Search results for: climate zones
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3662

Search results for: climate zones

2342 Cognitive Based Approach to Organizational Development

Authors: Tatiana V. Korsakova

Abstract:

The cognitive methodology in management is considered: Cognitive structuring - the formation of ideas about the functioning of a developing organization; Cognitive modeling - heuristic construction of existing actions (zone of successful actions); and Cognitive construct - the formation of filters for converting external information into specific events of managerial reality. The major findings of the study are the identification of areas of successful actions in the organization, harmonization of criteria for evaluating the effectiveness of company management, and the frame-description that indicates the connection of environmental elements with the elements of the organization. It is stated the development of specific events of managerial reality in the direction of the further development of the organization depends on the personal cognitive construct of the development-subjects when it is used in the zone of successful actions.

Keywords: cognitive construct, focus of applicability, knowledge corporate culture, zones of successful actions

Procedia PDF Downloads 296
2341 Alleviation of Thermal Stress in Pinus ponderosa by Plant-Growth Promoting Rhizobacteria Isolated from Mixed-Conifer Forests

Authors: Kelli G. Thorup, Kristopher A. Blee

Abstract:

Climate change enhances the occurrence of extreme weather: wildfires, drought, rising summer temperatures, all of which dramatically decline forest growth and increase tree mortality in the mixed-conifer forests of Sierra Nevada, California. However, microbiota living in mutualistic relations with plant rhizospheres have been found to mitigate the effects of suboptimal environmental conditions. The goal of this research is to isolate native beneficial bacteria, plant-growth promoting rhizobacteria (PGPR), that can alleviate heat stress in Pinus ponderosa seedlings. Bacteria were isolated from the rhizosphere of Pinus ponderosa juveniles located in mixed-conifer stand and further characterized for PGP potential based on their ability to produce key growth regulatory phytohormones including auxin, cytokinin, and gibberellic acid. Out of ten soil samples taken, sixteen colonies were isolated and qualitatively confirmed to produce indole-3-acetic acid (auxin) using Salkowski’s reagent. Future testing will be conducted to quantitatively assess phytohormone production in bacterial isolates. Furthermore, bioassays will be performed to determine isolates abilities to increase tolerance in heat-stressed Pinus ponderosa seedlings. Upon completion of this research, a PGPR could be utilized to support the growth and transplantation of conifer seedlings as summer temperatures continue to rise due to the effects of climate change.

Keywords: conifer, heat-stressed, phytohormones, Pinus ponderosa, plant-growth promoting rhizobacteria

Procedia PDF Downloads 118
2340 Determination of the Relative Humidity Profiles in an Internal Micro-Climate Conditioned Using Evaporative Cooling

Authors: M. Bonello, D. Micallef, S. P. Borg

Abstract:

Driven by increased comfort standards, but at the same time high energy consciousness, energy-efficient space cooling has become an essential aspect of building design. Its aims are simple, aiming at providing satisfactory thermal comfort for individuals in an interior space using low energy consumption cooling systems. In this context, evaporative cooling is both an energy-efficient and an eco-friendly cooling process. In the past two decades, several academic studies have been performed to determine the resulting thermal comfort produced by an evaporative cooling system, including studies on temperature profiles, air speed profiles, effect of clothing and personnel activity. To the best knowledge of the authors, no studies have yet considered the analysis of relative humidity (RH) profiles in a space cooled using evaporative cooling. Such a study will determine the effect of different humidity levels on a person's thermal comfort and aid in the consequent improvement designs of such future systems. Under this premise, the research objective is to characterise the resulting different RH profiles in a chamber micro-climate using the evaporative cooling system in which the inlet air speed, temperature and humidity content are varied. The chamber shall be modelled using Computational Fluid Dynamics (CFD) in ANSYS Fluent. Relative humidity shall be modelled using a species transport model while the k-ε RNG formulation is the proposed turbulence model that is to be used. The model shall be validated with measurements taken using an identical test chamber in which tests are to be conducted under the different inlet conditions mentioned above, followed by the verification of the model's mesh and time step. The verified and validated model will then be used to simulate other inlet conditions which would be impractical to conduct in the actual chamber. More details of the modelling and experimental approach will be provided in the full paper The main conclusions from this work are two-fold: the micro-climatic relative humidity spatial distribution within the room is important to consider in the context of investigating comfort at occupant level; and the investigation of a human being's thermal comfort (based on Predicted Mean Vote – Predicted Percentage Dissatisfied [PMV-PPD] values) and its variation with different locations of relative humidity values. The study provides the necessary groundwork for investigating the micro-climatic RH conditions of environments cooled using evaporative cooling. Future work may also target the analysis of ways in which evaporative cooling systems may be improved to better the thermal comfort of human beings, specifically relating to the humidity content around a sedentary person.

Keywords: chamber micro-climate, evaporative cooling, relative humidity, thermal comfort

Procedia PDF Downloads 155
2339 Achieving Net Zero Energy Building in a Hot Climate Using Integrated Photovoltaic and Parabolic Trough Collectors

Authors: Adel A. Ghoneim

Abstract:

In most existing buildings in hot climate, cooling loads lead to high primary energy consumption and consequently high CO2 emissions. These can be substantially decreased with integrated renewable energy systems. Kuwait is characterized by its dry hot long summer and short warm winter. Kuwait receives annual total radiation more than 5280 MJ/m2 with approximately 3347 h of sunshine. Solar energy systems consist of PV modules and parabolic trough collectors are considered to satisfy electricity consumption, domestic water heating, and cooling loads of an existing building. This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules and parabolic trough collectors (PTC). The program conducted on an existing institutional building intending to convert it into a Net-Zero Energy Building (NZEB) or near net Zero Energy Building (nNZEB). The program consists of two phases; the first phase is concerned with energy auditing and energy conservation measures at minimum cost and the second phase considers the installation of photovoltaic modules and parabolic trough collectors. The 2-storey building under consideration is the Applied Sciences Department at the College of Technological Studies, Kuwait. Single effect lithium bromide water absorption chillers are implemented to provide air conditioning load to the building. A numerical model is developed to evaluate the performance of parabolic trough collectors in Kuwait climate. Transient simulation program (TRNSYS) is adapted to simulate the performance of different solar system components. In addition, a numerical model is developed to assess the environmental impacts of building integrated renewable energy systems. Results indicate that efficient energy conservation can play an important role in converting the existing buildings into NZEBs as it saves a significant portion of annual energy consumption of the building. The first phase results in an energy conservation of about 28% of the building consumption. In the second phase, the integrated PV completely covers the lighting and equipment loads of the building. On the other hand, parabolic trough collectors of optimum area of 765 m2 can satisfy a significant portion of the cooling load, i.e about73% of the total building cooling load. The annual avoided CO2 emission is evaluated at the optimum conditions to assess the environmental impacts of renewable energy systems. The total annual avoided CO2 emission is about 680 metric ton/year which confirms the environmental impacts of these systems in Kuwait.

