Search results for: employee productivity and work well-being
2196 Effective Use of X-Box Kinect in Rehabilitation Centers of Riyadh
Authors: Reem Alshiha, Tanzila Saba
Abstract:
Physical rehabilitation is the process of helping people to recover and be able to go back to their former activities that have been delayed due to external factors such as car accidents, old age and victims of strokes (chronic diseases and accidents, and those related to sport activities).The cost of hiring a personal nurse or driving the patient to and from the hospital could be costly and time-consuming. Also, there are other factors to take into account such as forgetfulness, boredom and lack of motivation. In order to solve this dilemma, some experts came up with rehabilitation software to be used with Microsoft Kinect to help the patients and their families for in-home rehabilitation. In home rehabilitation software is becoming more and more popular, since it is more convenient for all parties affiliated with the patient. In contrast to the other costly market-based systems that have no portability, Microsoft’s Kinect is a portable motion sensor that reads body movements and interprets it. New software development has made rehabilitation games available to be used at home for the convenience of the patient. The game will benefit its users (rehabilitation patients) in saving time and money. There are many software's that are used with the Kinect for rehabilitation, but the software that is chosen in this research is Kinectotherapy. Kinectotherapy software is used for rehabilitation patients in Riyadh clinics to test its acceptance by patients and their physicians. In this study, we used Kinect because it was affordable, portable and easy to access in contrast to expensive market-based motion sensors. This paper explores the importance of in-home rehabilitation by using Kinect with Kinectotherapy software. The software targets both upper and lower limbs, but in this research, the main focus is on upper-limb functionality. However, the in-home rehabilitation is applicable to be used by all patients with motor disability, since the patient must have some self-reliance. The targeted subjects are patients with minor motor impairment that are somewhat independent in their mobility. The presented work is the first to consider the implementation of in-home rehabilitation with real-time feedback to the patient and physician. This research proposes the implementation of in-home rehabilitation in Riyadh, Saudi Arabia. The findings show that most of the patients are interested and motivated in using the in-home rehabilitation system in the future. The main value of the software application is due to these factors: improve patient engagement through stimulating rehabilitation, be a low cost rehabilitation tool and reduce the need for expensive one-to-one clinical contact. Rehabilitation is a crucial treatment that can improve the quality of life and confidence of the patient as well as their self-esteem.Keywords: x-box, rehabilitation, physical therapy, rehabilitation software, kinect
Procedia PDF Downloads 3432195 Magnetic Biomaterials for Removing Organic Pollutants from Wastewater
Authors: L. Obeid, A. Bee, D. Talbot, S. Abramson, M. Welschbillig
Abstract:
The adsorption process is one of the most efficient methods to remove pollutants from wastewater provided that suitable adsorbents are used. In order to produce environmentally safe adsorbents, natural polymers have received increasing attention in recent years. Thus, alginate and chitosane are extensively used as inexpensive, non-toxic and efficient biosorbents. Alginate is an anionic polysaccharide extracted from brown seaweeds. Chitosan is an amino-polysaccharide; this cationic polymer is obtained by deacetylation of chitin the major constituent of crustaceans. Furthermore, it has been shown that the encapsulation of magnetic materials in alginate and chitosan beads facilitates their recovery from wastewater after the adsorption step, by the use of an external magnetic field gradient, obtained with a magnet or an electromagnet. In the present work, we have studied the adsorption affinity of magnetic alginate beads and magnetic chitosan beads (called magsorbents) for methyl orange (MO) (an anionic dye), methylene blue (MB) (a cationic dye) and p-nitrophenol (PNP) (a hydrophobic pollutant). The effect of different parameters (pH solution, contact time, pollutant initial concentration…) on the adsorption of pollutant on the magnetic beads was investigated. The adsorption of anionic and cationic pollutants is mainly due to electrostatic interactions. Consequently methyl orange is highly adsorbed by chitosan beads in acidic medium and methylene blue by alginate beads in basic medium. In the case of a hydrophobic pollutant, which is weakly adsorbed, we have shown that the adsorption is enhanced by adding a surfactant. Cetylpyridinium chloride (CPC), a cationic surfactant, was used to increase the adsorption of PNP by magnetic alginate beads. Adsorption of CPC by alginate beads occurs through two mechanisms: (i) electrostatic attractions between cationic head groups of CPC and negative carboxylate functions of alginate; (ii) interaction between the hydrocarbon chains of CPC. The hydrophobic pollutant is adsolubilized within the surface aggregated structures of surfactant. Figure c shows that PNP can reach up to 95% of adsorption in presence of CPC. At highest CPC concentrations, desorption occurs due to the formation of micelles in the solution. Our magsorbents appear to efficiently remove ionic and hydrophobic pollutants and we hope that this fundamental research will be helpful for the future development of magnetically assisted processes in water treatment plants.Keywords: adsorption, alginate, chitosan, magsorbent, magnetic, organic pollutant
Procedia PDF Downloads 2572194 An Analysis System for Integrating High-Throughput Transcript Abundance Data with Metabolic Pathways in Green Algae
Authors: Han-Qin Zheng, Yi-Fan Chiang-Hsieh, Chia-Hung Chien, Wen-Chi Chang
Abstract:
As the most important non-vascular plants, algae have many research applications, including high species diversity, biofuel sources, adsorption of heavy metals and, following processing, health supplements. With the increasing availability of next-generation sequencing (NGS) data for algae genomes and transcriptomes, an integrated resource for retrieving gene expression data and metabolic pathway is essential for functional analysis and systems biology in algae. However, gene expression profiles and biological pathways are displayed separately in current resources, and making it impossible to search current databases directly to identify the cellular response mechanisms. Therefore, this work develops a novel AlgaePath database to retrieve gene expression profiles efficiently under various conditions in numerous metabolic pathways. AlgaePath, a web-based database, integrates gene information, biological pathways, and next-generation sequencing (NGS) datasets in Chlamydomonasreinhardtii and Neodesmus sp. UTEX 2219-4. Users can identify gene expression profiles and pathway information by using five query pages (i.e. Gene Search, Pathway Search, Differentially Expressed Genes (DEGs) Search, Gene Group Analysis, and Co-Expression Analysis). The gene expression data of 45 and 4 samples can be obtained directly on pathway maps in C. reinhardtii and Neodesmus sp. UTEX 2219-4, respectively. Genes that are differentially expressed between two conditions can be identified in Folds Search. Furthermore, the Gene Group Analysis of AlgaePath includes pathway enrichment analysis, and can easily compare the gene expression profiles of functionally related genes in a map. Finally, Co-Expression Analysis provides co-expressed transcripts of a target gene. The analysis results provide a valuable reference for designing further experiments and elucidating critical mechanisms from high-throughput data. More than an effective interface to clarify the transcript response mechanisms in different metabolic pathways under various conditions, AlgaePath is also a data mining system to identify critical mechanisms based on high-throughput sequencing.Keywords: next-generation sequencing (NGS), algae, transcriptome, metabolic pathway, co-expression
Procedia PDF Downloads 4072193 The Evaluation of Occupational Exposure of Chrome in Welders of Stainless Steels
Authors: L. Musak, J. Valachova, T. Vasicko, O. Osina
Abstract:
