread of rumors and malicious information, posing threats to societal stability and causing significant public harm. Existing research focuses on simulating the spread of information and its impact on users through propagation dynamics and applies methods such as greedy approximation strategies to approximate the optimal control solution at the global scale. However, the greedy strategy at the global scale may fall into locally optimal solutions, and the approximate simulation of information spread may accumulate more errors. Therefore, we propose a multi-scale control model for network group behavior, introducing individual and group scales on top of the greedy strategy’s global scale. At the individual scale, we calculate the propagation influence of nodes based on their structural attributes to alleviate the issue of local optimality. At the group scale, we conduct precise propagation simulations to avoid introducing cumulative errors from approximate calculations without increasing computational costs. Experimental results on three real-world datasets demonstrate the effectiveness of our proposed multi-scale model in controlling network group behavior.

Keywords: influence blocking maximization, competitive linear threshold model, social networks, network group behavior

Procedia PDF Downloads 21
710 Analysis of One-Way and Two-Way FSI Approaches to Characterise the Flow Regime and the Mechanical Behaviour during Closing Manoeuvring Operation of a Butterfly Valve

Authors: M. Ezkurra, J. A. Esnaola, M. Martinez-Agirre, U. Etxeberria, U. Lertxundi, L. Colomo, M. Begiristain, I. Zurutuza

Abstract:

Butterfly valves are widely used industrial piping components as on-off and flow controlling devices. The main challenge in the design process of this type of valves is the correct dimensioning to ensure proper mechanical performance as well as to minimise flow losses that affect the efficiency of the system. Butterfly valves are typically dimensioned in a closed position based on mechanical approaches considering uniform hydrostatic pressure, whereas the flow losses are analysed by means of CFD simulations. The main limitation of these approaches is that they do not consider either the influence of the dynamics of the manoeuvring stage or coupled phenomena. Recent works have included the influence of the flow on the mechanical behaviour for different opening angles by means of one-way FSI approach. However, these works consider steady-state flow for the selected angles, not capturing the effect of the transient flow evolution during the manoeuvring stage. Two-way FSI modelling approach could allow overcoming such limitations providing more accurate results. Nevertheless, the use of this technique is limited due to the increase in the computational cost. In the present work, the applicability of FSI one-way and two-way approaches is evaluated for the analysis of butterfly valves, showing that not considering fluid-structure coupling involves not capturing the most critical situation for the valve disc.

Keywords: butterfly valves, fluid-structure interaction, one-way approach, two-way approach

Procedia PDF Downloads 162
709 Determining Optimal Number of Trees in Random Forests

Authors: Songul Cinaroglu

Abstract:

Background: Random Forest is an efficient, multi-class machine learning method using for classification, regression and other tasks. This method is operating by constructing each tree using different bootstrap sample of the data. Determining the number of trees in random forests is an open question in the literature for studies about improving classification performance of random forests. Aim: The aim of this study is to analyze whether there is an optimal number of trees in Random Forests and how performance of Random Forests differ according to increase in number of trees using sample health data sets in R programme. Method: In this study we analyzed the performance of Random Forests as the number of trees grows and doubling the number of trees at every iteration using “random forest” package in R programme. For determining minimum and optimal number of trees we performed Mc Nemar test and Area Under ROC Curve respectively. Results: At the end of the analysis it was found that as the number of trees grows, it does not always means that the performance of the forest is better than forests which have fever trees. In other words larger number of trees only increases computational costs but not increases performance results. Conclusion: Despite general practice in using random forests is to generate large number of trees for having high performance results, this study shows that increasing number of trees doesn’t always improves performance. Future studies can compare different kinds of data sets and different performance measures to test whether Random Forest performance results change as number of trees increase or not.

