Search results for: response surface analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 35319

Search results for: response surface analysis

34029 Experimental Investigation of the Failure Behavior of a Retaining Wall Constructed with Soil Bags

Authors: Kewei Fan, Sihong Liu, Yi Pik Cheng

Abstract:

This paper aims to analyse the failure behaviour of the retaining wall constructed with soil bags that are formed by filling river sand into woven bags (geosynthetics). Model tests were conducted to obtain the failure mode of the wall, and shear tests on two-layers and five-layers of soil bags were designed to investigate the mechanical characteristics of the interface of soil bags. The test results show that the slip surface in the soil bags-constructed retaining wall is ladder-like due to the inter-layer insertion of soil bags, and the wall above the ladder-like surface undergoes a rigid body translation. The insertion strengthens the shear strength of two-layer staggered-stacked soil bags. Meanwhile, it affects the shape of the slip surface of the five-layer staggered-stacked soil bags. Finally, the interlayer resisting friction of soil bags is found to be related to the shape of the slip surface.

Keywords: geosynthetics, retaining wall, soil bag, failure mode, interface, shear strength

Procedia PDF Downloads 131
34028 Separation of Water/Organic Mixtures Using Micro- and Nanostructured Membranes of Special Type of Wettability

Authors: F. R. Sultanov Ch. Daulbayev, B. Bakbolat, Z. A. Mansurov, A. A. Zhurintaeva, R. I. Gadilshina, A. B. Dugali

Abstract:

Both hydrophilic-oleophobic and hydrophobic-oleophilic membranes were obtained by coating of the substrate of membranes, presented by stainless steel meshes with various dimensions of their openings, with a composition that forms the special type of their surface wettability via spray-coating method. The surface morphology of resulting membranes was studied using SEM, the type of their wettability was identified by measuring the contact angle between the surface of membrane and a drop of studied liquid (water or organic liquid) and efficiency of continuous separation of water and organic liquid was studied on self-assembled setup.

Keywords: membrane, stainless steel mesh, oleophobicity, hydrophobicity, separation, water, organic liquids

Procedia PDF Downloads 167
34027 Graphene Transistor Employing Multilayer Hexagonal Boron Nitride as Substrate and Gate Insulator

Authors: Nikhil Jain, Bin Yu

Abstract:

We explore the potential of using ultra-thin hexagonal boron nitride (h-BN) as both supporting substrate and gate dielectric for graphene-channel field effect transistors (GFETs). Different from commonly used oxide-based dielectric materials which are typically amorphous, very rough in surface, and rich with surface traps, h-BN is layered insulator free of dangling bonds and surface states, featuring atomically smooth surface. In a graphene-channel-last device structure with local buried metal gate electrode (TiN), thin h-BN multilayer is employed as both supporting “substrate” and gate dielectric for graphene active channel. We observed superior carrier mobility and electrical conduction, significantly improved from that in GFETs with SiO2 as substrate/gate insulator. In addition, we report excellent dielectric behavior of layered h-BN, including ultra-low leakage current and high critical electric field for breakdown.

Keywords: graphene, field-effect transistors, hexagonal boron nitride, dielectric strength, tunneling

Procedia PDF Downloads 427
34026 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads

Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill

Abstract:

Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.

Keywords: slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity

Procedia PDF Downloads 343
34025 Fabrication and Characterization Analysis of La-Sr-Co-Fe-O Perovskite Hollow Fiber Catalyst for Oxygen Removal in Landfill Gas

Authors: Seong Woon Lee, Soo Min Lim, Sung Sik Jeong, Jung Hoon Park

Abstract:

The atmospheric concentration of greenhouse gas (GHG, Green House Gas) is increasing continuously as a result of the combustion of fossil fuels and industrial development. In response to this trend, many researches have been conducted on the reduction of GHG. Landfill gas (LFG, Land Fill Gas) is one of largest sources of GHG emissions containing the methane (CH₄) as a major constituent and can be considered renewable energy sources as well. In order to use LFG by connecting to the city pipe network, it required a process for removing impurities. In particular, oxygen must be removed because it can cause corrosion of pipes and engines. In this study, methane oxidation was used to eliminate oxygen from LFG and perovskite-type ceramic catalysts of La-Sr-Co-Fe-O composition was selected as a catalyst. Hollow fiber catalysts (HFC, Hollow Fiber Catalysts) have attracted attention as a new concept alternative because they have high specific surface area and mechanical strength compared to other types of catalysts. HFC was prepared by a phase-inversion/sintering technique using commercial La-Sr-Co-Fe-O powder. In order to measure the catalysts' activity, simulated LFG was used for feed gas and complete oxidation reaction of methane was confirmed. Pore structure of the HFC was confirmed by SEM image and perovskite structure of single phase was analyzed by XRD. In addition, TPR analysis was performed to verify the oxygen adsorption mechanism of the HFC. Acknowledgement—The project is supported by the ‘Global Top Environment R&D Program’ in the ‘R&D Center for reduction of Non-CO₂ Greenhouse gases’ (Development and demonstration of oxygen removal technology of landfill gas) funded by Korea Ministry of Environment (ME).

