Search results for: cognitive radio network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6908

Search results for: cognitive radio network

5588 Evaluating the ‘Assembled Educator’ of a Specialized Postgraduate Engineering Course Using Activity Theory and Genre Ecologies

Authors: Simon Winberg

Abstract:

The landscape of professional postgraduate education is changing: the focus of these programmes is moving from preparing candidates for a life in academia towards a focus of training in expert knowledge and skills to support industry. This is especially pronounced in engineering disciplines where increasingly more complex products are drawing on a depth of knowledge from multiple fields. This connects strongly with the broader notion of Industry 4.0 – where technology and society are being brought together to achieve more powerful and desirable products, but products whose inner workings also are more complex than before. The changes in what we do, and how we do it, has a profound impact on what industry would like universities to provide. One such change is the increased demand for taught doctoral and Masters programmes. These programmes aim to provide skills and training for professionals, to expand their knowledge of state-of-the-art tools and technologies. This paper investigates one such course, namely a Software Defined Radio (SDR) Master’s degree course. The teaching support for this course had to be drawn from an existing pool of academics, none of who were specialists in this field. The paper focuses on the kind of educator, a ‘hybrid academic’, assembled from available academic staff and bolstered by research. The conceptual framework for this paper combines Activity Theory and Genre Ecology. Activity Theory is used to reason about learning and interactions during the course, and Genre Ecology is used to model building and sharing of technical knowledge related to using tools and artifacts. Data were obtained from meetings with students and lecturers, logs, project reports, and course evaluations. The findings show how the course, which was initially academically-oriented, metamorphosed into a tool-dominant peer-learning structure, largely supported by the sharing of technical tool-based knowledge. While the academic staff could address gaps in the participants’ fundamental knowledge of radio systems, the participants brought with them extensive specialized knowledge and tool experience which they shared with the class. This created a complicated dynamic in the class, which centered largely on engagements with technology artifacts, such as simulators, from which knowledge was built. The course was characterized by a richness of ‘epistemic objects’, which is to say objects that had knowledge-generating qualities. A significant portion of the course curriculum had to be adapted, and the learning methods changed to accommodate the dynamic interactions that occurred during classes. This paper explains the SDR Masters course in terms of conflicts and innovations in its activity system, as well as the continually hybridizing genre ecology to show how the structuring and resource-dependence of the course transformed from its initial ‘traditional’ academic structure to a more entangled arrangement over time. It is hoped that insights from this paper would benefit other educators involved in the design and teaching of similar types of specialized professional postgraduate taught programmes.

Keywords: professional postgraduate education, taught masters, engineering education, software defined radio

Procedia PDF Downloads 92
5587 Exploring the Role of Humorous Dialogues in Advertisements of Pakistani Network Companies: Analysis of Discourses through Multi-Modal Critical Approach

Authors: Jane E. Alam Solangi

Abstract:

The contribution of the study is to explore the important part of humorous dialogues in cellular network advertisements. This promotes the message of valuable construction and promotion of network companies in Pakistan that employ different and broad techniques to give promotion to selling products. It merely instigates the consumers to buy it. The results of the study after analysis of its collected data gives a vision that advertisers of network advertisements use humorous dialogues as a significant device to the greater level. The source of entertainment in the advertisement is accompanied by the texts and humorous discourses to influence buying decisions of the consumers. Therefore, it tends to neutralize personal and social based values. The earlier contribution of scholars presented that the technical employment of humorous devices leads to the successful market of the relevant products. In order to analyze the humorous discourse devices, the approach of multi-modality of Fairclough (1989) is used. It is accompanied by the framework of Kress and van Leeuwen’s (1996). It analyzes the visual graph of the grammar. The overall findings in the study verified the role of humorous devices in the captivation of consumers’ decision to buy the product that interests them. Therefore, the role of humor acts as a breaker of the monotonous rhythm of advertisements.

Keywords: advertisements, devices, humorous, multi-modality, networks, Pakistan

Procedia PDF Downloads 103
5586 Impact of Combined Heat and Power (CHP) Generation Technology on Distribution Network Development

Authors: Sreto Boljevic

Abstract:

In the absence of considerable investment in electricity generation, transmission and distribution network (DN) capacity, the demand for electrical energy will quickly strain the capacity of the existing electrical power network. With anticipated growth and proliferation of Electric vehicles (EVs) and Heat pump (HPs) identified the likelihood that the additional load from EV changing and the HPs operation will require capital investment in the DN. While an area-wide implementation of EVs and HPs will contribute to the decarbonization of the energy system, they represent new challenges for the existing low-voltage (LV) network. Distributed energy resources (DER), operating both as part of the DN and in the off-network mode, have been offered as a means to meet growing electricity demand while maintaining and ever-improving DN reliability, resiliency and power quality. DN planning has traditionally been done by forecasting future growth in demand and estimating peak load that the network should meet. However, new problems are arising. These problems are associated with a high degree of proliferation of EVs and HPs as load imposes on DN. In addition to that, the promotion of electricity generation from renewable energy sources (RES). High distributed generation (DG) penetration and a large increase in load proliferation at low-voltage DNs may have numerous impacts on DNs that create issues that include energy losses, voltage control, fault levels, reliability, resiliency and power quality. To mitigate negative impacts and at a same time enhance positive impacts regarding the new operational state of DN, CHP system integration can be seen as best action to postpone/reduce capital investment needed to facilitate promotion and maximize benefits of EVs, HPs and RES integration in low-voltage DN. The aim of this paper is to generate an algorithm by using an analytical approach. Algorithm implementation will provide a way for optimal placement of the CHP system in the DN in order to maximize the integration of RES and increase in proliferation of EVs and HPs.

Keywords: combined heat & power (CHP), distribution networks, EVs, HPs, RES

Procedia PDF Downloads 202
5585 The Effect of Drug Prevention Programme Based On Cognitive-Behavioral Therapy (CBT) and Multidimensional Self Concept Module Towards Resiliency and Aggression Among At-Risk Youth in Malaysia

Authors: Mohammad Aziz Shah Mohamed Arip, Aslina Ahmad, Fauziah Mohd Sa'ad, Samsiah Mohd Jais, Syed Sofian Syed Salim

Abstract:

This experimental study evaluates the effect of using Cognitive-Behavioral Therapy (CBT) and Multidimensional Self-Concept Model (MSCM) in a drug prevention programme to increase resiliency and reduce aggression among at-risk youth in Malaysia. A number of 60 (N=60) university students who were at-risk of taking drugs were involved in this study. Participants were identified with self-rating scales, Adolescent Resilience Attitude Scale (ARAS) and Aggression Questionnaire. Based on the mean score of these instruments, the participants were divided into the treatment group, and the control group. Data were analyzed using t-test. The finding showed that the mean score of resiliency was increased in the treatment group compared to the control group. It also shows that the mean score of aggression was reduced in the treatment group compared to the control group. Drug Prevention Programme was found to help in enhancing resiliency and reducing aggression among participants in the treatment group compared to the controlled group. Implications were given regarding the preventive actions on drug abuse among youth in Malaysia.

Keywords: drug prevention programme, cognitive-behavioral therapy (CBT), multidimensional self concept model (MSCM), resiliency, aggression, at-risk youth

Procedia PDF Downloads 727
5584 Proposing a Boundary Coverage Algorithm ‎for Underwater Sensor Network

Authors: Seyed Mohsen Jameii

Abstract:

Wireless underwater sensor networks are a type of sensor networks that are located in underwater environments and linked together by acoustic waves. The application of these kinds of network includes monitoring of pollutants (chemical, biological, and nuclear), oil fields detection, prediction of the likelihood of a tsunami in coastal areas, the use of wireless sensor nodes to monitor the passing submarines, and determination of appropriate locations for anchoring ships. This paper proposes a boundary coverage algorithm for intrusion detection in underwater sensor networks. In the first phase of the proposed algorithm, optimal deployment of nodes is done in the water. In the second phase, after the employment of nodes at the proper depth, clustering is executed to reduce the exchanges of messages between the sensors. In the third phase, the algorithm of "divide and conquer" is used to save energy and increase network efficiency. The simulation results demonstrate the efficiency of the proposed algorithm.

Keywords: boundary coverage, clustering, divide and ‎conquer, underwater sensor nodes

Procedia PDF Downloads 341
5583 Research on Online Consumption of College Students in China with Stimulate-Organism-Reaction Driven Model

Authors: Wei Lu

Abstract:

With the development of information technology in China, network consumption is becoming more and more popular. As a special group, college students have a high degree of education and distinct opinions and personalities. In the future, the key groups of network consumption have gradually become the focus groups of network consumption. Studying college students’ online consumption behavior has important theoretical significance and practical value. Based on the Stimulus-Organism-Response (SOR) driving model and the structural equation model, this paper establishes the influencing factors model of College students’ online consumption behavior, evaluates and amends the model by using SPSS and AMOS software, analyses and determines the positive factors of marketing college students’ consumption, and provides an effective basis for guiding and promoting college student consumption.