Keywords: classification methods, decision trees, number of trees, random forest

Procedia PDF Downloads 395
708 Airflow Characteristics and Thermal Comfort of Air Diffusers: A Case Study

Authors: Tolga Arda Eraslan

Abstract:

The quality of the indoor environment is significant to occupants’ health, comfort, and productivity, as Covid-19 spread throughout the world, people started spending most of their time indoors. Since buildings are getting bigger, mechanical ventilation systems are widely used where natural ventilation is insufficient. Four primary tasks of a ventilation system have been identified indoor air quality, comfort, contamination control, and energy performance. To fulfill such requirements, air diffusers, which are a part of the ventilation system, have begun to enter our lives in different airflow distribution systems. Detailed observations are needed to assure that such devices provide high levels of comfort effectiveness and energy efficiency. This study addresses these needs. The objective of this article is to observe air characterizations of different air diffusers at different angles and their effect on people by the thermal comfort model in CFD simulation and to validate the outputs with the help of data results based on a simulated office room. Office room created to provide validation; Equipped with many thermal sensors, including head height, tabletop, and foot level. In addition, CFD simulations were carried out by measuring the temperature and velocity of the air coming out of the supply diffuser. The results considering the flow interaction between diffusers and surroundings showed good visual illustration.

Keywords: computational fluid dynamics, fanger’s model, predicted mean vote, thermal comfort

Procedia PDF Downloads 118
707 Investigating the Role of Dystrophin in Neuronal Homeostasis

Authors: Samantha Shallop, Hakinya Karra, Tytus Bernas, Gladys Shaw, Gretchen Neigh, Jeffrey Dupree, Mathula Thangarajh

Abstract:

Abnormal neuronal homeostasis is considered a structural correlate of cognitive deficits in Duchenne Muscular Dystrophy. Neurons are highly polarized cells with multiple dendrites but a single axon. Trafficking of cellular organelles are highly regulated, with the cargo in the somatodendritic region of the neuron not permitted to enter the axonal compartment. We investigated the molecular mechanisms that regular organelle trafficking in neurons using a multimodal approach, including high-resolution structural illumination, proteomics, immunohistochemistry, and computational modeling. We investigated the expression of ankyrin-G, the master regulator controlling neuronal polarity. The expression of ankyrin G and the morphology of the axon initial segment was profoundly abnormal in the CA1 hippocampal neurons in the mdx52 animal model of DMD. Ankyrin-G colocalized with kinesin KIF5a, the anterograde protein transporter, with higher levels in older mdx52 mice than younger mdx52 mice. These results suggest that the functional trafficking from the somatodendritic compartment is abnormal. Our data suggests that dystrophin deficiency compromised neuronal homeostasis via ankyrin-G-based mechanisms.

Keywords: neurons, axonal transport, duchenne muscular dystrophy, organelle transport

Procedia PDF Downloads 95
706 Enhancing Aerodynamic Performance of Savonius Vertical Axis Turbine Used with Triboelectric Generator

Authors: Bhavesh Dadhich, Fenil Bamnoliya, Akshita Swaminathan

Abstract:

This project aims to design a system to generate energy from flowing wind due to the motion of a vehicle on the road or from the flow of wind in compact areas to utilize the wasteful energy into a useful one. It is envisaged through a design and aerodynamic performance improvement of a Savonius vertical axis wind turbine rotor and used in an integrated system with a Triboelectric Nanogenerator (TENG) that can generate a good amount of electrical energy. Aerodynamic calculations are performed numerically using Computational Fluid Dynamics software, and TENG's performance is evaluated analytically. The Turbine's coefficient of power is validated with published results for an inlet velocity of 7 m/s with a Tip Speed Ratio of 0.75 and found to reasonably agree with that of experiment results. The baseline design is modified with a new blade arc angle and rotor position angle based on the recommended parameter ranges suggested by previous researchers. Simulations have been performed for different T.S.R. values ranging from 0.25 to 1.5 with an interval of 0.25 with two applicable free stream velocities of 5 m/s and 7m/s. Finally, the newly designed VAWT CFD performance results are used as input for the analytical performance prediction of the triboelectric nanogenerator. The results show that this approach could be feasible and useful for small power source applications.