Keywords: building integrated renewable systems, Net-Zero energy building, solar fraction, avoided CO2 emission

Procedia PDF Downloads 611
2338 Quantifying the UK’s Future Thermal Electricity Generation Water Use: Regional Analysis

Authors: Daniel Murrant, Andrew Quinn, Lee Chapman

Abstract:

A growing population has led to increasing global water and energy demand. This demand, combined with the effects of climate change and an increasing need to maintain and protect the natural environment, represents a potentially severe threat to many national infrastructure systems. This has resulted in a considerable quantity of published material on the interdependencies that exist between the supply of water and the thermal generation of electricity, often known as the water-energy nexus. Focusing specifically on the UK, there is a growing concern that the future availability of water may at times constrain thermal electricity generation, and therefore hinder the UK in meeting its increasing demand for a secure, and affordable supply of low carbon electricity. To provide further information on the threat the water-energy nexus may pose to the UK’s energy system, this paper models the regional water demand of UK thermal electricity generation in 2030 and 2050. It uses the strategically important Energy Systems Modelling Environment model developed by the Energy Technologies Institute. Unlike previous research, this paper was able to use abstraction and consumption factors specific to UK power stations. It finds that by 2050 the South East, Yorkshire and Humber, the West Midlands and North West regions are those with the greatest freshwater demand and therefore most likely to suffer from a lack of resource. However, it finds that by 2050 it is the East, South West and East Midlands regions with the greatest total water (fresh, estuarine and seawater) demand and the most likely to be constrained by environmental standards.

Keywords: climate change, power station cooling, UK water-energy nexus, water abstraction, water resources

Procedia PDF Downloads 294
2337 Introduction of the Harmfulness of the Seismic Signal in the Assessment of the Performance of Reinforced Concrete Frame Structures

Authors: Kahil Amar, Boukais Said, Kezmane Ali, Hannachi Naceur Eddine, Hamizi Mohand

Abstract:

The principle of the seismic performance evaluation methods is to provide a measure of capability for a building or set of buildings to be damaged by an earthquake. The common objective of many of these methods is to supply classification criteria. The purpose of this study is to present a method for assessing the seismic performance of structures, based on Pushover method, we are particularly interested in reinforced concrete frame structures, which represent a significant percentage of damaged structures after a seismic event. The work is based on the characterization of seismic movement of the various earthquake zones in terms of PGA and PGD that is obtained by means of SIMQK_GR and PRISM software and the correlation between the points of performance and the scalar characterizing the earthquakes will be developed.

Keywords: seismic performance, pushover method, characterization of seismic motion, harmfulness of the seismic

Procedia PDF Downloads 383
2336 Numerical Analysis of Reinforced Embankment on Algeria Sabkha Subgrade

Authors: N. Benmebarek, F. Berrabah, S. Benmebarek

Abstract:

This paper is interested by numerical analysis using PLAXIS code of geosynthetic reinforced embankment crossing a section about 11 km on sabkha soil of Chott El Hodna in Algeria. The site observations indicated that the surface soil of this sabkha is very sensitive to moisture and complicated by the presence of locally weak zones. Therefore, serious difficulties were encountered during building the first embankment layer. This paper focuses on the use of geosynthetic to mitigate the difficulty encountered. Due to the absence of an accepted design methods, parametric studies are carried out to assess the effect of basal embankment reinforcement on both the bearing capacity and compaction conditions. The results showed the contribution conditions of geosynthetics to improve the bearing capacity of sabkha soil.

Keywords: reinforced embankment, numerical modelling, geosynthetics, weak bearing capacity

Procedia PDF Downloads 297
2335 Artificial Neural Networks and Geographic Information Systems for Coastal Erosion Prediction

Authors: Angeliki Peponi, Paulo Morgado, Jorge Trindade

Abstract:

Artificial Neural Networks (ANNs) and Geographic Information Systems (GIS) are applied as a robust tool for modeling and forecasting the erosion changes in Costa Caparica, Lisbon, Portugal, for 2021. ANNs present noteworthy advantages compared with other methods used for prediction and decision making in urban coastal areas. Multilayer perceptron type of ANNs was used. Sensitivity analysis was conducted on natural and social forces and dynamic relations in the dune-beach system of the study area. Variations in network’s parameters were performed in order to select the optimum topology of the network. The developed methodology appears fitted to reality; however further steps would make it better suited.

Keywords: artificial neural networks, backpropagation, coastal urban zones, erosion prediction

Procedia PDF Downloads 392
2334 Analysis of Kilistra (Gokyurt) Settlement within the Context of Traditional Residential Architecture

Authors: Esra Yaldız, Tugba Bulbul Bahtiyar, Dicle Aydın

Abstract:

Humans meet their need for shelter via housing which they structure in line with habits and necessities. In housing culture, traditional dwelling has an important role as a social and cultural transmitter. It provides concrete data by being planned in parallel with users’ life style and habits, having their own dynamics and components as well as their designs in harmony with nature, environment and the context they exist. Textures of traditional dwelling create a healthy and cozy living environment by means of adaptation to natural conditions, topography, climate, and context; utilization of construction materials found nearby and usage of traditional techniques and forms; and natural isolation of construction materials used. One of the examples of traditional settlements in Anatolia is Kilistra (Gökyurt) settlement of Konya province. Being among the important centers of Christianity in the past, besides having distinctive architecture, culture, natural features, and geographical differences (climate, geological structure, material), Kilistra can also be identified as a traditional settlement consisting of family, religious and economic structures as well as cultural interaction. The foundation of this study is the traditional residential texture of Kilistra with its unique features. The objective of this study is to assess the conformity of traditional residential texture of Kilistra with present topography, climatic data, and geographical values within the context of human scale construction, usage of green space, indigenous construction materials, construction form, building envelope, and space organization in housing.