Keywords: college students, online consumption, stimulate-organism-reaction driving model, structural equation model

Procedia PDF Downloads 153
5582 Radio Frequency Energy Harvesting Friendly Self-Clocked Digital Low Drop-Out for System-On-Chip Internet of Things

Authors: Christos Konstantopoulos, Thomas Ussmueller

Abstract:

Digital low drop-out regulators, in contrast to analog counterparts, provide an architecture of sub-1 V regulation with low power consumption, high power efficiency, and system integration. Towards an optimized integration in the ultra-low-power system-on-chip Internet of Things architecture that is operated through a radio frequency energy harvesting scheme, the D-LDO regulator should constitute the main regulator that operates the master-clock and rest loads of the SoC. In this context, we present a D-LDO with linear search coarse regulation and asynchronous fine regulation, which incorporates an in-regulator clock generation unit that provides an autonomous, self-start-up, and power-efficient D-LDO design. In contrast to contemporary D-LDO designs that employ ring-oscillator architecture which start-up time is dependent on the frequency, this work presents a fast start-up burst oscillator based on a high-gain stage with wake-up time independent of coarse regulation frequency. The design is implemented in a 55-nm Global Foundries CMOS process. With the purpose to validate the self-start-up capability of the presented D-LDO in the presence of ultra-low input power, an on-chip test-bench with an RF rectifier is implemented as well, which provides the RF to DC operation and feeds the D-LDO. Power efficiency and load regulation curves of the D-LDO are presented as extracted from the RF to regulated DC operation. The D-LDO regulator presents 83.6 % power efficiency during the RF to DC operation with a 3.65 uA load current and voltage regulator referred input power of -27 dBm. It succeeds 486 nA maximum quiescent current with CL 75 pF, the maximum current efficiency of 99.2%, and 1.16x power efficiency improvement compared to analog voltage regulator counterpart oriented to SoC IoT loads. Complementary, the transient performance of the D-LDO is evaluated under the transient droop test, and the achieved figure-of-merit is compared with state-of-art implementations.

Keywords: D-LDO, Internet of Things, RF energy harvesting, voltage regulators

Procedia PDF Downloads 145
5581 Model and Algorithm for Dynamic Wireless Electric Vehicle Charging Network Design

Authors: Trung Hieu Tran, Jesse O'Hanley, Russell Fowler

Abstract:

When in-wheel wireless charging technology for electric vehicles becomes mature, a need for such integrated charging stations network development is essential. In this paper, we thus investigate the optimisation problem of in-wheel wireless electric vehicle charging network design. A mixed-integer linear programming model is formulated to solve into optimality the problem. In addition, a meta-heuristic algorithm is proposed for efficiently solving large-sized instances within a reasonable computation time. A parallel computing strategy is integrated into the algorithm to speed up its computation time. Experimental results carried out on the benchmark instances show that our model and algorithm can find the optimal solutions and their potential for practical applications.

Keywords: electric vehicle, wireless charging station, mathematical programming, meta-heuristic algorithm, parallel computing

Procedia PDF Downloads 79
5580 Numerical Investigation of Wastewater ‎Rheological Characteristics on Flow Field ‎Inside a Sewage Network

Authors: Seyed-Mohammad-Kazem Emami, Behrang Saki, Majid Mohammadian

Abstract:

The wastewater flow field inside a sewage network including pipe and ‎manhole was investigated using a Computational Fluid Dynamics ‎‎(CFD) model. The numerical model is developed by incorporating a ‎rheological model to calculate the viscosity of wastewater fluid by ‎means of open source toolbox OpenFOAM. The rheological ‎properties of prepared wastewater fluid suspensions are first measured ‎using a BrookField LVDVII Pro+ viscometer with an enhanced UL ‎adapter and then correlated the suitable rheological viscosity model ‎values from the measured rheological properties. The results show the ‎significant effects of rheological characteristics of wastewater fluid on ‎the flow domain of sewer system. Results were compared and ‎discussed with the commonly used Newtonian model to evaluate the ‎differences for velocity profile, pressure and shear stress. ‎

Keywords: Non-Newtonian flows, Wastewater, Numerical simulation, Rheology, Sewage Network

Procedia PDF Downloads 131
5579 A Child with Attention Deficit Hyperactivity Disorder in a Trap of Expectations: About the Golem Effect at School

Authors: Natalia Kajka, Agnieszka Kulik

Abstract:

The aim of the study is to present the results regarding differences in perception of cognitive progress of children with Attention Deficit Hyperactivity Disorder (ADHD) by adults and children themselves. The experiment was attended by 45 children with ADHD, their parents and teachers. The children attended the 3-month metacognitive training. Both children and adults were examined before and after joining this project. In order to show significant differences between the first and second measurement of the test, non-parametric Wilcoxon tests were performed. The analysis showed statistically significant differences in the change of cognitive functioning in children with ADHD participating in metacognitive training, this was also confirmed by the results of the parents' research. There were no significant differences in the teachers' assessment of these children.

