Search results for: task offloading
827 Technical, Environmental and Financial Assessment for Optimal Sizing of Run-of-River Small Hydropower Project: Case Study in Colombia
Authors: David Calderon Villegas, Thomas Kaltizky
Abstract:
Run-of-river (RoR) hydropower projects represent a viable, clean, and cost-effective alternative to dam-based plants and provide decentralized power production. However, RoR schemes cost-effectiveness depends on the proper selection of site and design flow, which is a challenging task because it requires multivariate analysis. In this respect, this study presents the development of an investment decision support tool for assessing the optimal size of an RoR scheme considering the technical, environmental, and cost constraints. The net present value (NPV) from a project perspective is used as an objective function for supporting the investment decision. The tool has been tested by applying it to an actual RoR project recently proposed in Colombia. The obtained results show that the optimum point in financial terms does not match the flow that maximizes energy generation from exploiting the river's available flow. For the case study, the flow that maximizes energy corresponds to a value of 5.1 m3/s. In comparison, an amount of 2.1 m3/s maximizes the investors NPV. Finally, a sensitivity analysis is performed to determine the NPV as a function of the debt rate changes and the electricity prices and the CapEx. Even for the worst-case scenario, the optimal size represents a positive business case with an NPV of 2.2 USD million and an IRR 1.5 times higher than the discount rate.Keywords: small hydropower, renewable energy, RoR schemes, optimal sizing, objective function
Procedia PDF Downloads 132826 General Architecture for Automation of Machine Learning Practices
Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain
Abstract:
Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler
Procedia PDF Downloads 57825 Supply Chain Network Design for Perishable Products in Developing Countries
Authors: Abhishek Jain, Kavish Kejriwal, V. Balaji Rao, Abhigna Chavda
Abstract:
Increasing environmental and social concerns are forcing companies to take a fresh view of the impact of supply chain operations on environment and society when designing a supply chain. A challenging task in today’s food industry is the distribution of high-quality food items throughout the food supply chain. Improper storage and unwanted transportation are the major hurdles in food supply chain and can be tackled by making dynamic storage facility location decisions with the distribution network. Since food supply chain in India is one of the biggest supply chains in the world, the companies should also consider environmental impact caused by the supply chain. This project proposes a multi-objective optimization model by integrating sustainability in decision-making, on distribution in a food supply chain network (SCN). A Multi-Objective Mixed-Integer Linear Programming (MOMILP) model between overall cost and environmental impact caused by the SCN is formulated for the problem. The goal of MOMILP is to determine the pareto solutions for overall cost and environmental impact caused by the supply chain. This is solved by using GAMS with CPLEX as third party solver. The outcomes of the project are pareto solutions for overall cost and environmental impact, facilities to be operated and the amount to be transferred to each warehouse during the time horizon.Keywords: multi-objective mixed linear programming, food supply chain network, GAMS, multi-product, multi-period, environment
Procedia PDF Downloads 320824 Identification of Workplace Hazards of Underground Coal Mines
Authors: Madiha Ijaz, Muhammad Akram, Sima Mir
Abstract:
Underground mining of coal is carried out manually in Pakistan. Exposure to ergonomic hazards (musculoskeletal disorders) are very common among the coal cutters of these mines. Cutting coal in narrow spaces poses a great threat to both upper and lower limbs of these workers. To observe the prevalence of such hazards, a thorough study was conducted on 600 workers from 30 mines (20 workers from 1 mine), located in two districts of province Punjab, Pakistan. Rapid Upper Limb Assessment sheet and Rapid Entire Body Assessment sheet were used for the study along with a standard Nordic Musculoskeleton disorder questionnaire. SPSS, 25, software was used for data analysis on upper and lower limb disorders, and regression analysis models were run for upper and lower back pain. According to the results obtained, it was found that work stages (drilling & blasting, coal cutting, timbering & supporting, etc.), wok experience and number of repetitions performed/minute were significant (with p-value 0.00,0.004 and 0.009, respectively) for discomfort in upper and lower limb. Age got p vale 0.00 for upper limb and 0.012 for lower limb disorder. The task of coal cutting was strongly associated with the pain in upper back (with odd ratios13.21, 95% confidence interval (CI)14.0-21.64)) and lower back pain (3.7, 95% confidence interval 1.3-4.2). scored on RULA and REBA sheets, every work-stage was ranked at 7-highest level of risk involved. Workers were young (mean value of age= 28.7 years) with mean BMI 28.1 kg/m2Keywords: workplace hazards, ergonomic disorders, limb disorders, MSDs.