Keywords: savonius turbine, power, overlap ratio, tip speed ratio, TENG

Procedia PDF Downloads 122
705 Numerical Investigation of AL₂O₃ Nanoparticle Effect on a Boiling Forced Swirl Flow Field

Authors: Ataollah Rabiee1, Amir Hossein Kamalinia, Alireza Atf

Abstract:

One of the most important issues in the design of nuclear fusion power plants is the heat removal from the hottest region at the diverter. Various methods could be employed in order to improve the heat transfer efficiency, such as generating turbulent flow and injection of nanoparticles in the host fluid. In the current study, Water/AL₂O₃ nanofluid forced swirl flow boiling has been investigated by using a homogeneous thermophysical model within the Eulerian-Eulerian framework through a twisted tape tube, and the boiling phenomenon was modeled using the Rensselaer Polytechnic Institute (RPI) approach. In addition to comparing the results with the experimental data and their reasonable agreement, it was evidenced that higher flow mixing results in more uniform bulk temperature and lower wall temperature along the twisted tape tube. The presence of AL₂O₃ nanoparticles in the boiling flow field showed that increasing the nanoparticle concentration leads to a reduced vapor volume fraction and wall temperature. The Computational fluid dynamics (CFD) results show that the average heat transfer coefficient in the tube increases both by increasing the nanoparticle concentration and the insertion of twisted tape, which significantly affects the thermal field of the boiling flow.

Keywords: nanoparticle, boiling, CFD, two phase flow, alumina, ITER

Procedia PDF Downloads 125
704 De Novo Design of a Minimal Catalytic Di-Nickel Peptide Capable of Sustained Hydrogen Evolution

Authors: Saroj Poudel, Joshua Mancini, Douglas Pike, Jennifer Timm, Alexei Tyryshkin, Vikas Nanda, Paul Falkowski

Abstract:

On the early Earth, protein-metal complexes likely harvested energy from a reduced environment. These complexes would have been precursors to the metabolic enzymes of ancient organisms. Hydrogenase is an essential enzyme in most anaerobic organisms for the reduction and oxidation of hydrogen in the environment and is likely one of the earliest evolved enzymes. To attempt to reinvent a precursor to modern hydrogenase, we computationally designed a short thirteen amino acid peptide that binds the often-required catalytic transition metal Nickel in hydrogenase. This simple complex can achieve hundreds of hydrogen evolution cycles using light energy in a broad range of temperature and pH. Biophysical and structural investigations strongly indicate the peptide forms a di-nickel active site analogous to Acetyl-CoA synthase, an ancient protein central to carbon reduction in the Wood-Ljungdahl pathway and capable of hydrogen evolution. This work demonstrates that prior to the complex evolution of multidomain enzymes, early peptide-metal complexes could have catalyzed energy transfer from the environment on the early Earth and enabled the evolution of modern metabolism

Keywords: hydrogenase, prebiotic enzyme, metalloenzyme, computational design

Procedia PDF Downloads 217
703 A Fast Parallel and Distributed Type-2 Fuzzy Algorithm Based on Cooperative Mobile Agents Model for High Performance Image Processing

Authors: Fatéma Zahra Benchara, Mohamed Youssfi, Omar Bouattane, Hassan Ouajji, Mohamed Ouadi Bensalah

Abstract:

The aim of this paper is to present a distributed implementation of the Type-2 Fuzzy algorithm in a parallel and distributed computing environment based on mobile agents. The proposed algorithm is assigned to be implemented on a SPMD (Single Program Multiple Data) architecture which is based on cooperative mobile agents as AVPE (Agent Virtual Processing Element) model in order to improve the processing resources needed for performing the big data image segmentation. In this work we focused on the application of this algorithm in order to process the big data MRI (Magnetic Resonance Images) image of size (n x m). It is encapsulated on the Mobile agent team leader in order to be split into (m x n) pixels one per AVPE. Each AVPE perform and exchange the segmentation results and maintain asynchronous communication with their team leader until the convergence of this algorithm. Some interesting experimental results are obtained in terms of accuracy and efficiency analysis of the proposed implementation, thanks to the mobile agents several interesting skills introduced in this distributed computational model.