Keywords: ADHD, executive function, Golem effect metacognitive training

Procedia PDF Downloads 179
5578 Assessment of Planet Image for Land Cover Mapping Using Soft and Hard Classifiers

Authors: Lamyaa Gamal El-Deen Taha, Ashraf Sharawi

Abstract:

Planet image is a new data source from planet lab. This research is concerned with the assessment of Planet image for land cover mapping. Two pixel based classifiers and one subpixel based classifier were compared. Firstly, rectification of Planet image was performed. Secondly, a comparison between minimum distance, maximum likelihood and neural network classifications for classification of Planet image was performed. Thirdly, the overall accuracy of classification and kappa coefficient were calculated. Results indicate that neural network classification is best followed by maximum likelihood classifier then minimum distance classification for land cover mapping.

Keywords: planet image, land cover mapping, rectification, neural network classification, multilayer perceptron, soft classifiers, hard classifiers

Procedia PDF Downloads 187
5577 Effects of Group Cognitive Restructuring and Rational Emotive Behavioral Therapy on Psychological Distress of Awaiting-Trial Inmates in Correctional Centers in North- West, Nigeria

Authors: Muhammad Shafi'u Adamu

Abstract:

This study examined the effects of two Group Cognitive Behavioural Therapies (Cognitive Restructuring and Rational Emotive Behavioural Therapy) on Psychological Distress of awaiting-trial Inmates in Correctional Centres in North-West, Nigeria. The study had four specific objectives, four research questions, and four null hypotheses. The study used a quasi-experimental design that involved pre-test and post-test. The population comprised of all 7,962 awaiting-trial inmates in correctional centres in North-west, Nigeria. 131 awaiting trial inmates from three intact Correctional Centres were randomly selected using the census technique. The respondents were sampled and randomly put into 3 groups (CR, REBT and Control). Kessler Psychological Distress Scale (K10) was adapted for data collection in the study. The instrument was validated by experts and subjected to pilot study using Cronbach's Alpha with reliability co-efficient of 0.772. Each group received treatment for 8 consecutive weeks (60 minutes/week). Data collected from the field were subjected to descriptive statistics of mean, standard deviation and mean difference to answer the research questions. Inferential statistics of ANOVA and independent sample t-test were used to test the null hypotheses at P≤ 0.05 level of significance. Results in the study revealed that there was no significant difference among the pre-treatment mean scores of experimental and control groups. Statistical evidence also showed a significant difference among the mean sores of the three groups, and thus, results of the Post Hoc multiple-comparison test indicating the posttreatment reduction of psychological distress on the awaiting-trial inmates. Documented output also showed a significant difference between the post-treatment psychologically distressed mean scores of male and female awaiting-trial inmates, but there was no difference on those exposed to REBT. The research recommends that a standardized structured CBT counselling technique treatment should be designed for correctional centres across Nigeria, and CBT counselling techniques could be used in the treatment of PD in both correctional and clinical settings.

Keywords: awaiting-trial inmates, cognitive restructuring, correctional centres, group cognitive behavioural therapies, rational emotive behavioural therapy

Procedia PDF Downloads 88
5576 Developing an Effectual Logic through a Visual Mind Mapping

Authors: Alberti Pascal, Mustapha Mouloua

Abstract:

Companies are confronted with complex and competitive markets. The dynamics of these markets are becoming more and more fluid, requiring companies to provide competitive, definite and technological responses within increasingly short timeframes. To meet this demand, companies must rely on the cognitive abilities of actors of creativity to provide tangible answers to current contextual problems. It therefore seems appropriate to provide instruments to support this particular stage of innovation. Various methods and tools can meet this requirement. For a number of years we have been conducting experiments on the use of mind maps in the context of innovation projects with teams of different nationalities. After presenting the main research carried out on this theme, we discuss the possible correlation between the different uses of iconic tools and certain types of innovation. We then provide a link with different cognitive logic. Finally, we conclude by putting our research into perspective.

Keywords: creativity, innovation, causal logic, effectual logic, mind mapping

Procedia PDF Downloads 432
5575 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN

Authors: M. P. Nanda Kumar, K. Dheeraj

Abstract:

The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.