Procedia PDF Downloads 83823 Barriers to Teachers' Use of Technology in Nigeria and Its Implications in the Academic Performance of Students of Higher Learning: A Case Study of Adeniran Ogunsanya College of Education, Lagos
Authors: Iyabo Aremu
Abstract:
The role of the teacher in stirring a qualitative and distinctive knowledge-driven and value-laden environment with modern teaching practices cannot be over accentuated. In spite of the myriad advantages the use of Information and Communication Technology (ICT) promises, many teachers are still at the rear of this archetypical transition. These teachers; notable forces needed to elicit positive academic performances of students of higher learning are ill-equipped for the task. In view of this, the research work sought to assess how teachers have been able to effectively apply ICT tools to improve students’ academic performance in the higher institution and to evaluate the challenges faced by teachers in using these tools. Thus, the research adopted descriptive survey research design and involved a sample of 25 lecturers from five schools in the study area: Adeniran Ogunsanya College of Education (AOCOED). The barrier to Teachers’ Use of ICT Questionnaire (BTUICTQ) was used to gather data from these respondents. The data gathered was tested with chi-square at 0.05 level of significance. The results revealed that the perception and attitude of teachers towards the use of ICT is not favourable. It was also discovered that teachers suffer from gaps in ICT knowledge and skills. Finally, the research showed that lack of training and inadequate support is a major challenge teacher contend with. The study recommended that teachers should be given adequate training and support and that teachers’ unrestricted access to ICT gadgets should be ensured by schools.Keywords: ICT, teachers, AOCOED, academic performance
Procedia PDF Downloads 160822 Comparative Study of Non-Identical Firearms with Priority to Repair Subject to Inspection
Authors: A. S. Grewal, R. S. Sangwan, Dharambir, Vikas Dhanda
Abstract:
The purpose of this paper is to develop and analyze two reliability models for a system of non-identical firearms – one is standard firearm (called as original unit) and the other is a country-made firearm (called as duplicate /substandard unit). There is a single server who comes immediately to do inspection and repair whenever needed. On the failure of standard firearm, the server inspects the operative country-made firearm to see whether the unit is capable of performing the desired function well or not. If country-made firearm is not capable to do so, the operation of the system is stopped and server starts repair of the standard firearms immediately. However, no inspection is done at the failure of the country-made firearm as the country-made firearm alone is capable of performing the given task well. In model I, priority to repair the standard firearm is given in case system fails completely and country-made firearm is already under repair, whereas in model II there is no such priority. The failure and repair times of each unit are assumed to be independent and uncorrelated random variables. The distributions of failure time of the units are taken as negative exponential while that of repair and inspection times are general. By using semi-Markov process and regenerative point technique some econo-reliability measures are obtained. Graphs are plotted to compare the MTSF (mean time to system failure), availability and profit of the models for a particular case.Keywords: non-identical firearms, inspection, priority to repair, semi-Markov process, regenerative point
Procedia PDF Downloads 425821 Studies on Performance of an Airfoil and Its Simulation
Authors: Rajendra Roul
Abstract:
The main objective of the project is to bring attention towards the performance of an aerofoil when exposed to the fluid medium inside the wind tunnel. This project aims at involvement of civil as well as mechanical engineering thereby making itself as a multidisciplinary project. The airfoil of desired size is taken into consideration for the project to carry out effectively. An aerofoil is the shape of the wing or blade of propeller, rotor or turbine. Lot of experiment have been carried out through wind-tunnel keeping aerofoil as a reference object to make a future forecast regarding the design of turbine blade, car and aircraft. Lift and drag now become the major identification factor for any design industry which shows that wind tunnel testing along with software analysis (ANSYS) becomes the mandatory task for any researchers to forecast an aerodynamics design. This project is an initiative towards the mitigation of drag, better lift and analysis of wake surface profile by investigating the surface pressure distribution. The readings has been taken on airfoil model in Wind Tunnel Testing Machine (WTTM) at different air velocity 20m/sec, 25m/sec, 30m/sec and different angle of attack 00,50,100,150,200. Air velocity and pressures are measured in several ways in wind tunnel testing machine by use to measuring instruments like Anemometer and Multi tube manometer. Moreover to make the analysis more accurate Ansys fluent contribution become substantial and subsequently the CFD simulation results. Analysis on an Aerofoil have a wide spectrum of application other than aerodynamics including wind loads in the design of buildings and bridges for structural engineers.Keywords: wind-tunnel, aerofoil, Ansys, multitube manometer
Procedia PDF Downloads 414820 Modeling and Simulating Drop Interactions in Spray Structure of High Torque Low Speed Diesel Engine
Authors: Rizwan Latif, Syed Adnan Qasim, Muzaffar Ali
Abstract:
Fuel direct injection represents one of the key aspects in the development of the diesel engines, the idea of controlling the auto-ignition and the consequent combustion of a liquid spray injected in a reacting atmosphere during a time scale of few milliseconds has been a challenging task for the engine community and pushed forward to a massive research in this field. The quality of the air-fuel mixture defines the combustion efficiency, and therefore the engine efficiency. A droplet interaction in dense as well as thin portion of the spray receives equal importance as other parameters in spray structure. Usually, these are modeled along with breakup process and analyzed alike. In this paper, droplet interaction is modeled and simulated for high torque low speed scenario. Droplet interactions may further be subdivided into droplet collision and coalescence, spray wall impingement, droplets drag, etc. Droplet collisions may occur in almost all spray applications, but especially in diesel like conditions such as high pressure sprays as utilized in combustion engines. These collisions have a strong influence on the mean droplet size and its spatial distribution and can, therefore, affect sub-processes of spray combustion such as mass, momentum and energy transfer between gas and droplets. Similarly, for high-pressure injection systems spray wall impingement is an inherent sub-process of mixture formation. However, its influence on combustion is in-explicit.Keywords: droplet collision, coalescence, low speed, diesel fuel
Procedia PDF Downloads 236819 Changing Trends and Attitudes towards Online Assessment
Authors: Renáta Nagy, Alexandra Csongor, Jon Marquette, Vilmos Warta
Abstract:
The presentation aims at eliciting insight into the results of ongoing research regarding evolving trends and attitudes towards online assessment of English for Medical Purposes. The focus pinpointsonline as one of the most trending formsavailable during the global pandemic. The study was first initiated in 2019 in which its main target was to reveal the intriguing question of students’ and assessors’ attitudes towards online assessment. The research questions the attitudes towards the latest trends, possible online task types, their advantagesand disadvantages through an in-depth experimental process currently undergoing implementation. Material and methods include surveys, needs and wants analysis, and thorough investigations regarding candidates’ and assessors’ attitudes towards online tests in the field of Medicine. The examined test tasks include various online tests drafted in both English and Hungarian by student volunteers at the Medical School of the University of Pécs, Hungary. Over 400 respondents from more than 28 countries participated in the survey, which gives us an international and intercultural insight into how students with different cultural and educational background deal with the evolving online world. The results show the pandemic’s impact, which brought the slumbering online world of assessing roaring alive, fully operational andnowbearsphenomenalrelevancein today’s global education. Undeniably, the results can be used as a perspective in a vast array of contents. The survey hypothesized the generation of the 21st century expect everything readily available online, however, questions whether they are ready for this challenge are lurking in the background.Keywords: assessment, changes, english, ESP, online assessment, online, trends
Procedia PDF Downloads 202818 Teaching Writing in the Virtual Classroom: Challenges and the Way Forward
Authors: Upeksha Jayasuriya
Abstract:
The sudden transition from onsite to online teaching/learning due to the COVID-19 pandemic called for a need to incorporate feasible as well as effective methods of online teaching in most developing countries like Sri Lanka. The English as a Second Language (ESL) classroom faces specific challenges in this adaptation, and teaching writing can be identified as the most challenging task compared to teaching the other three skills. This study was therefore carried out to explore the challenges of teaching writing online and to provide effective means of overcoming them while taking into consideration the attitudes of students and teachers with regard to learning/teaching English writing via online platforms. A survey questionnaire was distributed (electronically) among 60 students from the University of Colombo, the University of Kelaniya, and The Open University in order to find out the challenges faced by students, while in-depth interviews were conducted with 12 lecturers from the mentioned universities. The findings reveal that the inability to observe students’ writing and to receive real-time feedback discourage students from engaging in writing activities when taught online. It was also discovered that both students and teachers increasingly prefer Google Slides over other platforms such as Padlet, Linoit, and Jam Board as it boosts learner autonomy and student-teacher interaction, which in turn allows real-time formative feedback, observation of student work, and assessment. Accordingly, it can be recommended that teaching writing online can be better facilitated by using interactive platforms such as Google Slides, for it promotes active learning and student engagement in the ESL class.Keywords: ESL, teaching writing, online teaching, active learning, student engagement
Procedia PDF Downloads 89817 MIMIC: A Multi Input Micro-Influencers Classifier
Authors: Simone Leonardi, Luca Ardito
Abstract:
Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media
Procedia PDF Downloads 183816 Web Proxy Detection via Bipartite Graphs and One-Mode Projections
Authors: Zhipeng Chen, Peng Zhang, Qingyun Liu, Li Guo
Abstract:
With the Internet becoming the dominant channel for business and life, many IPs are increasingly masked using web proxies for illegal purposes such as propagating malware, impersonate phishing pages to steal sensitive data or redirect victims to other malicious targets. Moreover, as Internet traffic continues to grow in size and complexity, it has become an increasingly challenging task to detect the proxy service due to their dynamic update and high anonymity. In this paper, we present an approach based on behavioral graph analysis to study the behavior similarity of web proxy users. Specifically, we use bipartite graphs to model host communications from network traffic and build one-mode projections of bipartite graphs for discovering social-behavior similarity of web proxy users. Based on the similarity matrices of end-users from the derived one-mode projection graphs, we apply a simple yet effective spectral clustering algorithm to discover the inherent web proxy users behavior clusters. The web proxy URL may vary from time to time. Still, the inherent interest would not. So, based on the intuition, by dint of our private tools implemented by WebDriver, we examine whether the top URLs visited by the web proxy users are web proxies. Our experiment results based on real datasets show that the behavior clusters not only reduce the number of URLs analysis but also provide an effective way to detect the web proxies, especially for the unknown web proxies.Keywords: bipartite graph, one-mode projection, clustering, web proxy detection
Procedia PDF Downloads 245815 Beliefs about the God of the Other in Intergroup Conflict: Experimental Results from Israel and Palestine
Authors: Crystal Shackleford, Michael Pasek, Allon Vishkin, Jeremy Ginges
Abstract:
In the Middle East, conflict is often viewed as religiously motivated. In this context, an important question is how we think the religion of the other drives their behavior. If people see conflicts as religious, they may expect the belief of the other to motivate intergroup bias. Beliefs about the motivations of the other impact how we engage with them. Conflict may result if actors believe the other’s religion promotes parochialism. To examine how actors on the ground in Israel-Palestine think about the God of the other as it relates to the other’s behavior towards them, we ran two studies in winter 2019 with an online sample of Jewish Israelis and fieldwork with Palestinians in the West Bank. We asked participants to predict the behavior of an outgroup member participating in an economic game task, dividing the money between themselves and another person, who is either an ingroup or outgroup member. Our experimental manipulation asks participants to predict the behavior of the other when the other is thinking of their God. Both Israelis and Palestinians believed outgroup members would show in-group favoritism, and that group members would give more to their in-group when thinking of their God. We also found that participants thought outgroup members would give more to their own ingroup when thinking of God. In other words, Palestinians predicted that Israelis would give more to fellow Israelis when thinking of God, but also more to Palestinians. Our results suggest that religious belief is seen to promote universal moral reasoning, even in a context with over 70 years of intense conflict. More broadly, this challenges the narrative that religion necessarily motivates intractable conflict.Keywords: conflict, psychology, religion, meta-cognition, morality
Procedia PDF Downloads 138814 A Framework for Chinese Domain-Specific Distant Supervised Named Entity Recognition
Abstract:
The Knowledge Graphs have now become a new form of knowledge representation. However, there is no consensus in regard to a plausible and definition of entities and relationships in the domain-specific knowledge graph. Further, in conjunction with several limitations and deficiencies, various domain-specific entities and relationships recognition approaches are far from perfect. Specifically, named entity recognition in Chinese domain is a critical task for the natural language process applications. However, a bottleneck problem with Chinese named entity recognition in new domains is the lack of annotated data. To address this challenge, a domain distant supervised named entity recognition framework is proposed. The framework is divided into two stages: first, the distant supervised corpus is generated based on the entity linking model of graph attention neural network; secondly, the generated corpus is trained as the input of the distant supervised named entity recognition model to train to obtain named entities. The link model is verified in the ccks2019 entity link corpus, and the F1 value is 2% higher than that of the benchmark method. The re-pre-trained BERT language model is added to the benchmark method, and the results show that it is more suitable for distant supervised named entity recognition tasks. Finally, it is applied in the computer field, and the results show that this framework can obtain domain named entities.Keywords: distant named entity recognition, entity linking, knowledge graph, graph attention neural network
Procedia PDF Downloads 93813 Monocular Depth Estimation Benchmarking with Thermal Dataset
Authors: Ali Akyar, Osman Serdar Gedik
Abstract:
Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers
Procedia PDF Downloads 32812 Approach for Updating a Digital Factory Model by Photogrammetry
Authors: R. Hellmuth, F. Wehner
Abstract:
Factory planning has the task of designing products, plants, processes, organization, areas, and the construction of a factory. The requirements for factory planning and the building of a factory have changed in recent years. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Short-term rescheduling can no longer be handled by on-site inspections and manual measurements. The tight time schedules require up-to-date planning models. Due to the high adaptation rate of factories described above, a methodology for rescheduling factories on the basis of a modern digital factory twin is conceived and designed for practical application in factory restructuring projects. The focus is on rebuild processes. The aim is to keep the planning basis (digital factory model) for conversions within a factory up to date. This requires the application of a methodology that reduces the deficits of existing approaches. The aim is to show how a digital factory model can be kept up to date during ongoing factory operation. A method based on photogrammetry technology is presented. The focus is on developing a simple and cost-effective solution to track the many changes that occur in a factory building during operation. The method is preceded by a hardware and software comparison to identify the most economical and fastest variant.Keywords: digital factory model, photogrammetry, factory planning, restructuring
Procedia PDF Downloads 117811 Deep Vision: A Robust Dominant Colour Extraction Framework for T-Shirts Based on Semantic Segmentation
Authors: Kishore Kumar R., Kaustav Sengupta, Shalini Sood Sehgal, Poornima Santhanam
Abstract:
Fashion is a human expression that is constantly changing. One of the prime factors that consistently influences fashion is the change in colour preferences. The role of colour in our everyday lives is very significant. It subconsciously explains a lot about one’s mindset and mood. Analyzing the colours by extracting them from the outfit images is a critical study to examine the individual’s/consumer behaviour. Several research works have been carried out on extracting colours from images, but to the best of our knowledge, there were no studies that extract colours to specific apparel and identify colour patterns geographically. This paper proposes a framework for accurately extracting colours from T-shirt images and predicting dominant colours geographically. The proposed method consists of two stages: first, a U-Net deep learning model is adopted to segment the T-shirts from the images. Second, the colours are extracted only from the T-shirt segments. The proposed method employs the iMaterialist (Fashion) 2019 dataset for the semantic segmentation task. The proposed framework also includes a mechanism for gathering data and analyzing India’s general colour preferences. From this research, it was observed that black and grey are the dominant colour in different regions of India. The proposed method can be adapted to study fashion’s evolving colour preferences.Keywords: colour analysis in t-shirts, convolutional neural network, encoder-decoder, k-means clustering, semantic segmentation, U-Net model
Procedia PDF Downloads 111810 Automatic Multi-Label Image Annotation System Guided by Firefly Algorithm and Bayesian Method
Authors: Saad M. Darwish, Mohamed A. El-Iskandarani, Guitar M. Shawkat
Abstract:
Nowadays, the amount of available multimedia data is continuously on the rise. The need to find a required image for an ordinary user is a challenging task. Content based image retrieval (CBIR) computes relevance based on the visual similarity of low-level image features such as color, textures, etc. However, there is a gap between low-level visual features and semantic meanings required by applications. The typical method of bridging the semantic gap is through the automatic image annotation (AIA) that extracts semantic features using machine learning techniques. In this paper, a multi-label image annotation system guided by Firefly and Bayesian method is proposed. Firstly, images are segmented using the maximum variance intra cluster and Firefly algorithm, which is a swarm-based approach with high convergence speed, less computation rate and search for the optimal multiple threshold. Feature extraction techniques based on color features and region properties are applied to obtain the representative features. After that, the images are annotated using translation model based on the Net Bayes system, which is efficient for multi-label learning with high precision and less complexity. Experiments are performed using Corel Database. The results show that the proposed system is better than traditional ones for automatic image annotation and retrieval.Keywords: feature extraction, feature selection, image annotation, classification
Procedia PDF Downloads 586809 Genomic Sequence Representation Learning: An Analysis of K-Mer Vector Embedding Dimensionality
Authors: James Jr. Mashiyane, Risuna Nkolele, Stephanie J. Müller, Gciniwe S. Dlamini, Rebone L. Meraba, Darlington S. Mapiye
Abstract:
When performing language tasks in natural language processing (NLP), the dimensionality of word embeddings is chosen either ad-hoc or is calculated by optimizing the Pairwise Inner Product (PIP) loss. The PIP loss is a metric that measures the dissimilarity between word embeddings, and it is obtained through matrix perturbation theory by utilizing the unitary invariance of word embeddings. Unlike in natural language, in genomics, especially in genome sequence processing, unlike in natural language processing, there is no notion of a “word,” but rather, there are sequence substrings of length k called k-mers. K-mers sizes matter, and they vary depending on the goal of the task at hand. The dimensionality of word embeddings in NLP has been studied using the matrix perturbation theory and the PIP loss. In this paper, the sufficiency and reliability of applying word-embedding algorithms to various genomic sequence datasets are investigated to understand the relationship between the k-mer size and their embedding dimension. This is completed by studying the scaling capability of three embedding algorithms, namely Latent Semantic analysis (LSA), Word2Vec, and Global Vectors (GloVe), with respect to the k-mer size. Utilising the PIP loss as a metric to train embeddings on different datasets, we also show that Word2Vec outperforms LSA and GloVe in accurate computing embeddings as both the k-mer size and vocabulary increase. Finally, the shortcomings of natural language processing embedding algorithms in performing genomic tasks are discussed.Keywords: word embeddings, k-mer embedding, dimensionality reduction