Keywords: traditional residential architecture, Kilistra, Anatolia, Konya

Procedia PDF Downloads 412
2333 Modelling Pest Immigration into Rape Seed Crops under Past and Future Climate Conditions

Authors: M. Eickermann, F. Ronellenfitsch, J. Junk

Abstract:

Oilseed rape (Brassica napus L.) is one of the most important crops throughout Europe, but pressure due to pest insects and pathogens can reduce yield amount substantially. Therefore, the usage of pesticide applications is outstanding in this crop. In addition, climate change effects can interact with phenology of the host plant and their pests and can apply additional pressure on the yield. Next to the pollen beetle, Meligethes aeneus L., the seed-damaging pest insects, cabbage seed weevil (Ceutorhynchus obstrictus Marsham) and the brassica pod midge (Dasineura brassicae Winn.) are of main economic impact to the yield. While females of C. obstrictus are infesting oilseed rape by depositing single eggs into young pods, the females of D. brassicae are using this local damage in the pod for their own oviposition, while depositing batches of 20-30 eggs. Without a former infestation by the cabbage seed weevil, a significant yield reduction by the brassica pod midge can be denied. Based on long-term, multisided field experiments, a comprehensive data-set on pest migration to crops of B. napus has been built up in the last ten years. Five observational test sides, situated in different climatic regions in Luxembourg were controlled between February until the end of May twice a week. Pest migration was recorded by using yellow water pan-traps. Caught insects were identified in the laboratory according to species specific identification keys. By a combination of pest observations and corresponding meteorological observations, the set-up of models to predict the migration periods of the seed-damaging pests was possible. This approach is the basis for a computer-based decision support tool, to assist the farmer in identifying the appropriate time point of pesticide application. In addition, the derived algorithms of that decision support tool can be combined with climate change projections in order to assess the future potential threat caused by the seed-damaging pest species. Regional climate change effects for Luxembourg have been intensively studied in recent years. Significant changes to wetter winters and drier summers, as well as a prolongation of the vegetation period mainly caused by higher spring temperature, have also been reported. We used the COSMO-CLM model to perform a time slice experiment for Luxembourg with a spatial resolution of 1.3 km. Three ten year time slices were calculated: The reference time span (1991-2000), the near (2041-2050) and the far future (2091-2100). Our results projected a significant shift of pest migration to an earlier onset of the year. In addition, a prolongation of the possible migration period could be observed. Because D. brassiace is depending on the former oviposition activity by C. obstrictus to infest its host plant successfully, the future dependencies of both pest species will be assessed. Based on this approach the future risk potential of both seed-damaging pests is calculated and the status as pest species is characterized.

Keywords: CORDEX projections, decision support tool, Brassica napus, pests

Procedia PDF Downloads 382
2332 Investigating the Effect of Urban Expansion on the Urban Heat Island and Land Use Land Cover Changes: The Case Study of Lahore, Pakistan

Authors: Shah Fahad

Abstract:

Managing the Urban Heat Island (UHI) effects is a pressing concern for achieving sustainable urban development and ensuring thermal comfort in major cities of developing nations, such as Lahore, Pakistan. The current UHI effect is mostly triggered by climate change and rapid urbanization. This study explored UHI over the Lahore district and its adjoining urban and rural-urban fringe areas. Landsat satellite data was utilized to investigate spatiotemporal patterns of Land Use and Land Cover changes (LULC), Land Surface Temperature (LST), UHI, Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), and Urban Thermal Field Variance Index (UTFVI). The built-up area increased very fast, with a coverage of 22.99% in 2000, 36.06% in 2010, and 47.17% in 2020, while vegetation covered 53.21 % in 2000 and 46.16 % in 2020. It also revealed a significant increase in the mean LST, from 33°C in 2000 to 34.8°C in 2020. The results indicated a significantly positive correlation between LST and NDBI, a weak correlation was also observed between LST and NDVI. The study used scatterplots to show the correlation between NDBI and NDVI with LST, results revealed that the NDBI and LST had an R² value of 0.6831 in 2000 and 0.06541 in 2022, while NDVI and LST had an R² value of 0.0235 in 1998 and 0.0295 in 2022. Proper environmental planning is vital in specific locations to enhance quality of life, protect the ecosystem, and mitigate climate change impacts.

Keywords: land use land cover, spatio-temporal analysis, remote sensing, land surface temperature, urban heat island, lahore pakistan

Procedia PDF Downloads 77
2331 Adaptive Strategies of European Sea Bass (Dicentrarchus labrax) to Ocean Acidification and Salinity Stress

Authors: Nitin Pipralia, Amit Kmar Sinha, Gudrun de Boeck

Abstract:

Atmospheric carbon dioxide (CO2) concentrations have been increasing since the beginning of the industrial revolution due to combustion of fossils fuel and many anthropogenic means. As the number of scenarios assembled by the International Panel on Climate Change (IPCC) predict a rise of pCO2 from today’s 380 μatm to approximately 900 μatm until the year 2100 and a further rise of up to 1900 μatm by the year 2300. A rise in pCO2 results in more dissolution in ocean surface water which lead to cange in water pH, This phenomena of decrease in ocean pH due to increase on pCO2 is ocean acidification is considered a potential threat to the marine ecosystems and expected to affect fish as well as calcerious organisms. The situation may get worste when the stress of salinity adds on, due to migratory movement of fishes, where fish moves to different salinity region for various specific activities likes spawning and other. Therefore, to understand the interactive impact of these whole range of two important environmental abiotic stresses (viz. pCO2 ranging from 380 μatm, 900 μatm and 1900 μatm, along with salinity gradients of 32ppt, 10 ppt and 2.5ppt) on the ecophysiologal performance of fish, we investigated various biological adaptive response in European sea bass (Dicentrarchus labrax), a model estuarine teleost. Overall, we hypothesize that effect of ocean acidification would be exacerbate with shift in ambient salinity. Oxygen consumption, ammonia metabolism, iono-osmoregulation, energy budget, ion-regulatory enzymes, hormones and pH amendments in plasma were assayed as the potential indices of compensatory responses.

Keywords: ocean acidification, sea bass, pH climate change, salinity

Procedia PDF Downloads 227
2330 Response of Full-Scale Room Building Against Blast Loading

Authors: Eid Badshah, Amjad Naseer, Muhammad Ashraf

Abstract:

In this paper full-scale brick masonry room along with the veranda of a typical school building was subjected to eight successive blast tests with increasing charge weights ranging from 0.5kg to 16.02kg at 3.66m fixed stand-off distance. Pressure-time histories were obtained by data acquisition system from pressure sensors, installed on different points of room as well as veranda columns. The resulting damage pattern of different locations was observed during each test. Weak zones of masonry room were identified. Scaled distances for different damage levels in masonry room were experimentally obtained. The results provided a basis for determining the response of masonry room building against blast loading in a specific threat scenario.