Keywords: inverse optimal control, radial basis function, neural network, controller design

Procedia PDF Downloads 553
5574 Positive Bias and Length Bias in Deep Neural Networks for Premises Selection

Authors: Jiaqi Huang, Yuheng Wang

Abstract:

Premises selection, the task of selecting a set of axioms for proving a given conjecture, is a major bottleneck in automated theorem proving. An array of deep-learning-based methods has been established for premises selection, but a perfect performance remains challenging. Our study examines the inaccuracy of deep neural networks in premises selection. Through training network models using encoded conjecture and axiom pairs from the Mizar Mathematical Library, two potential biases are found: the network models classify more premises as necessary than unnecessary, referred to as the ‘positive bias’, and the network models perform better in proving conjectures that paired with more axioms, referred to as ‘length bias’. The ‘positive bias’ and ‘length bias’ discovered could inform the limitation of existing deep neural networks.

Keywords: automated theorem proving, premises selection, deep learning, interpreting deep learning

Procedia PDF Downloads 183
5573 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model

Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong

Abstract:

In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.

Keywords: artificial neural network, Taguchi method, real estate valuation model, investors

Procedia PDF Downloads 489
5572 Predicting Response to Cognitive Behavioral Therapy for Psychosis Using Machine Learning and Functional Magnetic Resonance Imaging

Authors: Eva Tolmeijer, Emmanuelle Peters, Veena Kumari, Liam Mason

Abstract:

Cognitive behavioral therapy for psychosis (CBTp) is effective in many but not all patients, making it important to better understand the factors that determine treatment outcomes. To date, no studies have examined whether neuroimaging can make clinically useful predictions about who will respond to CBTp. To this end, we used machine learning methods that make predictions about symptom improvement at the individual patient level. Prior to receiving CBTp, 22 patients with a diagnosis of schizophrenia completed a social-affective processing task during functional MRI. Multivariate pattern analysis assessed whether treatment response could be predicted by brain activation responses to facial affect that was either socially threatening or prosocial. The resulting models did significantly predict symptom improvement, with distinct multivariate signatures predicting psychotic (r=0.54, p=0.01) and affective (r=0.32, p=0.05) symptoms. Psychotic symptom improvement was accurately predicted from relatively focal threat-related activation across hippocampal, occipital, and temporal regions; affective symptom improvement was predicted by a more dispersed profile of responses to prosocial affect. These findings enrich our understanding of the neurobiological underpinning of treatment response. This study provides a foundation that will hopefully lead to greater precision and tailoring of the interventions offered to patients.

Keywords: cognitive behavioral therapy, machine learning, psychosis, schizophrenia

Procedia PDF Downloads 274
5571 Technical and Economic Evaluation of Harmonic Mitigation from Offshore Wind Power Plants by Transmission Owners

Authors: A. Prajapati, K. L. Koo, F. Ghassemi, M. Mulimakwenda

Abstract:

In the UK, as the volume of non-linear loads connected to transmission grid continues to rise steeply, the harmonic distortion levels on transmission network are becoming a serious concern for the network owners and system operators. This paper outlines the findings of the study conducted to verify the proposal that the harmonic mitigation could be optimized and can be managed economically and effectively at the transmission network level by the Transmission Owner (TO) instead of the individual polluter connected to the grid. Harmonic mitigation studies were conducted on selected regions of the transmission network in England for recently connected offshore wind power plants to strategize and optimize selected harmonic filter options. The results – filter volume and capacity – were then compared against the mitigation measures adopted by the individual connections. Estimation ratios were developed based on the actual installed and optimal proposed filters. These estimation ratios were then used to derive harmonic filter requirements for future contracted connections. The study has concluded that a saving of 37% in the filter volume/capacity could be achieved if the TO is to centrally manage the harmonic mitigation instead of individual polluter installing their own mitigation solution.

Keywords: C-type filter, harmonics, optimization, offshore wind farms, interconnectors, HVDC, renewable energy, transmission owner

Procedia PDF Downloads 157
5570 Water Resources Green Efficiency in China: Evaluation, Spatial Association Network Structure Analysis, and Influencing Factors

Authors: Tingyu Zhang

Abstract:

This paper utilizes the Super-SBM model to assess water resources green efficiency (WRGE) among provinces in China and investigate its spatial and temporal features, based on the characteristic framework of “economy-environment-society.” The social network analysis is employed to examine the network pattern and spatial interaction of WRGE. Further, the quadratic assignment procedure method is utilized for examining the influencing factors of the spatial association of WRGE regarding “relationship.” The study reveals that: (1) the spatial distribution of WRGE demonstrates a distribution pattern of Eastern>Western>Central; (2) a remarkable spatial association exists among provinces; however, no strict hierarchical structure is observed. The internal structure of the WRGE network is characterized by the feature of "Eastern strong and Western weak". The block model analysis discovers that the members of the “net spillover” and “two-way spillover” blocks are mostly in the eastern and central provinces; “broker” block, which plays an intermediary role, is mostly in the central provinces; and members of the “net beneficiary” block are mostly in the western region. (3) Differences in economic development, degree of urbanization, water use environment, and water management have significant impacts on the spatial connection of WRGE. This study is dedicated to the realization of regional linkages and synergistic enhancement of WRGE, which provides a meaningful basis for building a harmonious society of human and water coexistence.

