Search results for: Gul Muhammad
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1322

Search results for: Gul Muhammad

2 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence

Authors: Muhammad Bilal Shaikh

Abstract:

Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.

Keywords: multimodal AI, computer vision, NLP, mineral processing, mining

Procedia PDF Downloads 68
1 Capsaicin Derivatives Enhanced Activity of α1β2γ2S-Aminobutyric Acid Type a Receptor Expressed in Xenopus laevis Oocytes

Authors: Jia H. Wong, Jingli Zhang, Habsah Mohamad, Iswatun H. Abdullah Ripain, Muhammad Bilal, Amelia J. Lloyd, Abdul A. Mohamed Yusoff, Jafri M. Abdullah

Abstract:

Epilepsy is one of the most common neurological diseases affecting more than 50 million of people worldwide. Epilepsy is a state of recurrent, spontaneous seizures with multiple syndromes and symptoms of different causes of brain dysfunction, prognosis, and treatments; characterized by transient, occasional and stereotyped interruptions of behavior whereby the excitatory-inhibitory activities within the central nervous system (CNS) are thrown out of balance due to various kinds of interferences. The goal of antiepileptic treatment is to enable patients to be free from seizures or to achieve control of seizures through surgical treatment and/or pharmacotherapy. Pharmacotherapy through AED plays an important role especially in countries with epilepsy treatment gap due to costs and availability of health facilities, skills and resources, yet there are about one-third of the people with epilepsy have drug-resistant seizures. Hence, this poses considerable challenges to the healthcare system and the effort in providing cost-effective treatment as well as the search for alternatives to treatment and management of epilepsy. Enhancement of γ-aminobutyric acid (GABA)-mediated inhibitory neurotransmission is one of the key mechanisms of actions of antiepileptic drugs. GABA type > a receptors (GABAAR) are ligand-gated ion channels that mediate rapid inhibitory neurotransmission upon the binding of GABA with a heteropentameric structure forming a central pore that is permeable to the influx of chloride ions in its activated state. The major isoform of GABAA receptors consists of two α1, two β2, and one γ2 subunit. It is the most abundantly expressed combinations in the brain and the most commonly researched through Xenopus laevis oocytes. With the advancing studies on ethnomedicine and traditional treatments using medicinal plants, increasing evidence reveal that spice and herb plants with medicinal properties play an important role in the treatment of ailments within communities across different cultures. Capsaicin is the primary natural capsaicinoid in hot peppers of plant genus Capsicum, consist of an aromatic ring, an amide linkage and a hydrophobic side chain. The study showed that capsaicins conferred neuroprotection in status epilepticus mouse models through anti-ictogenic, hypothermic, antioxidative, anti-inflammatory, and anti-apoptotic actions in a dose-dependent manner. In this study, five capsaicin derivatives were tested for their ability to increase the GABA-induced chloride current on α1β2γ2S of GABAAR expressed on Xenopus laevis oocytes using the method of two-microelectrode voltage clamp. Two of the capsaicin derivatives, IS5 (N-(4-hydroxy-3-methoxybenzyl)-3-methylbutyramide) and IS10 (N-(4-hydroxy-3-methoxybenzyl)-decanamide) at a concentration of 30µM were able to significantly increase the GABA-induced chloride current with p=0.002 and p=0.026 respectively. This study were able to show the enhancement effect of two capsaicin derivatives with moderate length of hydrocarbon chain on this receptor subtype, revealing the promising inhibitory activity of capsaicin derivatives through enhancement of GABA-induced chloride current and further investigations should be carried out to verify its antiepileptic effects in animal models.

Keywords: α1β2γ2 GABAA receptors, α1β2γ2S, antiepileptic, capsaicin derivatives, two-microelectrode voltage clamp, Xenopus laevis oocytes

Procedia PDF Downloads 362