Introduction: Stainless steel is resistant to electrochemical corrosion by passivation. Welders are greatly exposed to welding fumes of toxic metals, which added to this steel. The content of chromium (Cr) in steel was above 11.5%, Ni and Mo from 2 to 6.5%. The aim of the study was the evaluation of occupational exposure to Cr, chromosome analysis and valuation of individual susceptibility polymorphism of gene CCND1 c.870 G>A. Materials and Methods: The exposed group was consisted from 117 welders of stainless steels. The average age was 38.43 years and average exposure time 7.14 years. Smokers represented 40.17%. The control group consisted of 123 non-exposed workers with an average age of 39.74 years and time employment 16.67 years. Smokers accounted for 22.76%. Analysis of Cr in blood and urine was performed by atomic absorption spectrophotometry (AAS Varian SpectraAA 30P) with electrothermal decomposition of the sample in the graphite furnace. For the evaluation of chromosomal aberrations (CA) was used cytogenetic analysis of peripheral blood lymphocytes, gene polymorphism was determined by PCR-RFLP reaction using appropriate primers and restriction enzymes. For statistical analysis was used the Mann-Whitney U-test. Results: The mean Cr level in exposed group was 0.095 mmol/l (0.019 min-max 0.504). No value does exceed the average normal value. The average value Cr in urine was 7.9 mmol/mol creatinine (min 0.026 to max 19.26). The total number of CA was 1.86% in compared to 1.70% controls. (CTA-type 0.90% vs 0.80% and CSA-type 0.96% vs 0.90%). In the number of total CA was observed statistical difference between smokers and non-smokers of exposed group (S-1.57% vs. NS-2.04%, P<0.05). In CCND1 gene polymorphisms was observed the increasing of the total CA with wild-type allele (WT) via heterozygous to the VAR genotype (1.44%<1.82%<2.13%). There was observed a statistically higher incidence of CTA-type aberrations in variant genotypes between exposed and control groups (1.22% vs. 0.59%, P<0.05). Discussion and conclusions: The work place is usually higher source of exposure to harmful factors. Workers need consistently and checked frequently health control. In assessing the risk of adverse effects of metals is important to consider their persistence, behavior and bioavailability. Prolonged exposure to carcinogens may not manifest symptoms of poisoning, but delayed effects may occur, which resulted in a higher incidence of malignant tumors.Keywords: genotoxicity, chromium, stainless steels, welders
Procedia PDF Downloads 3692192 Understanding the Influence of Fibre Meander on the Tensile Properties of Advanced Composite Laminates
Authors: Gaoyang Meng, Philip Harrison
Abstract:
When manufacturing composite laminates, the fibre directions within the laminate are never perfectly straight and inevitably contain some degree of stochastic in-plane waviness or ‘meandering’. In this work we aim to understand the relationship between the degree of meandering of the fibre paths, and the resulting uncertainty in the laminate’s final mechanical properties. To do this, a numerical tool is developed to automatically generate meandering fibre paths in each of the laminate's 8 plies (using Matlab) and after mapping this information into finite element simulations (using Abaqus), the statistical variability of the tensile mechanical properties of a [45°/90°/-45°/0°]s carbon/epoxy (IM7/8552) laminate is predicted. The stiffness, first ply failure strength and ultimate failure strength are obtained. Results are generated by inputting the degree of variability in the fibre paths and the laminate is then examined in all directions (from 0° to 359° in increments of 1°). The resulting predictions are output as flower (polar) plots for convenient analysis. The average fibre orientation of each ply in a given laminate is determined by the laminate layup code [45°/90°/-45°/0°]s. However, in each case, the plies contain increasingly large amounts of in-plane waviness (quantified by the standard deviation of the fibre direction in each ply across the laminate. Four different amounts of variability in the fibre direction are tested (2°, 4°, 6° and 8°). Results show that both the average tensile stiffness and the average tensile strength decrease, while the standard deviations increase, with an increasing degree of fibre meander. The variability in stiffness is found to be relatively insensitive to the rotation angle, but the variability in strength is sensitive. Specifically, the uncertainty in laminate strength is relatively low at orientations centred around multiples of 45° rotation angle, and relatively high between these rotation angles. To concisely represent all the information contained in the various polar plots, rotation-angle dependent Weibull distribution equations are fitted to the data. The resulting equations can be used to quickly estimate the size of the errors bars for the different mechanical properties, resulting from the amount of fibre directional variability contained within the laminate. A longer term goal is to use these equations to quickly introduce realistic variability at the component level.Keywords: advanced composite laminates, FE simulation, in-plane waviness, tensile properties, uncertainty quantification
Procedia PDF Downloads 892191 Educational System in Developing Countries and E-learning Evaluation in the Face of COVID Pandemic
Authors: Timothy Wale Olaosebikan
Abstract:
The adverse effect of the Covid-19 outbreak and lock-downs on the world economy has coursed a major disrupt in mostly all sectors. The educational sector is not exempted from this disruption as it is one of the most affected sectors in the world. Similarly, most developing countries are still struggling to adopt/ adapt with the 21st-century advancement of technology, which includes e-learning/ e-education. Furthermore, one is left to wonder of the possibility of these countries surviving this disruption on their various educational systems that may no longer be business as usual after the Covid Pandemic era. This study evaluates the e-learning process of educational systems, especially in developing countries. The collection of data for the study was effected through the use of questionnaires with sampling drawn by stratified random sampling. The data was analyzed using descriptive and inferential statistics. The findings of the study show that about 30% of developing countries have fully adopted the e-learning system, about 45% of these countries are still struggling to upgrade while about 25% of these countries are yet to adopt the e-learning system of education. The study concludes that the sudden closure of educational institutions around the world during the Covid Pandemic period should facilitate a teaching pedagogy of e-learning and virtual delivery of courses and programmes in these developing countries. If this approach can be fully adopted, schools might have to grapple with the initial teething problems, given the sudden transition just in order to preserve the welfare of students. While progress should be made to transit as the case may be, lectures and seminars can be delivered through the web conferencing site-zoom. Interestingly, this can be done on a mobile phone. The demands of this approach would equally allow lecturers to make major changes to their work habits, uploading their teaching materials online, and get to grips with what online lecturing entails. Consequently, the study recommends that leaders of developing countries, regulatory authorities, and heads of educational institutions must adopt e-learning into their educational system. Also, e-learning should be adopted into the educational curriculum of students, especially from elementary school up to tertiary level. Total compliance to the e-learning system must be ensured on the part of both the institutions, stake holders, lecturers, tutors, and students. Finally, collaborations with developed countries and effective funding for e-learning integration must form the heart of their cardinal mission.Keywords: Covid pandemic, developing countries, educational system, e-learning
Procedia PDF Downloads 1022190 Exploring the Correlation between Human Security, Human Rights and Justice in Addressing and Remedying Contemporary Challenges in Africa
Authors: Sikhumbuzo Zondi, Serges A. Kamga
Abstract:
Human security and human rights are mutually reinforcing concepts given that human security addresses questions related to human conditions such as the safety of individuals and the protection of individual rights and civil liberties. It does this by suggesting that the proper referent for security should be the individual and not the nation-state, due to the individual’s vulnerability to threats such as malnutrition and poverty, conflicts, exploitation and marginalization, despotism and climate change. Due to the primacy of the individual, human security comfortably expand to the notion of social justice, given that for far too-long, many individuals around the world have been denied of their basic human rights through racial discrimination, unfair labour and segregation policies and as a result encountered widespread social, environmental and economic injustices which are evident in the current structural division of the world between the developed north and the underdeveloped or developing south. In light of this view, ensuring freedom from want and freedom from fear, for all individuals is arguably the sound route to addressing and remedying the global ills of our time and a way to promoting human rights for all. The promotion of human security provides an important part of human/societal progress because inclusive security facilitates development and human rights protection, while insecurity reduces people’s growth and investment prospects and prolongs historical injustices. Therefore, this paper seeks to show that human security and human rights complements one another and that this correlation provides the necessary mechanisms for addressing and remedying the historical injustices that still affect most of the world’s population. It will look at linkages between human security and the individual right to equality and freedom from discrimination, right to life, liberty, and personal security; development; own property; adequate living standard; education; desirable work and to join trade unions; participate in government and in free elections; social security and equality before the law. The paper considers these human rights and liberties as vital for securing the core values of human life while at the same addressing socio-economic injustices that still persist in the contemporary world. The paper will be a desktop study using qualitative research methods on two case studies in Africa namely Cameroun and South Africa.Keywords: justice, human security, human rights, injustices
Procedia PDF Downloads 1672189 Transient Level in the Surge Chamber at the Robert-bourassa Generating Station