Keywords: peak pressure, composition-B, TNT, pressure sensor, scaled distance, masonry

Procedia PDF Downloads 126
2329 A Theoretical and Experimental Evaluation of a Solar-Powered Off-Grid Air Conditioning System for Residential Buildings

Authors: Adam Y. Sulaiman, Gerard I.Obasi, Roma Chang, Hussein Sayed Moghaieb, Ming J. Huang, Neil J. Hewitt

Abstract:

Residential air-conditioning units are essential for quality indoor comfort in hot climate countries. Nevertheless, because of their non-renewable energy sources and the contribution of ecologically unfriendly working fluids, these units are a major source of CO2 emissions in these countries. The utilisation of sustainable technologies nowadays is essential to reduce the adverse effects of CO2 emissions by replacing conventional technologies. This paper investigates the feasibility of running an off-grid solar-powered air-conditioning bed unit using three low GWP refrigerants (R32, R290, and R600a) to supersede conventional refrigerants.A prototype air conditioning unit was built to supply cold air to a canopy that was connected to it. The assembled unit was designed to distribute cold air to a canopy connected to it. This system is powered by two 400 W photovoltaic panels, with battery storage supplying power to the unit at night-time. Engineering Equation Solver (EES) software is used to mathematically model the vapor compression cycle (VCC) and predict the unit's energetic and exergetic performance. The TRNSYS software was used to simulate the electricity storage performance of the batteries, whereas the IES-VE was used to determine the amount of solar energy required to power the unit. The article provides an analytical design guideline, as well as a comprehensible process system. Combining a renewable energy source to power an AC based-VCC provides an excellent solution to the real problems of high-energy consumption in warm-climate countries.

Keywords: air-conditioning, refrigerants, PV panel, energy storages, VCC, exergy

Procedia PDF Downloads 175
2328 Mapping and Mitigation Strategy for Flash Flood Hazards: A Case Study of Bishoftu City

Authors: Berhanu Keno Terfa

Abstract:

Flash floods are among the most dangerous natural disasters that pose a significant threat to human existence. They occur frequently and can cause extensive damage to homes, infrastructure, and ecosystems while also claiming lives. Although flash floods can happen anywhere in the world, their impact is particularly severe in developing countries due to limited financial resources, inadequate drainage systems, substandard housing options, lack of early warning systems, and insufficient preparedness. To address these challenges, a comprehensive study has been undertaken to analyze and map flood inundation using Geographic Information System (GIS) techniques by considering various factors that contribute to flash flood resilience and developing effective mitigation strategies. Key factors considered in the analysis include slope, drainage density, elevation, Curve Number, rainfall patterns, land-use/cover classes, and soil data. These variables were computed using ArcGIS software platforms, and data from the Sentinel-2 satellite image (with a 10-meter resolution) were utilized for land-use/cover classification. Additionally, slope, elevation, and drainage density data were generated from the 12.5-meter resolution of the ALOS Palsar DEM, while other relevant data were obtained from the Ethiopian Meteorological Institute. By integrating and regularizing the collected data through GIS and employing the analytic hierarchy process (AHP) technique, the study successfully delineated flash flood hazard zones (FFHs) and generated a suitable land map for urban agriculture. The FFH model identified four levels of risk in Bishoftu City: very high (2106.4 ha), high (10464.4 ha), moderate (1444.44 ha), and low (0.52 ha), accounting for 15.02%, 74.7%, 10.1%, and 0.004% of the total area, respectively. The results underscore the vulnerability of many residential areas in Bishoftu City, particularly the central areas that have been previously developed. Accurate spatial representation of flood-prone areas and potential agricultural zones is crucial for designing effective flood mitigation and agricultural production plans. The findings of this study emphasize the importance of flood risk mapping in raising public awareness, demonstrating vulnerability, strengthening financial resilience, protecting the environment, and informing policy decisions. Given the susceptibility of Bishoftu City to flash floods, it is recommended that the municipality prioritize urban agriculture adaptation, proper settlement planning, and drainage network design.

Keywords: remote sensing, flush flood hazards, Bishoftu, GIS.

Procedia PDF Downloads 37
2327 Wheat Cluster Farming Approach: Challenges and Prospects for Smallholder Farmers in Ethiopia

Authors: Hanna Mamo Ergando

Abstract:

Climate change is already having a severe influence on agriculture, affecting crop yields, the nutritional content of main grains, and livestock productivity. Significant adaptation investments will be necessary to sustain existing yields and enhance production and food quality to fulfill demand. Climate-smart agriculture (CSA) provides numerous potentials in this regard, combining a focus on enhancing agricultural output and incomes while also strengthening resilience and responding to climate change. To improve agriculture production and productivity, the Ethiopian government has adopted and implemented a series of strategies, including the recent agricultural cluster farming that is practiced as an effort to change, improve, and transform subsistence farming to modern, productive, market-oriented, and climate-smart approach through farmers production cluster. Besides, greater attention and focus have been given to wheat production and productivity by the government, and wheat is the major crop grown in cluster farming. Therefore, the objective of this assessment was to examine various opportunities and challenges farmers face in a cluster farming system. A qualitative research approach was used to generate primary and secondary data. Respondents were chosen using the purposeful sampling technique. Accordingly, experts from the Federal Ministry of Agriculture, the Ethiopian Agricultural Transformation Institute, the Ethiopian Agricultural Research Institute, and the Ethiopian Environment Protection Authority were interviewed. The assessment result revealed that farming in clusters is an economically viable technique for sustaining small, resource-limited, and socially disadvantaged farmers' agricultural businesses. The method assists farmers in consolidating their products and delivering them in bulk to save on transportation costs while increasing income. Smallholders' negotiating power has improved as a result of cluster membership, as has knowledge and information spillover. The key challenges, on the other hand, were identified as a lack of timely provision of modern inputs, insufficient access to credit services, conflict of interest in crop selection, and a lack of output market for agro-processing firms. Furthermore, farmers in the cluster farming approach grow wheat year after year without crop rotation or diversification techniques. Mono-cropping has disadvantages because it raises the likelihood of disease and insect outbreaks. This practice may result in long-term consequences, including soil degradation, reduced biodiversity, and economic risk for farmers. Therefore, the government must devote more resources to addressing the issue of environmental sustainability. Farmers' access to complementary services that promote production and marketing efficiencies through infrastructure and institutional services has to be improved. In general, the assessment begins with some hint that leads to a deeper study into the efficiency of the strategy implementation, upholding existing policy, and scaling up good practices in a sustainable and environmentally viable manner.

Keywords: cluster farming, smallholder farmers, wheat, challenges, opportunities

Procedia PDF Downloads 221
2326 Temporal Transformation of Built-up Area and its Impact on Urban Flooding in Hyderabad, India

Authors: Subbarao Pichuka, Amar Balakrishna Tej, Vikas Vemula

Abstract:

In recent years, the frequency and intensity of urban floods have increased due to climate change all over the world provoking a significant loss in terms of human lives and property. This study investigates the effect of Land Use and Land Cover (LULC) changes and population growth on the urban environmental conditions in the Indian metropolitan city namely Hyderabad. The centennial built-up area data have been downloaded from the Global Human Settlement Layer (GHSL) web portal for various periods (1975 to 2014). The ArcGIS version 10.8 software is employed to convert the GHSL data into shape files and also to calculate the amount of built-up area in the study locations. The decadal population data are obtained from the Census from 1971 to 2011 and forecasted for the required years (1975 and 2014) utilizing the Geometric Increase Method. Next, the analysis has been carried out with respect to the increase in population and the corresponding rise in the built-up area. Further the effects of extreme rainfall events, which exacerbate urban flooding have also been reviewed. Results demonstrate that the population growth was the primary cause of the increase in impervious surfaces in the urban regions. It in turn leads to the intensification of surface runoff and thereby leads to Urban flooding. The built-up area has been doubled from 1975 to 2014 and the population growth has been observed between 109.24% to 400% for the past four decades (1971 to 2014) in the study area (Hyderabad). Overall, this study provides the hindsight on the current urban flooding scenarios, and the findings of this study can be used in the future planning of cities.