Procedia PDF Downloads 137808 Monitoring the Drying and Grinding Process during Production of Celitement through a NIR-Spectroscopy Based Approach
Authors: Carolin Lutz, Jörg Matthes, Patrick Waibel, Ulrich Precht, Krassimir Garbev, Günter Beuchle, Uwe Schweike, Peter Stemmermann, Hubert B. Keller
Abstract:
Online measurement of the product quality is a challenging task in cement production, especially in the production of Celitement, a novel environmentally friendly hydraulic binder. The mineralogy and chemical composition of clinker in ordinary Portland cement production is measured by X-ray diffraction (XRD) and X ray fluorescence (XRF), where only crystalline constituents can be detected. But only a small part of the Celitement components can be measured via XRD, because most constituents have an amorphous structure. This paper describes the development of algorithms suitable for an on-line monitoring of the final processing step of Celitement based on NIR-data. For calibration intermediate products were dried at different temperatures and ground for variable durations. The products were analyzed using XRD and thermogravimetric analyses together with NIR-spectroscopy to investigate the dependency between the drying and the milling processes on one and the NIR-signal on the other side. As a result, different characteristic parameters have been defined. A short overview of the Celitement process and the challenging tasks of the online measurement and evaluation of the product quality will be presented. Subsequently, methods for systematic development of near-infrared calibration models and the determination of the final calibration model will be introduced. The application of the model on experimental data illustrates that NIR-spectroscopy allows for a quick and sufficiently exact determination of crucial process parameters.Keywords: calibration model, celitement, cementitious material, NIR spectroscopy
Procedia PDF Downloads 500807 Frontal Oscillatory Activity and Phase–Amplitude Coupling during Chan Meditation
Authors: Arthur C. Tsai, Chii-Shyang Kuo, Vincent S. C. Chien, Michelle Liou, Philip E. Cheng
Abstract:
Meditation enhances mental abilities and it is an antidote to anxiety. However, very little is known about brain mechanisms and cortico-subcortical interactions underlying meditation-induced anxiety relief. In this study, the changes of phase-amplitude coupling (PAC) in which the amplitude of the beta frequency band were modulated in phase with delta rhythm were investigated after eight-week of meditation training. The study hypothesized that through a concentrate but relaxed mental training the delta-beta coupling in the frontal regions is attenuated. The delta-beta coupling analysis was applied to within and between maximally-independent component sources returned from the extended infomax independent components analysis (ICA) algorithm on the continuous EEG data during mediation. A unique meditative concentration task through relaxing body and mind was used with a constant level of moderate mental effort, so as to approach an ‘emptiness’ meditative state. A pre-test/post-test control group design was used in this study. To evaluate cross-frequency phase-amplitude coupling of component sources, the modulation index (MI) with statistics to calculate circular phase statistics were estimated. Our findings reveal that a significant delta-beta decoupling was observed in a set of frontal regions bilaterally. In addition, beta frequency band of prefrontal component were amplitude modulated in phase with the delta rhythm of medial frontal component.Keywords: phase-amplitude coupling, ICA, meditation, EEG
Procedia PDF Downloads 426806 Self-Efficacy and Attitude of the Graduating Pre-Service Teachers as Influenced in Their Student Teaching Performance
Authors: Sonia Arradaza-Pajaron, Maria Aida Manila
Abstract:
Teaching is considered the noblest yet believed to be one of the most complicated and challenging professions. Along this view, every teacher-producing institution should look into producing quality pre-service graduates who are efficacious enough with the right attitude and to deal with the task accorded to them. This study investigated the association between self-efficacy and attitude of graduating pre-service teachers with their actual student teaching performance. Survey questionnaires on self-efficacy and attitude toward practice teaching were fielded to the 90 actual respondents while their practice teaching grade was extracted to serve as the other main variable. Data were analyzed and treated statistically utilizing weighted mean and Pearson r to determine the relationship of variables of the study. Findings revealed that attitude of respondents of the three curricular programs was favorable, and they are self-efficacious. Their practice teaching performance was interpreted as very good. Results further showed a significant positive relationship between their self-efficacy and practice teaching performance. It showed that their rating was a manifestation of self- efficacious group. Although they exude positive attitude towards practice teaching, yet no significant relationship was seen with their attitude and performance. Moreover, data manifested that most of them can pay attention during their conduct of lessons in the class, as well as, listen attentively to their cooperating teachers during post conferences. They can perform student teaching tasks better even when there were other interesting things to do. Most of all, they can regulate or suppress not so pleasant thoughts or feelings and take things lightly even in most challenging situations. As gleaned from the results, it can be concluded that there was an association between self-efficacy and practice teaching performance of the respondents.Keywords: academic achievement, attitude, self-efficacy, student teaching performance