Authors: Maryam Kamali Nezhad
Abstract:
The Robert-Bourassa development (LG-2), the first to be built on the Grande Rivière, comprises two sets of eight turbines- generator units each, the East and West powerhouses. Each powerhouse has two tailrace tunnels with an average length of about 1178 m. The LG-2A powerhouse houses 6 turbine-generator units. The water is discharged through two tailrace tunnels with a length of about 1330 m. The objective of this work, at RB (LG-2), is; 1) to establish a new maximum transient level in the surge chamber, 2) to define the new maximum equipment flow rate for the future turbine-generator units, 3) to ensure safe access to various intervention locations in the surge chamber. The transient levels under normal operating conditions at the RB plant were determined in 2001 by the Hydraulics Unit of HQE using the "Chamber" software. It is a one-dimensional mass oscillation calculation software; it is used to determine the variation of the water level in the equilibrium chamber located downstream of a power plant during the load shedding of the power plant units; it can also be used in the case of an equilibrium stack upstream of a power plant. The RB (LG-2) plant study is based on the theoretical nominal geometry of the chamber and the tailrace tunnels and the flow-level relationship at the outlet of the galleries established during design. The software is used in such a way that the results have an acceptable margin of safety, especially with respect to the maximum transient level (e.g., resumption of flow at an inopportune time), to take into account the turbulent and three-dimensional aspects of the actual flow in the chamber. Note that the transient levels depend on the water levels in the river and in the steady-state equilibrium chambers. These data are established in the HQP CRP database and updated from time to time. The maximum transient levels in the RB-East and RB-West powerhouses surge chamber were revised based on the latest update (set 4) of in-river rating curves and steady-state surge chamber water levels. The results of the revision were also used to update the technical advice on the operating conditions for the aforementioned surge chamber access while considering revisions to the calculated water levels.Keywords: generating station, surge chamber, maximum transient level, hydroelectric power station, turbine-generator, reservoir
Procedia PDF Downloads 852188 Preparation of Sorbent Materials for the Removal of Hardness and Organic Pollutants from Water and Wastewater
Authors: Thanaa Abdel Moghny, Mohamed Keshawy, Mahmoud Fathy, Abdul-Raheim M. Abdul-Raheim, Khalid I. Kabel, Ahmed F. El-Kafrawy, Mahmoud Ahmed Mousa, Ahmed E. Awadallah
Abstract:
Ecological pollution is of great concern for human health and the environment. Numerous organic and inorganic pollutants usually discharged into the water caused carcinogenic or toxic effect for human and different life form. In this respect, this work aims to treat water contaminated by organic and inorganic waste using sorbent based on polystyrene. Therefore, two different series of adsorbent material were prepared; the first one included the preparation of polymeric sorbent from the reaction of styrene acrylate ester and alkyl acrylate. The second series involved syntheses of composite ion exchange resins of waste polystyrene and amorphous carbon thin film (WPS/ACTF) by solvent evaporation using micro emulsion polymerization. The produced ACTF/WPS nanocomposite was sulfonated to produce cation exchange resins ACTF/WPSS nanocomposite. The sorbents of the first series were characterized using FTIR, 1H NMR, and gel permeation chromatography. The thermal properties of the cross-linked sorbents were investigated using thermogravimetric analysis, and the morphology was characterized by scanning electron microscope (SEM). The removal of organic pollutant was determined through absorption tests in a various organic solvent. The chemical and crystalline structure of nanocomposite of second series has been proven by studies of FTIR spectrum, X-rays, thermal analysis, SEM and TEM analysis to study morphology of resins and ACTF that assembled with polystyrene chain. It is found that the composite resins ACTF/WPSS are thermally stable and show higher chemical stability than ion exchange WPSS resins. The composite resin was evaluated for calcium hardness removal. The result is evident that the ACTF/WPSS composite has more prominent inorganic pollutant removal than WPSS resin. So, we recommend the using of nanocomposite resin as new potential applications for water treatment process.Keywords: nanocomposite, sorbent materials, waste water, waste polystyrene
Procedia PDF Downloads 4292187 Hydrogen Production By Photoreforming Of n-Butanol And Structural Isomers Over Pt Doped Titanate Catalyst
Authors: Hristina Šalipur, Jasmina Dostanić, Davor Lončarević, Matej Huš
Abstract:
Photocatalytic water splitting/alcohol photoreforming has been used for the conversion of sunlight energy in the process of hydrogen production due to its sustainability, environmental safety, effectiveness and simplicity. Titanate nanotubes are frequently studied materials since they combine the properties of photo-active semiconductors with the properties of layered titanates, such as the ion-exchange ability. Platinum (Pt) doping into titanate structure has been considered an effective strategy in better separation efficiency of electron-hole pairs and lowering the overpotential for hydrogen production, which results in higher photocatalytic activity. In our work, Pt doped titanate catalysts were synthesized via simple alkaline hydrothermal treatment, incipient wetness impregnation method and temperature-programmed reduction. The structural, morphological and optical properties of the prepared catalysts were investigated using various characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 physisorption, and diffuse reflectance spectroscopy (DRS). The activities of the prepared Pt-doped titanate photocatalysts were tested for hydrogen production via photocatalytic water splitting/alcohol photoreforming process under simulated solar light irradiation. Characterization of synthesized Pt doped titanate catalysts showed crystalline anatase phase, preserved nanotubular structure and high specific surface area. The result showed enhancement of activity in photocatalytic water splitting/alcohol photoreforming in the following order 2-butanol>1-butanol>tert-butanol, with obtained maximal hydrogen production rate of 7.5, 5.3 and 2 mmol g-1 h-1, respectively. Different possible factors influencing the hole scavenging ability, such as hole scavenger redox potential and diffusivity, adsorption and desorption rate of the hole scavenger on the surface and stability of the alcohol radical species generated via hole scavenging, were investigated. The theoretical evaluation using density functional theory (DFT) further elucidated the reaction kinetics and detailed mechanism of photocatalytic water splitting/alcohol photoreforming.Keywords: hydrogen production, platinum, semiconductor, water splitting, density functional theory
Procedia PDF Downloads 1132186 Feasibility Study of Particle Image Velocimetry in the Muzzle Flow Fields during the Intermediate Ballistic Phase
Authors: Moumen Abdelhafidh, Stribu Bogdan, Laboureur Delphine, Gallant Johan, Hendrick Patrick
Abstract:
This study is part of an ongoing effort to improve the understanding of phenomena occurring during the intermediate ballistic phase, such as muzzle flows. A thorough comprehension of muzzle flow fields is essential for optimizing muzzle device and projectile design. This flow characterization has heretofore been almost entirely limited to local and intrusive measurement techniques such as pressure measurements using pencil probes. Consequently, the body of quantitative experimental data is limited, so is the number of numerical codes validated in this field. The objective of the work presented here is to demonstrate the applicability of the Particle Image Velocimetry (PIV) technique in the challenging environment of the propellant flow of a .300 blackout weapon to provide accurate velocity measurements. The key points of a successful PIV measurement are the selection of the particle tracer, their seeding technique, and their tracking characteristics. We have experimentally investigated the aforementioned points by evaluating the resistance, gas dispersion, laser light reflection as well as the response to a step change across the Mach disk for five different solid tracers using two seeding methods. To this end, an experimental setup has been performed and consisted of a PIV system, the combustion chamber pressure measurement, classical high-speed schlieren visualization, and an aerosol spectrometer. The latter is used to determine the particle size distribution in the muzzle flow. The experimental results demonstrated the ability of PIV to accurately resolve the salient features of the propellant flow, such as the under the expanded jet and vortex rings, as well as the instantaneous velocity field with maximum centreline velocities of more than 1000 m/s. Besides, naturally present unburned particles in the gas and solid ZrO₂ particles with a nominal size of 100 nm, when coated on the propellant powder, are suitable as tracers. However, the TiO₂ particles intended to act as a tracer, surprisingly not only melted but also functioned as a combustion accelerator and decreased the number of particles in the propellant gas.Keywords: intermediate ballistic, muzzle flow fields, particle image velocimetry, propellant gas, particle size distribution, under expanded jet, solid particle tracers