Keywords: urban LULC change, urban flooding, GHSL built-up data, climate change, ArcGIS

Procedia PDF Downloads 82
2325 Description of Geotechnical Properties of Jabal Omar

Authors: Ibrahim Abdel Gadir Malik, Dafalla Siddig Dafalla, Osama Abdelgadir El-Bushra

Abstract:

Geological and engineering characteristics of intact rock and the discontinuity surfaces was used to describe and classify rock mass into zones based on mechanical and physical properties. Many conditions terms that affect the rock mas; such as Rock strength, Rock Quality Designation (RQD) value, joint spacing, and condition of joint, water condition with block size, joint roughness, separation, joint hardness, friction angle and weathering were used to classify the rock mass into: Good quality (class II) (RMR values range between 75% and 56%), Good to fair quality (class II to III) (RMR values range between 70% and 55%), Fair quality (class III) (RMR values range between 60% and 50%) and Fair to poor quality (Class III to IV) (RMR values, range between (50% and 35%).

Keywords: rock strength, RQD, joints, weathering

Procedia PDF Downloads 416
2324 The Phenomenon of the Seawater Intrusion with Fresh Groundwater in the Arab Region

Authors: Kassem Natouf, Ihab Jnad

Abstract:

In coastal aquifers, the interface between fresh groundwater and salty seawater may shift inland, reaching coastal wells and causing an increase in the salinity of the water they pump, putting them out of service. Many Arab coastal sites suffer from this phenomenon due to the increased pumping of coastal groundwater. This research aims to prepare a comprehensive study describing the common characteristics of the phenomenon of seawater intrusion with coastal freshwater aquifers in the Arab region, its general and specific causes and negative effects, in a way that contributes to overcoming this phenomenon, and to exchanging expertise between Arab countries in studying and analyzing it, leading to overcoming it. This research also aims to build geographical and relational databases for data, information and studies available in Arab countries about seawater intrusion with freshwater so as to provide the data and information necessary for managing groundwater resources on Arab coasts, including studying the effects of climate change on these resources and helping decision-makers in developing executive programs to overcome the seawater intrusion with groundwater. The research relied on the methodology of analysis and comparison, where the available information and data about the phenomenon in the Arab region were collected. After that, the information and data collected were studied and analyzed, and the causes of the phenomenon in each case, its results, and solutions for prevention were stated. Finally, the different cases were compared, and the common causes, results, and methods of treatment between them were deduced, and a technical report summarizing that was prepared. To overcome the phenomenon of seawater intrusion with fresh groundwater: (1) It is necessary to develop efforts to monitor the quantity and quality of groundwater on the coasts and to develop mathematical models to predict the impact of climate change, sea level rise, and human activities on coastal groundwater. (2) Over-pumping of coastal aquifers is an important cause of seawater intrusion. To mitigate this problem, Arab countries should reduce groundwater pumping and promote rainwater harvesting, surface irrigation, and water recycling practices. (3) Artificial recharge of coastal groundwater with various forms of water, whether fresh or treated, is a promising technology to mitigate the effects of seawater intrusion.

Keywords: coastal aquifers, seawater intrusion, fresh groundwater, salinity increase, Arab region, groundwater management, climate change effects, sustainable water practices, over-pumping, artificial recharge, monitoring and modeling, data databases, groundwater resources, negative effects, comparative analysis, technical report, water scarcity, groundwater quality, decision-making, environmental impact, agricultural practices

Procedia PDF Downloads 35
2323 Storms Dynamics in the Black Sea in the Context of the Climate Changes

Authors: Eugen Rusu

Abstract:

The objective of the work proposed is to perform an analysis of the wave conditions in the Black Sea basin. This is especially focused on the spatial and temporal occurrences and on the dynamics of the most extreme storms in the context of the climate changes. A numerical modelling system, based on the spectral phase averaged wave model SWAN, has been implemented and validated against both in situ measurements and remotely sensed data, all along the sea. Moreover, a successive correction method for the assimilation of the satellite data has been associated with the wave modelling system. This is based on the optimal interpolation of the satellite data. Previous studies show that the process of data assimilation improves considerably the reliability of the results provided by the modelling system. This especially concerns the most sensitive cases from the point of view of the accuracy of the wave predictions, as the extreme storm situations are. Following this numerical approach, it has to be highlighted that the results provided by the wave modelling system above described are in general in line with those provided by some similar wave prediction systems implemented in enclosed or semi-enclosed sea basins. Simulations of this wave modelling system with data assimilation have been performed for the 30-year period 1987-2016. Considering this database, the next step was to analyze the intensity and the dynamics of the higher storms encountered in this period. According to the data resulted from the model simulations, the western side of the sea is considerably more energetic than the rest of the basin. In this western region, regular strong storms provide usually significant wave heights greater than 8m. This may lead to maximum wave heights even greater than 15m. Such regular strong storms may occur several times in one year, usually in the wintertime, or in late autumn, and it can be noticed that their frequency becomes higher in the last decade. As regards the case of the most extreme storms, significant wave heights greater than 10m and maximum wave heights close to 20m (and even greater) may occur. Such extreme storms, which in the past were noticed only once in four or five years, are more recent to be faced almost every year in the Black Sea, and this seems to be a consequence of the climate changes. The analysis performed included also the dynamics of the monthly and annual significant wave height maxima as well as the identification of the most probable spatial and temporal occurrences of the extreme storm events. Finally, it can be concluded that the present work provides valuable information related to the characteristics of the storm conditions and on their dynamics in the Black Sea. This environment is currently subjected to high navigation traffic and intense offshore and nearshore activities and the strong storms that systematically occur may produce accidents with very serious consequences.