Keywords: water resources green efficiency, super-SBM model, social network analysis, quadratic assignment procedure

Procedia PDF Downloads 61
5569 Research on Resilience-Oriented Disintegration in System-of-System

Authors: Hang Yang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

The system-of-systems (SoS) are utilized to characterize networks formed by integrating individual complex systems that demonstrate interdependence and interconnectedness. Research on the disintegration issue in SoS is significant in improving network survivability, maintaining network security, and optimizing SoS architecture. Accordingly, this study proposes an integrated framework called resilience-oriented disintegration in SoS (SoSRD), for modeling and solving the issue of SoS disintegration. Firstly, a SoS disintegration index (SoSDI) is presented to evaluate the disintegration effect of SoS. This index provides a practical description of the disintegration process and is the first integration of the network disintegration model and resilience models. Subsequently, we propose a resilience-oriented disintegration method based on reinforcement learning (RDRL) to enhance the efficiency of SoS disintegration. This method is not restricted by the problem scenario as well as considering the coexistence of disintegration (node/link removal) and recovery (node/link addition) during the process of SoS disintegration. Finally, the effectiveness and superiority of the proposed SoSRD are demonstrated through a case study. We demonstrate that our proposed framework outperforms existing indexes and methods in both node and link disintegration scenarios, providing a fresh perspective on network disintegration. The findings provide crucial insights into dismantling harmful SoS and designing a more resilient SoS.

Keywords: system-of-systems, disintegration index, resilience, reinforcement learning

Procedia PDF Downloads 14
5568 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network

Authors: Hui Wei, Zheng Dong

Abstract:

Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.

Keywords: biological model, feature extraction, multi-layer neural network, object recognition

Procedia PDF Downloads 542
5567 Cognition in Crisis: Unravelling the Link Between COVID-19 and Cognitive-Linguistic Impairments

Authors: Celine Davis

Abstract:

The novel coronavirus 2019 (COVID-19) is an infectious disease caused by the virus SARS-CoV-2, which has detrimental respiratory, cardiovascular, and neurological effects impacting over one million lives in the United States. New researches has emerged indicating long-term neurologic consequences in those who survive COVID-19 infections, including more than seven million Americans and another 27 million people worldwide. These consequences include attentional deficits, memory impairments, executive function deficits and aphasia-like symptoms which fall within the purview of speech-language pathology. The National Health Interview Survey (NHIS) is a comprehensive annual survey conducted by the National Center for Health Statistics (NCHS), a branch of the Centers for Disease Control and Prevention (CDC) in the United States. The NHIS is one of the most significant sources of health-related data in the country and has been conducted since 1957. The longitudinal nature of the study allows for analysis of trends in various variables over the years, which can be essential for understanding societal changes and making treatment recommendations. This current study will utilize NHIS data from 2020-2022 which contained interview questions specifically related to COVID-19. Adult cases of individuals between the ages of 18-50 diagnosed with COVID-19 in the United States during 2020-2022 will be identified using the National Health Interview Survey (NHIS). Multiple regression analysis of self-reported data confirming COVID-19 infection status and challenges with concentration, communication, and memory will be performed. Latent class analysis will be utilized to identify subgroups in the population to indicate whether certain demographic groups have higher susceptibility to cognitive-linguistic deficits associated with COVID-19. Completion of this study will reveal whether there is an association between confirmed COVID-19 diagnosis and heightened incidence of cognitive deficits and subsequent implications, if any, on activities of daily living. This study is distinct in its aim to utilize national survey data to explore the relationship between confirmed COVID-19 diagnosis and the prevalence of cognitive-communication deficits with a secondary focus on resulting activity limitations. To the best of the author’s knowledge, this will be the first large-scale epidemiological study investigating the associations between cognitive-linguistic deficits, COVID-19 and implications on activities of daily living in the United States population. These findings will highlight the need for targeted interventions and support services to address the cognitive-communication needs of individuals recovering from COVID-19, thereby enhancing their overall well-being and functional outcomes.