Procedia PDF Downloads 1612185 25 Years of the Neurolinguistic Approach: Origin, Outcomes, Expansion and Current Experiments
Authors: Steeve Mercier, Joan Netten, Olivier Massé
Abstract:
The traditional lack of success of most Canadian students in the regular French program in attaining the ability to communicate spontaneously led to the conceptualization of a modified program. This program, called Intensive French, introduced and evaluated as an experiment in several school districts, formed the basis for the creation of a more effective approach for the development of skills in a second/foreign language and literacy: the Neurolinguistic Approach (NLA).The NLA expresses the major change in the understanding of how communication skills are developed: learning to communicate spontaneously in a second language depends on the reuse of structures in a variety of cognitive situations to express authentic messages rather than on knowledge of the way a language functions. Put differently, it prioritises the acquisition of implicit competence over the learning of grammatical knowledge. This is achieved by the adoption of a literacy-based approach and an increase in intensity of instruction.Besides having strong support empirically from numerous experiments, the NLA has sound theoretical foundation, as it conforms to research in neurolinguistics. The five pedagogical principles that define the approach will be explained, as well as the differences between the NLA and the paradigm on which most current resources and teaching strategies are based. It is now 25 years since the original research occurred. The use of the NLA, as it will be shown, has expanded widely. With some adaptations, it is used for other languages and in other milieus. In Canada, classes are offered in mandarin, Ukrainian, Spanish and Arabic, amongst others. It has also been used in several indigenous communities, such as to restore the use of Mohawk, Cri and Dene. Its use has expanded throughout the world, as in China, Japan, France, Germany, Belgium, Poland, Russia, as well as Mexico. The Intensive French program originally focussed on students in grades 5 or 6 (ages 10 -12); nowadays, the programs based on the approach include adults, particularly immigrants entering new countries. With the increasing interest in inclusion and cultural diversity, there is a demand for language learning amongst pre-school and primary children that can be successfully addressed by the NLA. Other current experiments target trilingual schools and work with Inuit communities of Nunavik in the province of Quebec.Keywords: neuroeducation, neurolinguistic approach, literacy, second language acquisition, plurilingualism, foreign language teaching and learning
Procedia PDF Downloads 732184 Detailed Investigation of Thermal Degradation Mechanism and Product Characterization of Co-Pyrolysis of Indian Oil Shale with Rubber Seed Shell
Authors: Bhargav Baruah, Ali Shemsedin Reshad, Pankaj Tiwari
Abstract:
This work presents a detailed study on the thermal degradation kinetics of co-pyrolysis of oil shale of Upper Assam, India with rubber seed shell, and lab-scale pyrolysis to investigate the influence of pyrolysis parameters on product yield and composition of products. The physicochemical characteristics of oil shale and rubber seed shell were studied by proximate analysis, elemental analysis, Fourier transform infrared spectroscopy and X-ray diffraction. The physicochemical study showed the mixture to be of low moisture, high ash, siliceous, sour with the presence of aliphatic, aromatic, and phenolic compounds. The thermal decomposition of the oil shale with rubber seed shell was studied using thermogravimetric analysis at heating rates of 5, 10, 20, 30, and 50 °C/min. The kinetic study of the oil shale pyrolysis process was performed on the thermogravimetric (TGA) data using three model-free isoconversional methods viz. Friedman, Flynn Wall Ozawa (FWO), and Kissinger Akahira Sunnose (KAS). The reaction mechanisms were determined using the Criado master plot. The understanding of the composition of Indian oil shale and rubber seed shell and pyrolysis process kinetics can help to establish the experimental parameters for the extraction of valuable products from the mixture. Response surface methodology (RSM) was employed usinf central composite design (CCD) model to setup the lab-scale experiment using TGA data, and optimization of process parameters viz. heating rate, temperature, and particle size. The samples were pre-dried at 115°C for 24 hours prior to pyrolysis. The pyrolysis temperatures were set from 450 to 650 °C, at heating rates of 2 to 20°C/min. The retention time was set between 2 to 8 hours. The optimum oil yield was observed at 5°C/min and 550°C with a retention time of 5 hours. The pyrolytic oil and gas obtained at optimum conditions were subjected to characterization using Fourier transform infrared spectroscopy (FT-IR) gas chromatography and mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR).Keywords: Indian oil shale, rubber seed shell, co-pyrolysis, isoconversional methods, gas chromatography, nuclear magnetic resonance, Fourier transform infrared spectroscopy
Procedia PDF Downloads 1462183 Public Art as Social Critique to Shape Urban-Scape
Authors: Po-Ching Wang
Abstract:
Public art may be regarded as a social agenda. It is assumed that public art acts as an intermediate form that contributes significantly to community resurgence. That is, public art may be regarded as a verb/process or social intervention. It functions as a vanguard form, attacking boundaries and providing a sensibility for social strategy. Public art in tradition is generally expected to bring aesthetic pleasure to public. Contemporary public art, however, not only focuses on art installation, but it also often offers a process that aims to comment on, question, and challenge the socio-cultural status quo. During the last few decades, accelerated changes in the values and expectations brought to bear on varied urban issues, together with the destruction of the hegemony of traditional art and of museum authorities, has begun to contribute to freer and more democratic representations of public art. It is said that part of a public artwork’s role is to ruffle sacred feathers. In many cases, public art is created to address the dynamic social contradictions and mutability of public life; and artists and community participants approach public art from a variety of social critical perspectives and methodologies. Urban issues, such as social and environmental justice, health problems, violence, and political statements, provide plentiful source materials that fuel the performance of public art in many different settings. Further, public artworks have been extensively adopted to express social identity, make political statements, and/or to remedy social and environmental crises. Many murals on urban walls, for instance, reflect social conflicts and address civic rights, and these projects are usually the work of artists who though denied access to traditional gallery and museum channels are supported by community engagement and involvement. Public art as a social practice challenges the traditional western view of artistic practice. Art in the public realm creates a new media that provides a platform for a dialogical exchange between diverse social groups. It seems that public art has evolved as an arena for activism that addresses wide-ranging and highly controversial social issues and civilian concerns. The findings of this study indicate that public artworks are capable of playing a role of activist in facilitating community evolution via social progress.Keywords: aesthetics, community regeneration, city development, publicness, public participation, social progress
Procedia PDF Downloads 2302182 Effect of Submaximal Eccentric versus Maximal Isometric Contraction on Delayed Onset Muscle Soreness
Authors: Mohamed M. Ragab, Neveen A. Abdel Raoof, Reham H. Diab
Abstract:
Background: Delayed onset muscle soreness (DOMS) is the most common symptom when ordinary individuals and athletes are exposed to unaccustomed physical activity, especially eccentric contraction which impairs athletic performance, ordinary people work ability and physical functioning. A multitude of methods have been investigated to reduce DOMS. One of the valuable method to control DOMS is repeated bout effect (RBE) as a prophylactic method. Purpose: To compare the repeated bout effect of submaximal eccentric contraction versus maximal isometric contraction on induced DOMS. Methods: Sixty normal male volunteers were assigned randomly into three groups of equal number: Group (A) “first study group”: 20 subjects received submaximal eccentric contraction on non-dominant elbow flexors as prophylactic exercise. Group (B) “second study group”: 20 subjects received maximal isometric contraction on non-dominant elbow flexors as prophylactic exercise. Group (C) “control group”: 20 subjects did not receive any prophylactic exercise. Maximal isometric contraction peak torque of elbow flexors and patient related elbow evaluation (PREE) scale were measured for each subject 3 times before, immediately after and 48 hours after induction of DOMS. Results: Post-hoc test for maximal isometric peak torque and PREE scale immediately and 48 hours after induction of DOMS revealed that group (A) and group (B) resulted in significant decrease in maximal isometric strength loss and elbow pain and disability rather than control group (C), but submaximal eccentric group (A) was more effective than maximal isometric group (B) as it showed more rapid recovery of functional strength and less degrees of elbow pain and disability. Conclusion: Both submaximal eccentric contraction and maximal isometric contraction were effective in prevention of DOMS but submaximal eccentric contraction had the greatest protective effect.Keywords: delayed onset muscle soreness, maximal isometric peak torque, patient related elbow evaluation scale, repeated bout effect