Keywords: Black Sea, extreme storms, SWAN simulations, waves

Procedia PDF Downloads 248
2322 Carbon Sequestration in Spatio-Temporal Vegetation Dynamics

Authors: Nothando Gwazani, K. R. Marembo

Abstract:

An increase in the atmospheric concentration of carbon dioxide (CO₂) from fossil fuel and land use change necessitates identification of strategies for mitigating threats associated with global warming. Oceans are insufficient to offset the accelerating rate of carbon emission. However, the challenges of oceans as a source of reducing carbon footprint can be effectively overcome by the storage of carbon in terrestrial carbon sinks. The gases with special optical properties that are responsible for climate warming include carbon dioxide (CO₂), water vapors, methane (CH₄), nitrous oxide (N₂O), nitrogen oxides (NOₓ), stratospheric ozone (O₃), carbon monoxide (CO) and chlorofluorocarbons (CFC’s). Amongst these, CO₂ plays a crucial role as it contributes to 50% of the total greenhouse effect and has been linked to climate change. Because plants act as carbon sinks, interest in terrestrial carbon sequestration has increased in an effort to explore opportunities for climate change mitigation. Removal of carbon from the atmosphere is a topical issue that addresses one important aspect of an overall strategy for carbon management namely to help mitigate the increasing emissions of CO₂. Thus, terrestrial ecosystems have gained importance for their potential to sequester carbon and reduce carbon sink in oceans, which have a substantial impact on the ocean species. Field data and electromagnetic spectrum bands were analyzed using ArcGIS 10.2, QGIS 2.8 and ERDAS IMAGINE 2015 to examine the vegetation distribution. Satellite remote sensing data coupled with Normalized Difference Vegetation Index (NDVI) was employed to assess future potential changes in vegetation distributions in Eastern Cape Province of South Africa. The observed 5-year interval analysis examines the amount of carbon absorbed using vegetation distribution. In 2015, the numerical results showed low vegetation distribution, therefore increased the acidity of the oceans and gravely affected fish species and corals. The outcomes suggest that the study area could be effectively utilized for carbon sequestration so as to mitigate ocean acidification. The vegetation changes measured through this investigation suggest an environmental shift and reduced vegetation carbon sink, and that threatens biodiversity and ecosystem. In order to sustain the amount of carbon in the terrestrial ecosystems, the identified ecological factors should be enhanced through the application of good land and forest management practices. This will increase the carbon stock of terrestrial ecosystems thereby reducing direct loss to the atmosphere.

Keywords: remote sensing, vegetation dynamics, carbon sequestration, terrestrial carbon sink

Procedia PDF Downloads 151
2321 Life Cycle Assessment-Based Environmental Assessment of the Production and Maintenance of Wooden Windows

Authors: Pamela Del Rosario, Elisabetta Palumbo, Marzia Traverso

Abstract:

The building sector plays an important role in addressing pressing environmental issues such as climate change and resource scarcity. The energy performance of buildings is considerably affected by the external envelope. In fact, a considerable proportion of the building energy demand is due to energy losses through the windows. Nevertheless, according to literature, to pay attention only to the contribution of windows to the building energy performance, i.e., their influence on energy use during building operation, could result in a partial evaluation. Hence, it is important to consider not only the building energy performance but also the environmental performance of windows, and this not only during the operational stage but along its complete life cycle. Life Cycle Assessment (LCA) according to ISO 14040:2006 and ISO 14044:2006+A1:2018 is one of the most adopted and robust methods to evaluate the environmental performance of products throughout their complete life cycle. This life-cycle based approach avoids the shift of environmental impacts of a life cycle stage to another, allowing to allocate them to the stage in which they originated and to adopt measures that optimize the environmental performance of the product. Moreover, the LCA method is widely implemented in the construction sector to assess whole buildings as well as construction products and materials. LCA is regulated by the European Standards EN 15978:2011, at the building level, and EN 15804:2012+A2:2019, at the level of construction products and materials. In this work, the environmental performance of wooden windows was assessed by implementing the LCA method and adopting primary data. More specifically, the emphasis is given to embedded and operational impacts. Furthermore, correlations are made between these environmental impacts and aspects such as type of wood and window transmittance. In the particular case of the operational impacts, special attention is set on the definition of suitable maintenance scenarios that consider the potential climate influence on the environmental impacts. For this purpose, a literature review was conducted, and expert consultation was carried out. The study underlined the variability of the embedded environmental impacts of wooden windows by considering different wood types and transmittance values. The results also highlighted the need to define appropriate maintenance scenarios for precise assessment results. It was found that both the service life and the window maintenance requirements in terms of treatment and its frequency are highly dependent not only on the wood type and its treatment during the manufacturing process but also on the weather conditions of the place where the window is installed. In particular, it became evident that maintenance-related environmental impacts were the highest for climate regions with the lowest temperatures and the greatest amount of precipitation.

Keywords: embedded impacts, environmental performance, life cycle assessment, LCA, maintenance stage, operational impacts, wooden windows

Procedia PDF Downloads 232
2320 Statistical Modelling of Maximum Temperature in Rwanda Using Extreme Value Analysis

Authors: Emmanuel Iyamuremye, Edouard Singirankabo, Alexis Habineza, Yunvirusaba Nelson

Abstract:

Temperature is one of the most important climatic factors for crop production. However, severe temperatures cause drought, feverish and cold spells that have various consequences for human life, agriculture, and the environment in general. It is necessary to provide reliable information related to the incidents and the probability of such extreme events occurring. In the 21st century, the world faces a huge number of threats, especially from climate change, due to global warming and environmental degradation. The rise in temperature has a direct effect on the decrease in rainfall. This has an impact on crop growth and development, which in turn decreases crop yield and quality. Countries that are heavily dependent on agriculture use to suffer a lot and need to take preventive steps to overcome these challenges. The main objective of this study is to model the statistical behaviour of extreme maximum temperature values in Rwanda. To achieve such an objective, the daily temperature data spanned the period from January 2000 to December 2017 recorded at nine weather stations collected from the Rwanda Meteorological Agency were used. The two methods, namely the block maxima (BM) method and the Peaks Over Threshold (POT), were applied to model and analyse extreme temperature. Model parameters were estimated, while the extreme temperature return periods and confidence intervals were predicted. The model fit suggests Gumbel and Beta distributions to be the most appropriate models for the annual maximum of daily temperature. The results show that the temperature will continue to increase, as shown by estimated return levels.