Keywords: distributed type-2 fuzzy algorithm, image processing, mobile agents, parallel and distributed computing

Procedia PDF Downloads 429
702 Continuous Plug Flow and Discrete Particle Phase Coupling Using Triangular Parcels

Authors: Anders Schou Simonsen, Thomas Condra, Kim Sørensen

Abstract:

Various processes are modelled using a discrete phase, where particles are seeded from a source. Such particles can represent liquid water droplets, which are affecting the continuous phase by exchanging thermal energy, momentum, species etc. Discrete phases are typically modelled using parcel, which represents a collection of particles, which share properties such as temperature, velocity etc. When coupling the phases, the exchange rates are integrated over the cell, in which the parcel is located. This can cause spikes and fluctuating exchange rates. This paper presents an alternative method of coupling a discrete and a continuous plug flow phase. This is done using triangular parcels, which span between nodes following the dynamics of single droplets. Thus, the triangular parcels are propagated using the corner nodes. At each time step, the exchange rates are spatially integrated over the surface of the triangular parcels, which yields a smooth continuous exchange rate to the continuous phase. The results shows that the method is more stable, converges slightly faster and yields smooth exchange rates compared with the steam tube approach. However, the computational requirements are about five times greater, so the applicability of the alternative method should be limited to processes, where the exchange rates are important. The overall balances of the exchanged properties did not change significantly using the new approach.

Keywords: CFD, coupling, discrete phase, parcel

Procedia PDF Downloads 267
701 Detection of Important Biological Elements in Drug-Drug Interaction Occurrence

Authors: Reza Ferdousi, Reza Safdari, Yadollah Omidi

Abstract:

Drug-drug interactions (DDIs) are main cause of the adverse drug reactions and nature of the functional and molecular complexity of drugs behavior in human body make them hard to prevent and treat. With the aid of new technologies derived from mathematical and computational science the DDIs problems can be addressed with minimum cost and efforts. Market basket analysis is known as powerful method to identify co-occurrence of thing to discover patterns and frequency of the elements. In this research, we used market basket analysis to identify important bio-elements in DDIs occurrence. For this, we collected all known DDIs from DrugBank. The obtained data were analyzed by market basket analysis method. We investigated all drug-enzyme, drug-carrier, drug-transporter and drug-target associations. To determine the importance of the extracted bio-elements, extracted rules were evaluated in terms of confidence and support. Market basket analysis of the over 45,000 known DDIs reveals more than 300 important rules that can be used to identify DDIs, CYP 450 family were the most frequent shared bio-elements. We applied extracted rules over 2,000,000 unknown drug pairs that lead to discovery of more than 200,000 potential DDIs. Analysis of the underlying reason behind the DDI phenomena can help to predict and prevent DDI occurrence. Ranking of the extracted rules based on strangeness of them can be a supportive tool to predict the outcome of an unknown DDI.

Keywords: drug-drug interaction, market basket analysis, rule discovery, important bio-elements

Procedia PDF Downloads 310
700 Computational Agent-Based Approach for Addressing the Consequences of Releasing Gene Drive Mosquito to Control Malaria

Authors: Imran Hashmi, Sipkaduwa Arachchige Sashika Sureni Wickramasooriya

Abstract:

Gene-drive technology has emerged as a promising tool for disease control by influencing the population dynamics of disease-carrying organisms. Various gene drive mechanisms, derived from global laboratory experiments, aim to strategically manage and prevent the spread of targeted diseases. One prominent strategy involves population replacement, wherein genetically modified mosquitoes are introduced to replace the existing local wild population. To enhance our understanding and aid in the design of effective release strategies, we employ a comprehensive mathematical model. The utilized approach employs agent-based modeling, enabling the consideration of individual mosquito attributes and flexibility in parameter manipulation. Through the integration of an agent-based model and a meta-population spatial approach, the dynamics of gene drive mosquito spreading in a released site are simulated. The model's outcomes offer valuable insights into future population dynamics, providing guidance for the development of informed release strategies. This research significantly contributes to the ongoing discourse on the responsible and effective implementation of gene drive technology for disease vector control.

Keywords: gene drive, agent-based modeling, disease-carrying organisms, malaria

Procedia PDF Downloads 65
699 Machine Learning Algorithms for Rocket Propulsion

Authors: Rômulo Eustáquio Martins de Souza, Paulo Alexandre Rodrigues de Vasconcelos Figueiredo

Abstract:

In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results.