Procedia PDF Downloads 3652181 Synthesis of Deformed Nuclei 260Rf, 261Rf and 262Rf in the Decay of 266Rf*Formed via Different Fusion Reactions: Entrance Channel Effects
Authors: Niyti, Aman Deep, Rajesh Kharab, Sahila Chopra, Raj. K. Gupta
Abstract:
Relatively long-lived transactinide elements (i.e., elements with atomic number Z≥104) up to Z = 108 have been produced in nuclear reactions between low Z projectiles (C to Al) and actinide targets. Cross sections have been observed to decrease steeply with increasing Z. Recently, production cross sections of several picobarns have been reported for comparatively neutron-rich nuclides of 112 through 118 produced via hot fusion reactions with 48Ca and actinide targets. Some of those heavy nuclides are reported to have lifetimes on the order of seconds or longer. The relatively high cross sections in these hot fusion reactions are not fully understood and this has renewed interest in systematic studies of heavy-ion reactions with actinide targets. The main aim of this work is to understand the dynamics hot fusion reactions 18O+ 248Cm and 22Ne+244Pu (carried out at RIKEN and TASCA respectively) using the collective clusterization technique, carried out by undertaking the decay of the compound nucleus 266Rf∗ into 4n, 5n and 6n neutron evaporation channels. Here we extend our earlier study of the excitation functions (EFs) of 266Rf∗, formed in fusion reaction 18O+248Cm, based on Dynamical Cluster-decay Model (DCM) using the pocket formula for nuclear proximity potential, to the use of other nuclear interaction potentials derived from Skyrme energy density formalism (SEDF) based on semiclassical extended Thomas Fermi (ETF) approach and also study entrance channel effects by considering the synthesis of 266Rf* in 22Ne+244Pu reaction. The Skyrme forces used are the old force SIII, and new forces GSkI and KDE0(v1). Here, the EFs for the production of 260Rf, 261Rf and 262Rf isotope via 6n, 5n and 4n decay channel from the 266Rf∗ compound nucleus are studied at Elab = 88.2 to 125 MeV, including quadrupole deformations β2i and ‘hot-optimum’ orientations θi. The calculations are made within the DCM where the neck-length ∆R is the only parameter representing the relative separation distance between two fragments and/or clusters Ai which assimilates the neck formation effects.Keywords: entrance channel effects, fusion reactions, skyrme force, superheavy nucleus
Procedia PDF Downloads 2532180 Structural Development and Multiscale Design Optimization of Additively Manufactured Unmanned Aerial Vehicle with Blended Wing Body Configuration
Authors: Malcolm Dinovitzer, Calvin Miller, Adam Hacker, Gabriel Wong, Zach Annen, Padmassun Rajakareyar, Jordan Mulvihill, Mostafa S.A. ElSayed
Abstract:
The research work presented in this paper is developed by the Blended Wing Body (BWB) Unmanned Aerial Vehicle (UAV) team, a fourth-year capstone project at Carleton University Department of Mechanical and Aerospace Engineering. Here, a clean sheet UAV with BWB configuration is designed and optimized using Multiscale Design Optimization (MSDO) approach employing lattice materials taking into consideration design for additive manufacturing constraints. The BWB-UAV is being developed with a mission profile designed for surveillance purposes with a minimum payload of 1000 grams. To demonstrate the design methodology, a single design loop of a sample rib from the airframe is shown in details. This includes presentation of the conceptual design, materials selection, experimental characterization and residual thermal stress distribution analysis of additively manufactured materials, manufacturing constraint identification, critical loads computations, stress analysis and design optimization. A dynamic turbulent critical load case was identified composed of a 1-g static maneuver with an incremental Power Spectral Density (PSD) gust which was used as a deterministic design load case for the design optimization. 2D flat plate Doublet Lattice Method (DLM) was used to simulate aerodynamics in the aeroelastic analysis. The aerodynamic results were verified versus a 3D CFD analysis applying Spalart-Allmaras and SST k-omega turbulence to the rigid UAV and vortex lattice method applied in the OpenVSP environment. Design optimization of a single rib was conducted using topology optimization as well as MSDO. Compared to a solid rib, weight savings of 36.44% and 59.65% were obtained for the topology optimization and the MSDO, respectively. These results suggest that MSDO is an acceptable alternative to topology optimization in weight critical applications while preserving the functional requirements.Keywords: blended wing body, multiscale design optimization, additive manufacturing, unmanned aerial vehicle
Procedia PDF Downloads 3762179 Microscale observations of a gas cell wall rupture in bread dough during baking and confrontation to 2/3D Finite Element simulations of stress concentration
Authors: Kossigan Bernard Dedey, David Grenier, Tiphaine Lucas
Abstract:
Bread dough is often described as a dispersion of gas cells in a continuous gluten/starch matrix. The final bread crumb structure is strongly related to gas cell walls (GCWs) rupture during baking. At the end of proofing and during baking, part of the thinnest GCWs between expanding gas cells is reduced to a gluten film of about the size of a starch granule. When such size is reached gluten and starch granules must be considered as interacting phases in order to account for heterogeneities and appropriately describe GCW rupture. Among experimental investigations carried out to assess GCW rupture, no experimental work was performed to observe the GCW rupture in the baking conditions at GCW scale. In addition, attempts to numerically understand GCW rupture are usually not performed at the GCW scale and often considered GCWs as continuous. The most relevant paper that accounted for heterogeneities dealt with the gluten/starch interactions and their impact on the mechanical behavior of dough film. However, stress concentration in GCW was not discussed. In this study, both experimental and numerical approaches were used to better understand GCW rupture in bread dough during baking. Experimentally, a macro-scope placed in front of a two-chamber device was used to observe the rupture of a real GCW of 200 micrometers in thickness. Special attention was paid in order to mimic baking conditions as far as possible (temperature, gas pressure and moisture). Various differences in pressure between both sides of GCW were applied and different modes of fracture initiation and propagation in GCWs were observed. Numerically, the impact of gluten/starch interactions (cohesion or non-cohesion) and rheological moduli ratio on the mechanical behavior of GCW under unidirectional extension was assessed in 2D/3D. A non-linear viscoelastic and hyperelastic approach was performed to match the finite strain involved in GCW during baking. Stress concentration within GCW was identified. Simulated stresses concentration was discussed at the light of GCW failure observed in the device. The gluten/starch granule interactions and rheological modulus ratio were found to have a great effect on the amount of stress possibly reached in the GCW.Keywords: dough, experimental, numerical, rupture
Procedia PDF Downloads 1222178 Impact of Mixing Parameters on Homogenization of Borax Solution and Nucleation Rate in Dual Radial Impeller Crystallizer
Authors: A. Kaćunić, M. Ćosić, N. Kuzmanić
Abstract:
Interaction between mixing and crystallization is often ignored despite the fact that it affects almost every aspect of the operation including nucleation, growth, and maintenance of the crystal slurry. This is especially pronounced in multiple impeller systems where flow complexity is increased. By choosing proper mixing parameters, what closely depends on the knowledge of the hydrodynamics in a mixing vessel, the process of batch cooling crystallization may considerably be improved. The values that render useful information when making this choice are mixing time and power consumption. The predominant motivation for this work was to investigate the extent to which radial dual impeller configuration influences mixing time, power consumption and consequently the values of metastable zone width and nucleation rate. In this research, crystallization of borax was conducted in a 15 dm3 baffled batch cooling crystallizer with an aspect ratio (H/T) of 1.3. Mixing was performed using two straight blade turbines (4-SBT) mounted on the same shaft that generated radial fluid flow. Experiments were conducted at different values of N/NJS ratio (impeller speed/ minimum impeller speed for complete suspension), D/T ratio (impeller diameter/crystallizer diameter), c/D ratio (lower impeller off-bottom clearance/impeller diameter), and s/D ratio (spacing between impellers/impeller diameter). Mother liquor was saturated at 30°C and was cooled at the rate of 6°C/h. Its concentration was monitored in line by Na-ion selective electrode. From the values of supersaturation that was monitored continuously over process time, it was possible to determine the metastable zone width and subsequently the nucleation rate using the Mersmann’s nucleation criterion. For all applied dual impeller configurations, the mixing time was determined by potentiometric method using a pulse technique, while the power consumption was determined using a torque meter produced by Himmelstein & Co. Results obtained in this investigation show that dual impeller configuration significantly influences the values of mixing time, power consumption as well as the metastable zone width and nucleation rate. A special attention should be addressed to the impeller spacing considering the flow interaction that could be more or less pronounced depending on the spacing value.Keywords: dual impeller crystallizer, mixing time, power consumption, metastable zone width, nucleation rate