Keywords: complete oxidation, greenhouse gas, hollow fiber catalyst, land fill gas, oxygen removal, perovskite catalyst

Procedia PDF Downloads 117
34024 Surface Modified Polyvinylidene Fluoride Membranes for Potential Use in Membrane Distillation

Authors: Lebea Nthunya, Arne Verliefde, Bhekie Mamba, Sabelo Mhlanga

Abstract:

A study aimed at developing membrane distillation (MD) processes that can be used for brackish/saline water purification will be presented. MD is a membrane-based technology that presents a possibility to counteract challenges associated with pressure driven membranes at high separation efficiencies. Membrane distillation membranes (MDM) are affected by wettability and fouling. Wetting inside the pores of the membrane is elevated by the hydrophilic characteristic of the membrane, while fouling is mostly induced by the hydrophobic-hydrophobic interaction of pollutants and the surface of the hydrophobic membranes, hence block the pores of the membranes. These properties are not desirable. As such, a carefully designed polyvinylidene fluoride (PVDF) MDM composed of a super-hydrophobic modified backbone and a super-hydrophilic thin layer has been developed to concurrently overcome these challenges. The membranes were characterized using contact angle measurements to confirm their hydrophobicity/hydrophilicity. SEM and SAXS were used to study the morphology and pore distribution on the surface of the membrane. The contact angles of the active surface ≤ 30º and that of the backbone ≥ 140º has thus revealed that the active surface was highly hydrophilic while the backbone was highly hydrophobic. The SEM and the SAXS results have also confirmed that the membranes are highly porous. These materials demonstrated a potential to remove salts from water at high efficiencies.

Keywords: membrane distillation, modification, energy efficiency, desalination

Procedia PDF Downloads 255
34023 Sun-Light Driven Photocatalytic Degradation of Tetracycline Antibiotics Employing Hydrothermally Synthesized sno₂/mnv₂o₆ Heterojunction

Authors: Sandeep Kaushal

Abstract:

Tetracycline (TC) is a widespread antibiotic that is utilised in a multitude of countries, particularly China, India, and the United States of America, due to its low cost and potency in boosting livestock production. Unfortunately, certain antibiotics can be hazardous to living beings due to metal complexation and aggregation, which can lead to teratogenicity and carcinogenicity. Heterojunction photocatalysts are promising for the effective removal of pollutants like antibiotics. Herein, a simple, economical, and pollution-less hydrothermal technique was used to construct SnO₂/MnV₂O₆heterojunction with varying amounts of tin dioxide (SO₂). Various sophisticated techniques like XRD, FTIR, XPS, FESEM, HRTEM, and PLand Raman spectroscopy demonstrated the successful synthesis of SnO₂/MnV₂O₆ heterojunction photocatalysts.BET surface area analysis revealed that the as-synthesized heterojunction has a favorable surface area and surface properties for efficacious degradation of tetracycline. Under the direct sunlight exposure, the SnO₂/MnV₂O₆ heterojunction possessed superior photodegradation activity toward TC than the pristine SnO₂ and MnV2O6owing to their excellent adsorption abilities suitable band positions, large surface areas along with the effective charge-transfer ability of the heterojunction. The SnO₂/MnV₂O₆ heterojunction possessed extraordinary efficiency for the photocatalytic degradation of TC antibiotic (98% in 60 min) with an apparent rate constant of 0.092 min–1. In the degradation experiments, photocatalytic activities of as-synthesized heterojunction were studied by varying different factors such as time contact, catalyst dose, and solution pH. The role of reactive species in antibiotics was validated by radical scavenging studies, which indicated that.OH, radical has a critical role in photocatalytic degradation. Moreover, liquid chromatography-mass spectrometry (LC-MS) investigations were employed to anticipate a plausible mechanism for TC degradation.

Keywords: photocatalytic degradation, tetracycline, heterojunction, LC-MS

Procedia PDF Downloads 106
34022 Neuron Dynamics of Single-Compartment Traub Model for Hardware Implementations

Authors: J. C. Moctezuma, V. Breña-Medina, Jose Luis Nunez-Yanez, Joseph P. McGeehan

Abstract:

In this work we make a bifurcation analysis for a single compartment representation of Traub model, one of the most important conductance-based models. The analysis focus in two principal parameters: current and leakage conductance. Study of stable and unstable solutions are explored; also Hop-bifurcation and frequency interpretation when current varies is examined. This study allows having control of neuron dynamics and neuron response when these parameters change. Analysis like this is particularly important for several applications such as: tuning parameters in learning process, neuron excitability tests, measure bursting properties of the neuron, etc. Finally, a hardware implementation results were developed to corroborate these results.