Keywords: climate change, global warming, extreme value theory, rwanda, temperature, generalised extreme value distribution, generalised pareto distribution

Procedia PDF Downloads 183
2319 Analysis and Mapping of Climate and Spring Yield in Tanahun District, Nepal

Authors: Resham Lal Phuldel

Abstract:

This study based on a bilateral development cooperation project funded by the governments of Nepal and Finland. The first phase of the project has been completed in August 2012 and the phase II started in September 2013 and will end September 2018. The project strengthens the capacity of local governments in 14 districts to deliver services in water supply, sanitation and hygiene in Western development region and in Mid-Western development region of Nepal. In recent days, several spring sources have been dried out or slowly decreasing its yield across the country due to changing character of rainfall, increasing evaporative losses and some other manmade causes such as land use change, infrastructure development work etc. To sustain the hilly communities, the sources have to be able to provide sufficient water to serve the population, either on its own or in conjunction with other sources. Phase III have measured all water sources in Tanahu district in 2004 and sources were located with the GPS. Phase II has repeated the exercise to see changes in the district. 3320 water sources as identified in 2004 and altogether 4223 including new water sources were identified and measured in 2014. Between 2004 and 2014, 50% flow rate (yield) deduction of point sources’ average yield in 10 years is found. Similarly, 21.6% and 34% deductions of average yield were found in spring and stream water sources respectively. The rainfall from 2002 to 2013 shows erratic rainfalls in the district. The monsoon peak month is not consistent and the trend shows the decrease of annual rainfall 16.7 mm/year. Further, the temperature trend between 2002 and 2013 shows warming of + 0.0410C/year.

Keywords: climate change, rainfall, source discharge, water sources

Procedia PDF Downloads 282
2318 Passive Greenhouse Systems in Poland

Authors: Magdalena Grudzińska

Abstract:

Passive systems allow solar radiation to be converted into thermal energy thanks to appropriate building construction. Greenhouse systems are particularly worth attention, due to the low costs of their realization and strong architectural appeal. The paper discusses the energy effects of using passive greenhouse systems, such as glazed balconies, in an example residential building. The research was carried out for five localities in Poland, belonging to climatic zones different in terms of external air temperature and insolation: Koszalin, Poznań, Lublin, Białystok and Zakopane The analysed apartment had a floor area of approximately 74 m² Three thermal zones were distinguished in the flat - the balcony, the room adjacent to it, and the remaining space, for which various internal conditions were defined. Calculations of the energy demand were made using the dynamic simulation program, based on the control volume method. The climatic data were represented by Typical Meteorological Years, prepared on the basis of source data collected from 1971 to 2000. In each locality, the introduction of a passive greenhouse system led to a lower demand for heating in the apartment, and the shortening of the heating season. The smallest effectiveness of passive solar energy systems was noted in Białystok. Demand for heating was reduced there by 14.5% and the heating season remained the longest, due to low temperatures of external air and small sums of solar radiation intensity. In Zakopane, energy savings came to 21% and the heating season was reduced to 107 days, thanks to the greatest insolation during winter. The introduction of greenhouse systems caused an increase in cooling demand in the warmer part of the year, but total energy demand declined in each of the discussed places. However, potential energy savings are smaller if the building's annual life cycle is taken into consideration, and amount from 5.6% up to 14%. Koszalin and Zakopane are localities in which the greenhouse system allows the best energy results to be achieved. It should be emphasized that favourable conditions for introducing greenhouse systems are connected with different climatic conditions. In the seaside area (Koszalin) they result from high temperatures in the heating season and the smallest insolation in the summer period, while in the mountainous area (Zakopane) they result from high insolation in the winter and low temperatures in the summer. In the region of middle and middle-eastern Poland active systems (such as solar energy collectors or photovoltaic panels) could be more beneficial, due to high insolation during summer. It is assessed that passive systems do not eliminate the need for traditional heating in Poland. They can, however, substantially contribute to lower use of non-renewable fuels and the shortening of the heating season. The calculations showed diversification in the effectiveness of greenhouse systems resulting from climatic conditions, and allowed to identify areas which are the most suitable for the passive use of solar radiation.

Keywords: solar energy, passive greenhouse systems, glazed balconies, climatic conditions

Procedia PDF Downloads 368
2317 [Keynote Talk]: Water Resources Vulnerability Assessment to Climate Change in a Semi-Arid Basin of South India

Authors: K. Shimola, M. Krishnaveni

Abstract:

This paper examines vulnerability assessment of water resources in a semi-arid basin using the 4-step approach. The vulnerability assessment framework is developed to study the water resources vulnerability which includes the creation of GIS-based vulnerability maps. These maps represent the spatial variability of the vulnerability index. This paper introduces the 4-step approach to assess vulnerability that incorporates a new set of indicators. The approach is demonstrated using a framework composed of a precipitation data for (1975–2010) period, temperature data for (1965–2010) period, hydrological model outputs and the water resources GIS data base. The vulnerability assessment is a function of three components such as exposure, sensitivity and adaptive capacity. The current water resources vulnerability is assessed using GIS based spatio-temporal information. Rainfall Coefficient of Variation, monsoon onset and end date, rainy days, seasonality indices, temperature are selected for the criterion ‘exposure’. Water yield, ground water recharge, evapotranspiration (ET) are selected for the criterion ‘sensitivity’. Type of irrigation and storage structures are selected for the criterion ‘Adaptive capacity’. These indicators were mapped and integrated in GIS environment using overlay analysis. The five sub-basins, namely Arjunanadhi, Kousiganadhi, Sindapalli-Uppodai and Vallampatti Odai, fall under medium vulnerability profile, which indicates that the basin is under moderate stress of water resources. The paper also explores prioritization of sub-basinwise adaptation strategies to climate change based on the vulnerability indices.

Keywords: adaptive capacity, exposure, overlay analysis, sensitivity, vulnerability

Procedia PDF Downloads 313
2316 Teachers' Knowledge, Perceptions, and Attitudes towards Renewable Energy Policy in Malaysia

Authors: Kazi Enamul Hoque

Abstract:

Initiatives on sustainable development are currently aggressively pursued throughout the world. The Malaysian government has developed key policies and strategies for over 30 years to achieve the nation’s policy objectives which are designed to mitigate the issues of security, energy efficiency and environmental impact to meet the rising energy demand. Malaysia’s current focus is on developing effective policies on renewable energy (RE) in order to reduce dependency on fossil fuel and contribute towards mitigating the effects of climate change. In this light mass awareness should be considered as the highest priority to protect the environment and to escape disaster due to climate change. Schools can be the reliable and effective foundation to prepare students to get familiar with environmental issues such as renewable and non-renewable energy sources. Teachers can play a vital role to create awareness among students about the advantages and disadvantages of using different renewable and nonrenewable energy resources. Thus, this study aims to investigate teachers’ knowledge, perceptions and attitudes towards renewable energy through a survey aiming a sustainable energy future. Five hundred sets of questionnaires were distributed to the school teachers in Malaysia. Total 420 questionnaires were returned of which 410 were complete to analyze. Finding shows that teachers are very familiar with the renewable energy like solar, wind and also geothermal. Most teachers were not sure about the Photovoltaics and biodiesel. Furthermore, teachers are also aware that primary energy in Malaysia is imported fossil fuels. Most teachers heard about the renewable energy in Malaysia and only few claims that they did not hear of such things and the others said that they never heard of it. The outcomes of the study will assist the energy policy makers to use teachers to create mass awareness of energy usages for future planning.