Keywords: data analysis, modeling, machine learning, aerospace, rocket propulsion

Procedia PDF Downloads 115
698 Effective Stiffness, Permeability, and Reduced Wall Shear Stress of Highly Porous Tissue Engineering Scaffolds

Authors: Hassan Mohammadi Khujin

Abstract:

Tissue engineering is the science of tissues and complex organs creation using scaffolds, cells and biologically active components. Most cells require scaffolds to grow and proliferate. These temporary support structures for tissue regeneration are later replaced with extracellular matrix produced inside the body. Recent advances in additive manufacturing methods allow production of highly porous, complex three dimensional scaffolds suitable for cell growth and proliferation. The current paper investigates the mechanical properties, including elastic modulus and compressive strength, as well as fluid flow dynamics, including permeability and flow-induced shear stress of scaffolds with four triply periodic minimal surface (TPMS) configurations, namely the Schwarz primitive, the Schwarz diamond, the gyroid, and the Neovius structures. Higher porosity in all scaffold types resulted in lower mechanical properties. The permeability of the scaffolds was determined using Darcy's law with reference to geometrical parameters and the pressure drop derived from the computational fluid dynamics (CFD) analysis. Higher porosity enhanced permeability and reduced wall shear stress in all scaffold designs.

Keywords: highly porous scaffolds, tissue engineering, finite elements analysis, CFD analysis

Procedia PDF Downloads 76
697 The Utilization of FSI Technique and Two-Way Particle Coupling System on Particle Dynamics in the Human Alveoli

Authors: Hassan Athari, Abdurrahim Bolukbasi, Dogan Ciloglu

Abstract:

This study represented the respiratory alveoli system, and determined the trajectory of inhaled particles more accurately using the modified three-dimensional model with deformable walls of alveoli. The study also considered the tissue tension in the model to demonstrate the effect of lung. Tissue tensions are transferred by the lung parenchyma and produce the pressure gradient. This load expands the alveoli and establishes a sub-ambient (vacuum) pressure within the lungs. Thus, at the alveolar level, the flow field and movement of alveoli wall lead to an integrated effect. In this research, we assume that the three-dimensional alveolus has a visco-elastic tissue (walls). For accurate investigation of pulmonary tissue mechanical properties on particle transport and alveolar flow field, the actual relevance between tissue movement and airflow is solved by two-way FSI (Fluid Structure Interaction) simulation technique in the alveolus. Therefore, the essence of real simulation of pulmonary breathing mechanics can be achieved by developing a coupled FSI computational model. We, therefore conduct a series of FSI simulations over a range of tissue models and breathing rates. As a result, the fluid flows and streamlines have changed during present flexible model against the rigid models and also the two-way coupling particle trajectories have changed against the one-way particle coupling.

Keywords: FSI, two-way particle coupling, alveoli, CDF

Procedia PDF Downloads 258
696 The Effect of Action Potential Duration and Conduction Velocity on Cardiac Pumping Efficacy: Simulation Study

Authors: Ana Rahma Yuniarti, Ki Moo Lim

Abstract:

Slowed myocardial conduction velocity (CV) and shortened action potential duration (APD) due to some reason are associated with an increased risk of re-entrant excitation, predisposing to cardiac arrhythmia. That is because both of CV reduction and APD shortening induces shortening of wavelength. In this study, we investigated quantitatively the cardiac mechanical responses under various CV and APD using multi-scale computational model of the heart. The model consisted of electrical model coupled with the mechanical contraction model together with a lumped model of the circulatory system. The electrical model consisted of 149.344 numbers of nodes and 183.993 numbers of elements of tetrahedral mesh, whereas the mechanical model consisted of 356 numbers of nodes and 172 numbers of elements of hexahedral mesh with hermite basis. We performed the electrical simulation with two scenarios: 1) by varying the CV values with constant APD and 2) by varying the APD values with constant CV. Then, we compared the electrical and mechanical responses for both scenarios. Our simulation showed that faster CV and longer APD induced largest resultants wavelength and generated better cardiac pumping efficacy by increasing the cardiac output and consuming less energy. This is due to the long wave propagation and faster conduction generated more synchronous contraction of whole ventricle.