Keywords: cognition, COVID-19, language, limitations, memory, NHIS

Procedia PDF Downloads 53
5566 Neurophysiology of Domain Specific Execution Costs of Grasping in Working Memory Phases

Authors: Rumeysa Gunduz, Dirk Koester, Thomas Schack

Abstract:

Previous behavioral studies have shown that working memory (WM) and manual actions share limited capacity cognitive resources, which in turn results in execution costs of manual actions in WM. However, to the best of our knowledge, there is no study investigating the neurophysiology of execution costs. The current study aims to fill this research gap investigating the neurophysiology of execution costs of grasping in WM phases (encoding, maintenance, retrieval) considering verbal and visuospatial domains of WM. A WM-grasping dual task paradigm was implemented to examine execution costs. Baseline single task required performing verbal or visuospatial version of a WM task. Dual task required performing the WM task embedded in a high precision grasp to place task. 30 participants were tested in a 2 (single vs. dual task) x 2 (visuo-spatial vs. verbal WM) within subject design. Event related potentials (ERPs) were extracted for each WM phase separately in the single and dual tasks. Memory performance for visuospatial WM, but not for verbal WM, was significantly lower in the dual task compared to the single task. Encoding related ERPs in the single task revealed different ERPs of verbal WM and visuospatial WM at bilateral anterior sites and right posterior site. In the dual task, bilateral anterior difference disappeared due to bilaterally increased anterior negativities for visuospatial WM. Maintenance related ERPs in the dual task revealed different ERPs of verbal WM and visuospatial WM at bilateral posterior sites. There was also anterior negativity for visuospatial WM. Retrieval related ERPs in the single task revealed different ERPs of verbal WM and visuospatial WM at bilateral posterior sites. In the dual task, there was no difference between verbal WM and visuospatial WM. Behavioral and ERP findings suggest that execution of grasping shares cognitive resources only with visuospatial WM, which in turn results in domain specific execution costs. Moreover, ERP findings suggest unique patterns of costs in each WM phase, which supports the idea that each WM phase reflects a separate cognitive process. This study not only contributes to the understanding of cognitive principles of manual action control, but also contributes to the understanding of WM as an entity consisting of separate modalities and cognitive processes.

Keywords: dual task, grasping execution, neurophysiology, working memory domains, working memory phases

Procedia PDF Downloads 426
5565 Effect of Filler Size and Shape on Positive Temperature Coefficient Effect

Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti

Abstract:

Two types of filler shapes (sphere and flakes) and three different sizes are employed to study the size effect on PTC. The composite is prepared using a mini-extruder with high-density polyethylene (HDPE) as the matrix. A computer modelling is used to fit the experimental results. The percolation threshold decreases with decreasing filler size and this was observed for both the spherical particles as well as the flakes. This was caused by the decrease in interparticle distance with decreasing filler size. The 100 µm particles showed a larger PTC intensity compared to the 5 µm particles for the metal coated glass sphere and flake. The small particles have a large surface area and agglomeration and this makes it difficult for the conductive network to e disturbed. Increasing the filler content decreased the PTC intensity and this is due to an increase in the conductive network within the polymer matrix hence more energy is needed to disrupt the network.

Keywords: positive temperature coefficient (PTC) effect, conductive polymer composite (CPC), electrical conductivity

Procedia PDF Downloads 427
5564 Resilience-Based Emergency Bridge Inspection Routing and Repair Scheduling under Uncertainty

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway network systems play a vital role in disaster response for disaster-damaged areas. Damaged bridges in such network systems can impede disaster response by disrupting transportation of rescue teams or humanitarian supplies. Therefore, emergency inspection and repair of bridges to quickly collect damage information of bridges and recover the functionality of highway networks is of paramount importance to disaster response. A widely used measure of a network’s capability to recover from disasters is resilience. To enhance highway network resilience, plenty of studies have developed various repair scheduling methods for the prioritization of bridge-repair tasks. These methods assume that repair activities are performed after the damage to a highway network is fully understood via inspection, although inspecting all bridges in a regional highway network may take days, leading to the significant delay in repairing bridges. In reality, emergency repair activities can be commenced as soon as the damage data of some bridges that are crucial to emergency response are obtained. Given that emergency bridge inspection and repair (EBIR) activities are executed simultaneously in the response phase, the real-time interactions between these activities can occur – the blockage of highways due to repair activities can affect inspection routes which in turn have an impact on emergency repair scheduling by providing real-time information on bridge damages. However, the impact of such interactions on the optimal emergency inspection routes (EIR) and emergency repair schedules (ERS) has not been discussed in prior studies. To overcome the aforementioned deficiencies, this study develops a routing and scheduling model for EBIR while accounting for real-time inspection-repair interactions to maximize highway network resilience. A stochastic, time-dependent integer program is proposed for the complex and real-time interacting EBIR problem given multiple inspection and repair teams at locations as set post-disaster. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. Computational tests are performed using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that the simultaneous implementation of bridge inspection and repair activities can significantly improve the highway network resilience. Moreover, the deployment of inspection and repair teams should match each other, and the network resilience will not be improved once the unilateral increase in inspection teams or repair teams exceeds a certain level. This study contributes to both knowledge and practice. First, the developed mathematical model makes it possible for capturing the impact of real-time inspection-repair interactions on inspection routing and repair scheduling and efficiently deriving optimal EIR and ERS on a large and complex highway network. Moreover, this study contributes to the organizational dimension of highway network resilience by providing optimal strategies for highway bridge management. With the decision support tool, disaster managers are able to identify the most critical bridges for disaster management and make decisions on proper inspection and repair strategies to improve highway network resilience.