Keywords: Malaysia, non-renewable energy, renewable energy, school teacher

Procedia PDF Downloads 438
2315 Livelihood Security and Mitigating Climate Changes in the Barind Tract of Bangladesh through Agroforestry Systems

Authors: Md Shafiqul Bari, Md Shafiqul Islam Sikdar

Abstract:

This paper summarizes the current knowledge on Agroforestry practices in the Barind tract of Bangladesh. The part of greater Rajshahi, Dinajpur, Rangpur and Bogra district of Bangladesh is geographically identified as the Barind tract. The hard red soil of these areas is very significant in comparison to that of the other parts of the country. A typical dry climate with comparatively high temperature prevails in the Barind area. Scanty rainfall and excessive extraction of groundwater have created an alarming situation among the Barind people and others about irrigation to the rice field. In addition, the situation may cause an adverse impact on the people whose livelihood largely depends on agriculture. The groundwater table has been declined by at least 10 to 15 meters in some areas of the Barind tract during the last 20 years. Due to absent of forestland in the Barind tract, the soil organic carbon content can decrease more rapidly because of the higher rate of decomposition. The Barind soils are largely carbon depleted but can be brought back to carbon-carrying capacity by bringing under suitable Agroforestry systems. Agroforestry has tremendous potential for carbon sequestration not only in above C biomass but also root C biomass in deeper soil depths. Agroforestry systems habitually conserve soil organic carbon and maintain a great natural nutrient pool. Cultivation of trees with arable crops under Agroforestry systems help in improving soil organic carbon content and sequestration carbon, particularly in the highly degraded Barind lands. Agroforestry systems are a way of securing the growth of cash crops that may constitute an alternative source of income in moments of crisis. Besides being a source of fuel wood, a greater presence of trees in cropping system contributes to decreasing temperatures and to increasing rainfall, thus contrasting the negative environmental impact of climate changes. In order to fulfill the objectives of this study, two experiments were conducted. The first experiment was survey on the impact of existing agroforestry system on the livelihood security in the Barind tract of Bangladesh and the second one was the role of agroforestry system on the improvement of soil properties in a multilayered coconut orchard. Agroforestry systems have been generated a lot of employment opportunities in the Barind area. More crops mean involvement of more people in various activities like involvements in dairying, sericulture, apiculture and additional associated agro-based interventions. Successful adoption of Agroforestry practices in the Barind area has shown that the Agroforestry practitioners of this area were very sound positioned economically, and had added social status too. However, from the findings of the present study, it may be concluded that the majority rural farmers of the Barind tract of Bangladesh had a very good knowledge and medium extension contact related to agroforestry production system. It was also observed that 85 per cent farmers followed agroforestry production system and received benefits to a higher extent. Again, from the research study on orchard based mutistoried agroforestry cropping system, it was evident that there was an important effect of agroforestry cropping systems on the improvement of soil chemical properties. As a result, the agroforestry systems may be helpful to attain the development objectives and preserve the biosphere core.

Keywords: agroforestry systems, Barind tract, carbon sequestration, climate changes

Procedia PDF Downloads 200
2314 Shale Gas Accumulation of Over-Mature Cambrian Niutitang Formation Shale in Structure-Complicated Area, Southeastern Margin of Upper Yangtze, China

Authors: Chao Yang, Jinchuan Zhang, Yongqiang Xiong

Abstract:

The Lower Cambrian Niutitang Formation shale (NFS) deposited in the marine deep-shelf environment in Southeast Upper Yangtze (SUY), possess excellent source rock basis for shale gas generation, however, it is currently challenged by being over-mature with strong tectonic deformations, leading to much uncertainty of gas-bearing potential. With emphasis on the shale gas enrichment of the NFS, analyses were made based on the regional gas-bearing differences obtained from field gas-desorption testing of 18 geological survey wells across the study area. Results show that the NFS bears low gas content of 0.2-2.5 m³/t, and the eastern region of SUY is higher than the western region in gas content. Moreover, the methane fraction also presents the similar regional differentiation with the western region less than 10 vol.% while the eastern region generally more than 70 vol.%. Through the analysis of geological theory, the following conclusions are drawn: Depositional environment determines the gas-enriching zones. In the western region, the Dengying Formation underlying the NFS in unconformity contact was mainly plateau facies dolomite with caves and thereby bears poor gas-sealing ability. Whereas the Laobao Formation underling the NFS in eastern region was a set of siliceous rocks of shelf-slope facies, which can effectively prevent the shale gas from escaping away from the NFS. The tectonic conditions control the gas-enriching bands in the SUY, which is located in the fold zones formed by the thrust of the Southern China plate towards to the Sichuan Basin. Compared with the western region located in the trough-like folds, the eastern region at the fold-thrust belts was uplifted early and deformed weakly, resulting in the relatively less mature level and relatively slight tectonic deformation of the NFS. Faults determine whether shale gas can be accumulated in large scale. Four deep and large normal faults in the study area cut through the Niutitang Formation to the Sinian strata, directly causing a large spillover of natural gas in the adjacent areas. For the secondary faults developed within the shale formation, the reverse faults generally have a positive influence on the shale accumulation while the normal faults perform the opposite influence. Overall, shale gas enrichment targets of the NFS, are the areas with certain thickness of siliceous rocks at the basement of the Niutitang Formation, and near the margin of the paleouplift with less developed faults. These findings provide direction for shale gas exploration in South China, and also provide references for the areas with similar geological conditions all over the world.

Keywords: over-mature marine shale, shale gas accumulation, structure-complicated area, Southeast Upper Yangtze

Procedia PDF Downloads 147
2313 Variations in the Frequency-Magnitude Distribution with Depth in Kalabsha Area, Aswan, South Egypt

Authors: Ezzat Mohamed El-Amin

Abstract:

Mapping the earthquake-size distribution in various tectonic regimes on a local to regional scale reveals statistically significant variations in the range of at least 0.4 to 2.0 for the b-value in the frequency-magnitude distribution. We map the earthquake frequency–magnitude distribution (b value) as a function of depth in the Reservoir Triggered Seismicity (RTS) region in Kalabsha region, in south Egypt. About 1680 well-located events recorded during 1981–2014 in the Kalabsha region are selected for the analysis. The earthquake data sets are separated in 5 km zones from 0 to 25 km depth. The result shows a systematic decrease in b value up to 12 km followed by an increase. The increase in b value is interpreted to be caused by the presence of fluids. We also investigate the spatial distribution of b value with depth. Significant variations in the b value are detected, with b ranging from b 0.7 to 1.19. Low b value areas at 5 km depth indicate localized high stresses which are favorable for future rupture.

Keywords: seismicity, frequency-magnitude, b-value, earthquake

Procedia PDF Downloads 559