Keywords: conduction velocity, action potential duration, mechanical contraction model, circulatory model

Procedia PDF Downloads 204
695 A Heuristic Based Decomposition Approach for a Hierarchical Production Planning Problem

Authors: Nusrat T. Chowdhury, M. F. Baki, A. Azab

Abstract:

The production planning problem is concerned with specifying the optimal quantities to produce in order to meet the demand for a prespecified planning horizon with the least possible expenditure. Making the right decisions in production planning will affect directly the performance and productivity of a manufacturing firm, which is important for its ability to compete in the market. Therefore, developing and improving solution procedures for production planning problems is very significant. In this paper, we develop a Dantzig-Wolfe decomposition of a multi-item hierarchical production planning problem with capacity constraint and present a column generation approach to solve the problem. The original Mixed Integer Linear Programming model of the problem is decomposed item by item into a master problem and a number of subproblems. The capacity constraint is considered as the linking constraint between the master problem and the subproblems. The subproblems are solved using the dynamic programming approach. We also propose a multi-step iterative capacity allocation heuristic procedure to handle any kind of infeasibility that arises while solving the problem. We compare the computational performance of the developed solution approach against the state-of-the-art heuristic procedure available in the literature. The results show that the proposed heuristic-based decomposition approach improves the solution quality by 20% as compared to the literature.

Keywords: inventory, multi-level capacitated lot-sizing, emission control, setup carryover

Procedia PDF Downloads 138
694 Ground Effect on Marine Midge Water Surface Locomotion

Authors: Chih-Hua Wu, Bang-Fuh Chen, Keryea Soong

Abstract:

Midges can move on the surface of the water at speeds of approximately 340 body-lengths/s and can move continuously for >90 min. Their wings periodically scull the sea surface to push water backward and thus generate thrust; their other body parts, including their three pairs of legs, touch the water only occasionally. The aim of this study was to investigate the locomotion mechanism of marine midges with a size of 2 mm and living in shallow reefs in Wanliton, southern Taiwan. We assumed that midges generate lift through two mechanisms: by sculling the surface of seawater to leverage the generated tension for thrust and by retracting their wings to generate aerodynamic lift at a suitable angle of attack. We performed computational fluid dynamic simulations to determine the mechanism of midge locomotion above the surface of the water. The simulations indicated that ground effects are essential and that both the midge trunk and wing tips must be very close to the water surface to produce sufficient lift to keep the midge airborne. Furthermore, a high wing-beat frequency is crucial for the midge to produce sufficient lift during wing retraction. Accordingly, ground effects, forward speed, and high wing-beat frequency are major factors influencing the ability of midges to generate sufficient lift and remain airborne above the water surface.

Keywords: ground effect, water locomotion, CFD, aerodynamic lift

Procedia PDF Downloads 81
693 Group Consensus of Hesitant Fuzzy Linguistic Variables for Decision-Making Problem

Authors: Chen T. Chen, Hui L. Cheng

Abstract:

Due to the different knowledge, experience and expertise of experts, they usually provide the different opinions in the group decision-making process. Therefore, it is an important issue to reach the group consensus of opinions of experts in group multiple-criteria decision-making (GMCDM) process. Because the subjective opinions of experts always are fuzziness and uncertainties, it is difficult to use crisp values to describe the real opinions of experts or decision-makers. It is reasonable for experts to use the linguistic variables to express their opinions. The hesitant fuzzy set are extended from the concept of fuzzy sets. Experts use the hesitant fuzzy sets can be flexible to describe their subjective opinions. In order to aggregate the hesitant fuzzy linguistic variables of all experts effectively, an adjustment method based on distance function will be presented in this paper. Based on the opinions adjustment method, this paper will present an effective approach to adjust the hesitant fuzzy linguistic variables of all experts to reach the group consensus. Then, a new hesitant linguistic GMCDM method will be presented based on the group consensus of hesitant fuzzy linguistic variables. Finally, an example will be implemented to illustrate the computational process to enhance the practical value of the proposed model.

Keywords: group multi-criteria decision-making, linguistic variables, hesitant fuzzy linguistic variables, distance function, group consensus

Procedia PDF Downloads 156