Procedia PDF Downloads 315805 A Questionnaire-Based Survey: Therapists Response towards Upper Limb Disorder Learning Tool
Authors: Noor Ayuni Che Zakaria, Takashi Komeda, Cheng Yee Low, Kaoru Inoue, Fazah Akhtar Hanapiah
Abstract:
Previous studies have shown that there are arguments regarding the reliability and validity of the Ashworth and Modified Ashworth Scale towards evaluating patients diagnosed with upper limb disorders. These evaluations depended on the raters’ experiences. This initiated us to develop an upper limb disorder part-task trainer that is able to simulate consistent upper limb disorders, such as spasticity and rigidity signs, based on the Modified Ashworth Scale to improve the variability occurring between raters and intra-raters themselves. By providing consistent signs, novice therapists would be able to increase training frequency and exposure towards various levels of signs. A total of 22 physiotherapists and occupational therapists participated in the study. The majority of the therapists agreed that with current therapy education, they still face problems with inter-raters and intra-raters variability (strongly agree 54%; n = 12/22, agree 27%; n = 6/22) in evaluating patients’ conditions. The therapists strongly agreed (72%; n = 16/22) that therapy trainees needed to increase their frequency of training; therefore believe that our initiative to develop an upper limb disorder training tool will help in improving the clinical education field (strongly agree and agree 63%; n = 14/22).Keywords: upper limb disorder, clinical education tool, inter/intra-raters variability, spasticity, modified Ashworth scale
Procedia PDF Downloads 310804 Analysis of the Engineering Judgement Influence on the Selection of Geotechnical Parameters Characteristic Values
Authors: K. Ivandic, F. Dodigovic, D. Stuhec, S. Strelec
Abstract:
A characteristic value of certain geotechnical parameter results from an engineering assessment. Its selection has to be based on technical principles and standards of engineering practice. It has been shown that the results of engineering assessment of different authors for the same problem and input data are significantly dispersed. A survey was conducted in which participants had to estimate the force that causes a 10 cm displacement at the top of a axially in-situ compressed pile. Fifty experts from all over the world took part in it. The lowest estimated force value was 42% and the highest was 133% of measured force resulting from a mentioned static pile load test. These extreme values result in significantly different technical solutions to the same engineering task. In case of selecting a characteristic value of a geotechnical parameter the importance of the influence of an engineering assessment can be reduced by using statistical methods. An informative annex of Eurocode 1 prescribes the method of selecting the characteristic values of material properties. This is followed by Eurocode 7 with certain specificities linked to selecting characteristic values of geotechnical parameters. The paper shows the procedure of selecting characteristic values of a geotechnical parameter by using a statistical method with different initial conditions. The aim of the paper is to quantify an engineering assessment in the example of determining a characteristic value of a specific geotechnical parameter. It is assumed that this assessment is a random variable and that its statistical features will be determined. For this purpose, a survey research was conducted among relevant experts from the field of geotechnical engineering. Conclusively, the results of the survey and the application of statistical method were compared.Keywords: characteristic values, engineering judgement, Eurocode 7, statistical methods
Procedia PDF Downloads 296803 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations
Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay
Abstract:
Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.Keywords: machining, milling operation, tool condition monitoring, tool wear prediction
Procedia PDF Downloads 303802 Refined Edge Detection Network
Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni
Abstract:
Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone
Procedia PDF Downloads 102801 The Impact of Maternity Leave Reforms: Evidence from Finland
Authors: Claudia Troccoli
Abstract:
Childbearing constitutes one of the key factors affecting labour market differences between men and women, accounting for almost a quarter of the gender wage gap. Family leave policies, such as maternity, paternity, and parental leave, represent potential key policy tools to address these inequalities, as they can promote mothers' job continuity and career progression. This paper analyses four major reforms implemented in Finland between the 1960s and the early 1980s. It studies the effects of these maternity and parental leave extensions on mothers' short- and long-run labour market outcomes. Eligibility to longer leave was determined on the basis of the child's date of birth. Therefore, estimation of the causal effects of the reforms is possible by exploiting random variation in children's birthdates and comparing the outcomes of mothers giving birth just before and just after the reform cutoff date. Overall, the three maternity leave reforms did not significantly improve mothers' earnings or employment rates. On the contrary, the estimates, although imprecise, seem to indicate negative effects on women's labour market outcomes. The extension of parental leave is, on the other hand, the only reform that improved mothers' short- and long-term labour market outcomes, both in terms of earnings and employment rate. At the same time, fathers appeared to be negatively affected by the reform. These results provide suggestive evidence that shareable parental leave might have more beneficial effects on mothers' job continuity, as it weakens the connotation of childcare as a task reserved for mothers.Keywords: family policies, Finland, maternal labour market outcomes, maternity leave