Procedia PDF Downloads 2962177 Quantum Coherence Sets the Quantum Speed Limit for Mixed States
Authors: Debasis Mondal, Chandan Datta, S. K. Sazim
Abstract:
Quantum coherence is a key resource like entanglement and discord in quantum information theory. Wigner- Yanase skew information, which was shown to be the quantum part of the uncertainty, has recently been projected as an observable measure of quantum coherence. On the other hand, the quantum speed limit has been established as an important notion for developing the ultra-speed quantum computer and communication channel. Here, we show that both of these quantities are related. Thus, cast coherence as a resource to control the speed of quantum communication. In this work, we address three basic and fundamental questions. There have been rigorous attempts to achieve more and tighter evolution time bounds and to generalize them for mixed states. However, we are yet to know (i) what is the ultimate limit of quantum speed? (ii) Can we measure this speed of quantum evolution in the interferometry by measuring a physically realizable quantity? Most of the bounds in the literature are either not measurable in the interference experiments or not tight enough. As a result, cannot be effectively used in the experiments on quantum metrology, quantum thermodynamics, and quantum communication and especially in Unruh effect detection et cetera, where a small fluctuation in a parameter is needed to be detected. Therefore, a search for the tightest yet experimentally realisable bound is a need of the hour. It will be much more interesting if one can relate various properties of the states or operations, such as coherence, asymmetry, dimension, quantum correlations et cetera and QSL. Although, these understandings may help us to control and manipulate the speed of communication, apart from the particular cases like the Josephson junction and multipartite scenario, there has been a little advancement in this direction. Therefore, the third question we ask: (iii) Can we relate such quantities with QSL? In this paper, we address these fundamental questions and show that quantum coherence or asymmetry plays an important role in setting the QSL. An important question in the study of quantum speed limit may be how it behaves under classical mixing and partial elimination of states. This is because this may help us to choose properly a state or evolution operator to control the speed limit. In this paper, we try to address this question and show that the product of the time bound of the evolution and the quantum part of the uncertainty in energy or quantum coherence or asymmetry of the state with respect to the evolution operator decreases under classical mixing and partial elimination of states.Keywords: completely positive trace preserving maps, quantum coherence, quantum speed limit, Wigner-Yanase Skew information
Procedia PDF Downloads 3532176 The Effect of Peripheral Fatigue and Visual Feedback on Postural Control and Strength in Obese People
Authors: Elham Azimzadeh, Saeedeh Sepehri, Hamidollah Hassanlouei
Abstract:
Obesity is associated with postural instability, might influence the quality of daily life, and could be considered a potential factor for falling in obese people. The fat body mass especially in the abdominal area may increase body sway. Furthermore, loss of visual feedback may induce a larger postural sway in obese people. Moreover, Muscle fatigue may impair the work capacity of the skeletal muscle and may alter joint proprioception. So, the purpose of this study was to investigate the effect of physical fatigue and visual feedback on body sway and strength of lower extremities in obese people. 12 obese (4 female, 8 male; BMI >30 kg/m2), and 12 normal weight (4 female, 8 male; BMI: 20-25 kg/m2) subjects aged 37- 47 years participated in this study. The postural stability test on the Biodex balance system was used to characterize postural control along the anterior-posterior (AP) and mediolateral (ML) directions in eyes open and eyes closed conditions and maximal voluntary contraction (MVC) of knee extensors and flexors were measured before and after the high-intensity exhausting exercise protocol on the ergometer bike to confirm the presence of fatigue. Results indicated that the obese group demonstrated significantly greater body sway, in all indices (ML, AP, overall) compared with the normal weight group (eyes open). However, when visual feedback was eliminated, fatigue impaired the balance in the overall and AP indicators in both groups; ML sway was higher only in the obese group after exerting the fatigue in the eyes closed condition. Also, maximal voluntary contraction of knee extensors was impaired in the fatigued normal group but, there was no significant impairment in knee flexors MVC in both group. According to the findings, peripheral fatigue was associated with altered postural control in upright standing when eyes were closed, and that mechanoreceptors of the feet may be less able to estimate the position of the body COM over the base of support in the loss of visual feedback. This suggests that the overall capability of the postural control system during upright standing especially in the ML direction could be lower due to fatigue in obese individuals and could be a predictor of future falls.Keywords: maximal voluntary contraction, obesity, peripheral fatigue, postural control, visual feedback
Procedia PDF Downloads 922175 An Object-Oriented Modelica Model of the Water Level Swell during Depressurization of the Reactor Pressure Vessel of the Boiling Water Reactor
Authors: Rafal Bryk, Holger Schmidt, Thomas Mull, Ingo Ganzmann, Oliver Herbst
Abstract:
Prediction of the two-phase water mixture level during fast depressurization of the Reactor Pressure Vessel (RPV) resulting from an accident scenario is an important issue from the view point of the reactor safety. Since the level swell may influence the behavior of some passive safety systems, it has been recognized that an assumption which at the beginning may be considered as a conservative one, not necessary leads to a conservative result. This paper discusses outcomes obtained during simulations of the water dynamics and heat transfer during sudden depressurization of a vessel filled up to a certain level with liquid water under saturation conditions and with the rest of the vessel occupied by saturated steam. In case of the pressure decrease e.g. due to the main steam line break, the liquid water evaporates abruptly, being a reason thereby, of strong transients in the vessel. These transients and the sudden emergence of void in the region occupied at the beginning by liquid, cause elevation of the two-phase mixture. In this work, several models calculating the water collapse and swell levels are presented and validated against experimental data. Each of the models uses different approach to calculate void fraction. The object-oriented models were developed with the Modelica modelling language and the OpenModelica environment. The models represent the RPV of the Integral Test Facility Karlstein (INKA) – a dedicated test rig for simulation of KERENA – a new Boiling Water Reactor design of Framatome. The models are based on dynamic mass and energy equations. They are divided into several dynamic volumes in each of which, the fluid may be single-phase liquid, steam or a two-phase mixture. The heat transfer between the wall of the vessel and the fluid is taken into account. Additional heat flow rate may be applied to the first volume of the vessel in order to simulate the decay heat of the reactor core in a similar manner as it is simulated at INKA. The comparison of the simulations results against the reference data shows a good agreement.Keywords: boiling water reactor, level swell, Modelica, RPV depressurization, thermal-hydraulics
Procedia PDF Downloads 2102174 Modelling of Phase Transformation Kinetics in Post Heat-Treated Resistance Spot Weld of AISI 1010 Mild Steel
Authors: B. V. Feujofack Kemda, N. Barka, M. Jahazi, D. Osmani
Abstract:
Automobile manufacturers are constantly seeking means to reduce the weight of car bodies. The usage of several steel grades in auto body assembling has been found to be a good technique to enlighten vehicles weight. This few years, the usage of dual phase (DP) steels, transformation induced plasticity (TRIP) steels and boron steels in some parts of the auto body have become a necessity because of their lightweight. However, these steels are martensitic, when they undergo a fast heat treatment, the resultant microstructure is essential, made of martensite. Resistance spot welding (RSW), one of the most used techniques in assembling auto bodies, becomes problematic in the case of these steels. RSW being indeed a process were steel is heated and cooled in a very short period of time, the resulting weld nugget is mostly fully martensitic, especially in the case of DP, TRIP and boron steels but that also holds for plain carbon steels as AISI 1010 grade which is extensively used in auto body inner parts. Martensite in its turn must be avoided as most as possible when welding steel because it is the principal source of brittleness and it weakens weld nugget. Thus, this work aims to find a mean to reduce martensite fraction in weld nugget when using RSW for assembling. The prediction of phase transformation kinetics during RSW has been done. That phase transformation kinetics prediction has been made possible through the modelling of the whole welding process, and a technique called post weld heat treatment (PWHT) have been applied in order to reduce martensite fraction in the weld nugget. Simulation has been performed for AISI 1010 grade, and results show that the application of PWHT leads to the formation of not only martensite but also ferrite, bainite and pearlite during the cooling of weld nugget. Welding experiments have been done in parallel and micrographic analyses show the presence of several phases in the weld nugget. Experimental weld geometry and phase proportions are in good agreement with simulation results, showing here the validity of the model.Keywords: resistance spot welding, AISI 1010, modeling, post weld heat treatment, phase transformation, kinetics
Procedia PDF Downloads 1182173 Septin 11, Cytoskeletal Protein Involved in the Regulation of Lipid Metabolism in Adipocytes
Authors: Natalia Moreno-Castellanos, Amaia Rodriguez, Gema Frühbeck
Abstract:
Introduction: In adipocytes, the cytoskeleton undergoes important expression and distribution in adipocytes rearrangements during adipogenesis and in obesity. Indeed, a role for these proteins in the regulation of adipocyte differentiation and response to insulin has been demonstrated. Recently, septins have been considered as new components of the cytoskeletal network that interact with other cytoskeletal elements (actin and tubulin) profoundly modifying their dynamics. However, these proteins have not been characterized as yet in adipose tissue. In this work, were examined the cellular, molecular and functional features of a member of this family, septin 11 (SEPT11), in adipocytes and evaluated the impact of obesity on the expression of this protein in human adipose tissue. Methods: Adipose gene and protein expression levels of SEPT11 were analysed in human samples. SEPT11 distribution was evaluated by immunocytochemistry, electronic microscopy, and subcellular fractionation techniques. GST-pull down, immunoprecipitation and a Yeast-Two Hybrid (Y2H) screening were used to identify the SEPT11 interactome. Gene silencing was employed to assess the role of SEPT11 in the regulation of insulin signaling and lipid metabolism in adipocytes. Results: SEPT11 is expressed in human adipocytes, and its levels increased in both omental and subcutaneous adipose tissue in obesity, with SEPT11 mRNA content positively correlating with parameters of insulin resistance in subcutaneous fat. In non-stimulated adipocytes, SEPT11 immunoreactivity showed a ring-like distribution at the cell surface and associated to caveolae. Biochemical analyses showed that SEPT11 interacted with the main component of caveolae, caveolin-1 (CAV1) as well as with the fatty acid-binding protein, FABP5. Notably, the three proteins redistributed and co-localized at the surface of lipid droplets upon exposure of adipocytes to oleate. In this line, SEPT11 silencing in 3T3-L1 adipocytes impaired insulin signaling and decreased insulin-induced lipogenesis. Conclusions: Those findings demonstrate that SEPT11 is a novel component of the adipocyte cytoskeleton that plays an important role in the regulation of lipid traffic, metabolism and can thus represent a potential biomarker of insulin resistance in obesity in adipocytes through its interaction with both CAV1 and FABP5.Keywords: caveolae, lipid metabolism, obesity, septins
Procedia PDF Downloads 2142172 Becoming Academic in the Entrepreneurial University: Researcher Identities and Research Impact Development
Authors: Victoria G. Mountford-Brown
Abstract:
The concept of the Entrepreneurial University and emphasis on higher education institutions as both hives of innovation and as producers of future innovators accord special significance to the role of academic researchers in future economic and social prosperity. Researcher development in the UK has embedded an emphasis or ‘enterprise lens’ on developing the capabilities of researchers to support a stable economy whilst providing solutions to societal challenges. However, the notion of the ‘entrepreneurial university’ and what that represents to many academics is met with tension and (dis)engagement in the premises of the ‘knowledge economy’ or ‘academic capitalism.’ Set in a landscape of UK higher education wherein the increasing emphasis on research impact, coupled with increasing competition for scarce funding, has created a ‘climate of performativity’. This research seeks to better understand the ways in which academic identities are (re)constructed in the everyday experiences of doctoral (PGR) and early career researchers (ECRs) as they navigate what is referred to by some as the ‘academic hunger games’. These daily pressures and high expectations of success are part of the identity work PGRs/ECRs undergo. This is often fraught with tension and struggles to adapt to the research environment suggesting a reason for imposter phenomenon to be rife in academia – particularly (but not exclusively) in the early stages of development. This pilot study involves qualitative semi-structured exploratory interviews with a mixed gendered sample of participants from a variety of subject disciplines who have taken part in an intensive 3-day innovation and enterprise program for PGR and ECRs premised on developing personal and research impact. The research seeks to better understand the processes of identity formation of becoming academic and offers a commentary on the notions of ‘imposter phenomenon’ and the exchange and development of resources or capital needed to ‘play the game’ in academia in the context of the ‘entrepreneurial university’. It explores ongoing (re)constructions of what it means to be an academic and the different ways in which social identities may embody and challenge the development of entrepreneurial academic identities. As such, it aims to contribute to our understanding of the innovation ecosystem of academia and the prosperity of academic researchers.Keywords: entreprenruial development, higher education, identities, researcher development
Procedia PDF Downloads 962171 Material Supply Mechanisms for Contemporary Assembly Systems
Authors: Rajiv Kumar Srivastava
Abstract:
Manufacturing of complex products such as automobiles and computers requires a very large number of parts and sub-assemblies. The design of mechanisms for delivery of these materials to the point of assembly is an important manufacturing system and supply chain challenge. Different approaches to this problem have been evolved for assembly lines designed to make large volumes of standardized products. However, contemporary assembly systems are required to concurrently produce a variety of products using approaches such as mixed model production, and at times even mass customization. In this paper we examine the material supply approaches for variety production in moderate to large volumes. The conventional approach for material delivery to high volume assembly lines is to supply and stock materials line-side. However for certain materials, especially when the same or similar items are used along the line, it is more convenient to supply materials in kits. Kitting becomes more preferable when lines concurrently produce multiple products in mixed model mode, since space requirements could increase as product/ part variety increases. At times such kits may travel along with the product, while in some situations it may be better to have delivery and station-specific kits rather than product-based kits. Further, in some mass customization situations it may even be better to have a single delivery and assembly station, to which an entire kit is delivered for fitment, rather than a normal assembly line. Finally, in low-moderate volume assembly such as in engineered machinery, it may be logistically more economical to gather materials in an order-specific kit prior to launching final assembly. We have studied material supply mechanisms to support assembly systems as observed in case studies of firms with different combinations of volume and variety/ customization. It is found that the appropriate approach tends to be a hybrid between direct line supply and different kitting modes, with the best mix being a function of the manufacturing and supply chain environment, as well as space and handling considerations. In our continuing work we are studying these scenarios further, through the use of descriptive models and progressing towards prescriptive models to help achieve the optimal approach, capturing the trade-offs between inventory, material handling, space, and efficient line supply.Keywords: assembly systems, kitting, material supply, variety production
Procedia PDF Downloads 2262170 University Students' Perceptions of Effective Teaching
Authors: Christine K. Ormsbee, Jeremy S. Robinson
Abstract:
Teacher quality is important for United States universities. It impacts student achievement, program and degree progress, and even retention. While course instructors are still the primary designers and deliverers of instruction in U.S. higher education classrooms, students have become better and more vocal consumers of instruction. They are capable of identifying what instructors do that facilitates their learning or, conversely, what instructors do that makes learning more difficult. Instructors can use students as resources as they design and implement their courses. Students have become more aware of their own learning preferences and processes and can articulate those. While it is not necessarily possible or likely that an instructor can address the widely varying differences in learning preferences represented by a large class of students, it is possible for them to employ general instructional supports that help students understand clearly the instructor's study expectations, identify critical content, efficiently commit content to memory, and develop new skills. Those learning supports include reading guides, test study guides, and other instructor-developed tasks that organize learning for students, hold them accountable for the content, and prepare them to use that material in simulated and real situations. When U.S. university teaching and learning support staff work with instructors to help them identify areas of their teaching to improve, a key part of that assistance includes talking to the instructor member's students. Students are asked to explain what the instructor does that helps them learn, what the instructor does that impedes their learning, and what they wish the instructor would do. Not surprisingly, students are very specific in what they see as helpful learning supports for them. Moreover, they also identify impediments to their success, viewing those as the instructor creating unnecessary barriers to learning. A qualitative survey was developed to provide undergraduate students the opportunity to identify instructor behaviors and/or practices that they thought helped students learn and those behaviors and practices that were perceived as hindrances to student success. That information is used to help instructors implement more student-focused learning supports that facilitate student achievement. In this session, data shared from the survey will focus on supportive instructor behaviors identified by undergraduate students in an institution located in the southwest United States and those behaviors that students perceive as creating unnecessary barriers to their academic success.Keywords: effective teaching, pedagogy, student engagement, instructional design
Procedia PDF Downloads 852169 Functionalization of the Surface of Porous Titanium Nickel Alloy
Authors: Gulsharat A. Baigonakova, Ekaterina S. Marchenko, Venera R. Luchsheva
Abstract:
The preferred materials for bone grafting are titanium-nickel alloys. They have a porous, permeable structure similar to that of bone tissue, can withstand long-term physiological stress in the body, and retain the scaffolding function for bone tissue ingrowth. Despite the excellent functional properties of these alloys, there is a possibility of post-operative infectious complications that prevent the newly formed bone tissue from filling the spaces created in a timely manner and prolong the rehabilitation period of patients. In order to minimise such consequences, it is necessary to use biocompatible materials capable of simultaneously fulfilling the function of a long-term functioning implant and an osteoreplacement carrier saturated with drugs. Methods to modify the surface by saturation with bioactive substances, in particular macrocyclic compounds, for the controlled release of drugs, biologically active substances, and cells are becoming increasingly important. This work is dedicated to the functionalisation of the surface of porous titanium nickelide by the deposition of macrocyclic compounds in order to provide titanium nickelide with antibacterial activity and accelerated osteogenesis. The paper evaluates the effect of macrocyclic compound deposition methods on the continuity, structure, and cytocompatibility of the surface properties of porous titanium nickelide. Macrocyclic compounds were deposited on the porous surface of titanium nickelide under the influence of various physical effects. Structural research methods have allowed the evaluation of the surface morphology of titanium nickelide and the nature of the distribution of these compounds. The method of surface functionalisation of titanium nickelide influences the size of the deposited bioactive molecules and the nature of their distribution. The surface functionalisation method developed has enabled titanium nickelide to be deposited uniformly on the inner and outer surfaces of the pores, which will subsequently enable the material to be uniformly saturated with various drugs, including antibiotics and inhibitors. The surface-modified porous titanium nickelide showed high biocompatibility and low cytotoxicity in in vitro studies. The research was carried out with financial support from the Russian Science Foundation under Grant No. 22-72-10037.Keywords: biocompatibility, NiTi, surface, porous structure
Procedia PDF Downloads 842168 Flow Sheet Development and Simulation of a Bio-refinery Annexed to Typical South African Sugar Mill
Authors: M. Ali Mandegari, S. Farzad, J. F. Görgens
Abstract:
Sugar is one of the main agricultural industries in South Africa and approximately livelihoods of one million South Africans are indirectly dependent on sugar industry which is economically struggling with some problems and should re-invent in order to ensure a long-term sustainability. Second generation bio-refinery is defined as a process to use waste fibrous for the production of bio-fuel, chemicals animal food, and electricity. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide and many challenges in front of bio-ethanol production were solved. Bio-refinery annexed to the existing sugar mill for production of bio-ethanol and electricity is proposed to sugar industry and is addressed in this study. Since flow-sheet development is the key element of the bio-ethanol process, in this work, a bio-refinery (bio-ethanol and electricity production) annexed to a typical South African sugar mill considering 65ton/h dry sugarcane bagasse and tops/trash as feedstock was simulated. Aspen PlusTM V8.6 was applied as simulator and realistic simulation development approach was followed to reflect the practical behavior of the plant. Latest results of other researches considering pretreatment, hydrolysis, fermentation, enzyme production, bio-ethanol production and other supplementary units such as evaporation, water treatment, boiler, and steam/electricity generation units were adopted to establish a comprehensive bio-refinery simulation. Steam explosion with SO2 was selected for pretreatment due to minimum inhibitor production and simultaneous saccharification and fermentation (SSF) configuration was adopted for enzymatic hydrolysis and fermentation of cellulose and hydrolyze. Bio-ethanol purification was simulated by two distillation columns with side stream and fuel grade bio-ethanol (99.5%) was achieved using molecular sieve in order to minimize the capital and operating costs. Also boiler and steam/power generation were completed using industrial design data. Results indicates 256.6 kg bio ethanol per ton of feedstock and 31 MW surplus power were attained from bio-refinery while the process consumes 3.5, 3.38, and 0.164 (GJ/ton per ton of feedstock) hot utility, cold utility and electricity respectively. Developed simulation is a threshold of variety analyses and developments for further studies.Keywords: bio-refinery, bagasse, tops, trash, bio-ethanol, electricity
Procedia PDF Downloads 5332167 Music Responsiveness and Cultural Practice: Tarok Ethnic Group of Plateau State in Focus
Authors: Johnson-Egemba Helen Amaka
Abstract:
Music is emotional in the sense that it controls people’s feelings. The way and manner people react to music at a point in time depend on the type of music that is playing. Music can make someone to march or dance, to cry or laugh, to be happy or sad, to fight or make peace and so on. It therefore makes someone o exhibit some kind of behaviours, either positive or negative. Even dangerous animals have been found to be controlled by music. In the psychiatric homes, mad people are always found to be dancing to music. During funeral ceremony, music singing and dancing are sources of comfort to the bereaved. As a background to the study, Tarok ethnic group in Plateau State was used. The Tarok comprise of Langtang North and South Local Government Areas. The ethnic group of Tarok integrates music in almost all the activities of their lives. A total of six (6) types of folk songs were identified. These songs range from marriages, funeral, royalty, togetherness, war, rituals, festivals, and farming. This paper points out the significance of basic responsiveness of the Tarok people towards the folk songs, their reaction generally whether positive or negative. The methods of data collection employed in this work include oral interview approach, recording of various types of Tarok folk songs, consulting of journals, magazines and textbooks. The researcher used oral interview as her primary source of information which is found to be the most effective procedure in carrying out this task. The songs were textually analyzed with a view to unveiling their meanings, thought processes, and conveying their direction and functions within the context of their rendition. The major findings of the study are that music in Tarok culture covers the physical, mental, emotional and social experiences. The physical aspect is the motor skills, which include dancing and demonstration of the songs. The mental experiences are intellectual levels which include construction and manufacturing of musical instruments, composing songs, teaching and learning etc. Furthermore, this research provided in addition to musical activities, the literature, history and culture of the Tarok communities.Keywords: cultural, music, practice, responsiveness
Procedia PDF Downloads 296