Keywords: disaster management, emergency bridge inspection and repair, highway network, resilience, uncertainty

Procedia PDF Downloads 109
5563 A Framework for Security Risk Level Measures Using CVSS for Vulnerability Categories

Authors: Umesh Kumar Singh, Chanchala Joshi

Abstract:

With increasing dependency on IT infrastructure, the main objective of a system administrator is to maintain a stable and secure network, with ensuring that the network is robust enough against malicious network users like attackers and intruders. Security risk management provides a way to manage the growing threats to infrastructures or system. This paper proposes a framework for risk level estimation which uses vulnerability database National Institute of Standards and Technology (NIST) National Vulnerability Database (NVD) and the Common Vulnerability Scoring System (CVSS). The proposed framework measures the frequency of vulnerability exploitation; converges this measured frequency with standard CVSS score and estimates the security risk level which helps in automated and reasonable security management. In this paper equation for the Temporal score calculation with respect to availability of remediation plan is derived and further, frequency of exploitation is calculated with determined temporal score. The frequency of exploitation along with CVSS score is used to calculate the security risk level of the system. The proposed framework uses the CVSS vectors for risk level estimation and measures the security level of specific network environment, which assists system administrator for assessment of security risks and making decision related to mitigation of security risks.

Keywords: CVSS score, risk level, security measurement, vulnerability category

Procedia PDF Downloads 321
5562 A Distributed Mobile Agent Based on Intrusion Detection System for MANET

Authors: Maad Kamal Al-Anni

Abstract:

This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the  signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness  for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).

Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)

Procedia PDF Downloads 194
5561 RF Propagation Analysis in Outdoor Environments Using RSSI Measurements Applied in ZigBee Sensor Networks

Authors: Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, José Anderson Rodrigues de Souza, Jeronimo Silva Rocha

Abstract:

Propagation in radio frequency is a constant concern in the application of Wireless Sensor Networks (WSN), the behavior of an environment determines how good the quality of signal reception. The objective of this paper is to analyze the behavior of a WSN in an environment for agriculture where environmental variables are present and correlate the capture of values received signal strength (RSSI) with a propagation model.

Keywords: propagation, WSN, agriculture, quality

Procedia PDF Downloads 755
5560 Maximizing Coverage with Mobile Crime Cameras in a Stochastic Spatiotemporal Bipartite Network

Authors: (Ted) Edward Holmberg, Mahdi Abdelguerfi, Elias Ioup

Abstract:

This research details a coverage measure for evaluating the effectiveness of observer node placements in a spatial bipartite network. This coverage measure can be used to optimize the configuration of stationary or mobile spatially oriented observer nodes, or a hybrid of the two, over time in order to fully utilize their capabilities. To demonstrate the practical application of this approach, we construct a SpatioTemporal Bipartite Network (STBN) using real-time crime center (RTCC) camera nodes and NOPD calls for service (CFS) event nodes from New Orleans, La (NOLA). We use the coverage measure to identify optimal placements for moving mobile RTCC camera vans to improve coverage of vulnerable areas based on temporal patterns.

Keywords: coverage measure, mobile node dynamics, Monte Carlo simulation, observer nodes, observable nodes, spatiotemporal bipartite knowledge graph, temporal spatial analysis

Procedia PDF Downloads 113
5559 Use of Metamaterials Structures to Reduce the SAR in the Human Head

Authors: Hafawa Messaoudi, Taoufik Aguili

Abstract:

Due to the rapid growth in the use of wireless communication systems, there has been a recent increase in public concern regarding the exposure of humans to Radio Frequency (RF) electromagnetic radiation. This is particularly evident in the case of mobile telephone handsets. Previously, the insertion of a ferrite sheet between the antenna and the human head, the use of conductive materials (such as aluminum), the use of metamaterials (SRR), frequency selective surface (FSS), and electromagnetic band gap (EBG) structures to design high performance devices were proposed as methods of reducing the SAR value. This paper aims to provide an investigation of the effectiveness of various available Specific Absorption Rate (SAR) reduction solutions.

Keywords: EBG, HIS, metamaterials, SAR reduction

Procedia PDF Downloads 525