Procedia PDF Downloads 137800 Anomaly Detection of Log Analysis using Data Visualization Techniques for Digital Forensics Audit and Investigation
Authors: Mohamed Fadzlee Sulaiman, Zainurrasyid Abdullah, Mohd Zabri Adil Talib, Aswami Fadillah Mohd Ariffin
Abstract:
In common digital forensics cases, investigation may rely on the analysis conducted on specific and relevant exhibits involved. Usually the investigation officer may define and advise digital forensic analyst about the goals and objectives to be achieved in reconstructing the trail of evidence while maintaining the specific scope of investigation. With the technology growth, people are starting to realize the importance of cyber security to their organization and this new perspective creates awareness that digital forensics auditing must come in place in order to measure possible threat or attack to their cyber-infrastructure. Instead of performing investigation on incident basis, auditing may broaden the scope of investigation to the level of anomaly detection in daily operation of organization’s cyber space. While handling a huge amount of data such as log files, performing digital forensics audit for large organization proven to be onerous task for the analyst either to analyze the huge files or to translate the findings in a way where the stakeholder can clearly understand. Data visualization can be emphasized in conducting digital forensic audit and investigation to resolve both needs. This study will identify the important factors that should be considered to perform data visualization techniques in order to detect anomaly that meet the digital forensic audit and investigation objectives.Keywords: digital forensic, data visualization, anomaly detection , log analysis, forensic audit, visualization techniques
Procedia PDF Downloads 287799 Knowledge Based Behaviour Modelling and Execution in Service Robotics
Authors: Suraj Nair, Aravindkumar Vijayalingam, Alexander Perzylo, Alois Knoll
Abstract:
In the last decade robotics research and development activities have grown rapidly, especially in the domain of service robotics. Integrating service robots into human occupied spaces such as homes, offices, hospitals, etc. has become increasingly worked upon. The primary motive is to ease daily lives of humans by taking over some of the household/office chores. However, several challenges remain in systematically integrating such systems in human shared work-spaces. In addition to sensing and indoor-navigation challenges, programmability of such systems is a major hurdle due to the fact that the potential user cannot be expected to have knowledge in robotics or similar mechatronic systems. In this paper, we propose a cognitive system for service robotics which allows non-expert users to easily model system behaviour in an underspecified manner through abstract tasks and objects associated with them. The system uses domain knowledge expressed in the form of an ontology along with logical reasoning mechanisms to infer all the missing pieces of information required for executing the tasks. Furthermore, the system is also capable of recovering from failed tasks arising due to on-line disturbances by using the knowledge base and inferring alternate methods to execute the same tasks. The system is demonstrated through a coffee fetching scenario in an office environment using a mobile robot equipped with sensors and software capabilities for autonomous navigation and human-interaction through natural language.Keywords: cognitive robotics, reasoning, service robotics, task based systems
Procedia PDF Downloads 243798 Automated User Story Driven Approach for Web-Based Functional Testing
Authors: Mahawish Masud, Muhammad Iqbal, M. U. Khan, Farooque Azam
Abstract:
Manual writing of test cases from functional requirements is a time-consuming task. Such test cases are not only difficult to write but are also challenging to maintain. Test cases can be drawn from the functional requirements that are expressed in natural language. However, manual test case generation is inefficient and subject to errors. In this paper, we have presented a systematic procedure that could automatically derive test cases from user stories. The user stories are specified in a restricted natural language using a well-defined template. We have also presented a detailed methodology for writing our test ready user stories. Our tool “Test-o-Matic” automatically generates the test cases by processing the restricted user stories. The generated test cases are executed by using open source Selenium IDE. We evaluate our approach on a case study, which is an open source web based application. Effectiveness of our approach is evaluated by seeding faults in the open source case study using known mutation operators. Results show that the test case generation from restricted user stories is a viable approach for automated testing of web applications.Keywords: automated testing, natural language, restricted user story modeling, software engineering, software testing, test case specification, transformation and automation, user story, web application testing
Procedia PDF Downloads 387