Keywords: Traub model, Pinsky-Rinzel model, Hopf bifurcation, single-compartment models, bifurcation analysis, neuron modeling

Procedia PDF Downloads 323
34021 Real Time Acquisition and Psychoacoustic Analysis of Brain Wave

Authors: Shweta Singh, Dipali Bansal, Rashima Mahajan

Abstract:

Psychoacoustics has become a potential area of research due to the growing interest of both laypersons and medical and mental health professionals. Non-invasive brain computer interface like Electroencephalography (EEG) is widely being used in this field. An attempt has been made in this paper to examine the response of EEG signals to acoustic stimuli further analysing the brain electrical activity. The real time EEG is acquired for 6 participants using a cost effective and portable EMOTIV EEG neuron headset. EEG data analysis is further done using EMOTIV test bench, EDF browser and EEGLAB (MATLAB Tool) application software platforms. Spectral analysis of acquired neural signals (AF3 channel) using these software platforms are clearly indicative of increased brain activity in various bands. The inferences drawn from such an analysis have significant correlation with subject’s subjective reporting of the experiences. The results suggest that the methodology adopted can further be used to assist patients with sleeping and depressive disorders.

Keywords: OM chant, spectral analysis, EDF browser, EEGLAB, EMOTIV, real time acquisition

Procedia PDF Downloads 281
34020 Predicting Response to Cognitive Behavioral Therapy for Psychosis Using Machine Learning and Functional Magnetic Resonance Imaging

Authors: Eva Tolmeijer, Emmanuelle Peters, Veena Kumari, Liam Mason

Abstract:

Cognitive behavioral therapy for psychosis (CBTp) is effective in many but not all patients, making it important to better understand the factors that determine treatment outcomes. To date, no studies have examined whether neuroimaging can make clinically useful predictions about who will respond to CBTp. To this end, we used machine learning methods that make predictions about symptom improvement at the individual patient level. Prior to receiving CBTp, 22 patients with a diagnosis of schizophrenia completed a social-affective processing task during functional MRI. Multivariate pattern analysis assessed whether treatment response could be predicted by brain activation responses to facial affect that was either socially threatening or prosocial. The resulting models did significantly predict symptom improvement, with distinct multivariate signatures predicting psychotic (r=0.54, p=0.01) and affective (r=0.32, p=0.05) symptoms. Psychotic symptom improvement was accurately predicted from relatively focal threat-related activation across hippocampal, occipital, and temporal regions; affective symptom improvement was predicted by a more dispersed profile of responses to prosocial affect. These findings enrich our understanding of the neurobiological underpinning of treatment response. This study provides a foundation that will hopefully lead to greater precision and tailoring of the interventions offered to patients.

Keywords: cognitive behavioral therapy, machine learning, psychosis, schizophrenia

Procedia PDF Downloads 274
34019 ​​An Overview and Analysis of ChatGPT 3.5/4.0​

Authors: Sarah Mohammed, Huda Allagany, Ayah Barakat, Muna Elyas

Abstract:

This paper delves into the history and development of ChatGPT, tracing its evolution from its inception by OpenAI to its current state, and emphasizing its design improvements and strategic partnerships. It also explores the performance and applicability of ChatGPT versions 3.5 and 4 in various contexts, examining its capabilities and limitations in producing accurate and relevant responses. Utilizing a quantitative approach, user satisfaction, speed of response, learning capabilities, and overall utility in academic performance were assessed through surveys and analysis tools. Findings indicate that while ChatGPT generally delivers high accuracy and speed in responses, the need for clarification and more specific user instructions persists. The study highlights the tool's increasing integration across different sectors, showcasing its potential in educational and professional settings.

Keywords: artificial intelligence, chat GPT, analysis, education

Procedia PDF Downloads 51
34018 Coalescence Cascade of Vertically-aligned Water Drops on a Super-hydrophobic Surface in Silicone Oil

Authors: M. Brik, S. Harmand, I. Zaaroura

Abstract:

This report, an experimental investigation, concerns the sessile daughter drop remaining during the coalescence of water drops in a liquid-liquid (LL) system. The two drops are initially vertically aligned where the sessile drop is deposited on a chemically treated super-hydrophobic surface of a cube fill of silicone oil. In order to analyze the coalescence dynamics, a series of experiments have been performed using a generation droplets system (KRUSS) that measures contact angles as well coupled with a high-speed camera (Keyence VW-9000E) to record the process at a frame rate of 15000s-1. It’s depicted that in such configuration, the head drop volume has a primordial impact on the dynamics of the coalescence process, especially at the last stage. It’s found that for a sessile drop deposited on a super-hydrophobic surface, where the contact angle is about θ ≈ 145°, the coalescence process is remarked to be complete without any recoiling of the coalesced drop or a generation of a sessile daughter drop at the super-hydrophobic surface when the head drop volume is small enough (Vₐᵦ< Vₛ up to Vₐᵦ = 3Vₛ). On the other side, the coalescence process starts to be followed by jumping off the resulted drop as well as a remaining of a small sessile daughter drop on the bottom surface of the cube from a head drop volume Vₐᵦ of about 4 times than that of the sessile drop Vₛ.

Keywords: drops coalescence, dispersed multiphase flow, drops dynamics, liquid-liquid system

Procedia PDF Downloads 144
34017 Silicon Nanostructure Based on Metal-Nanoparticle-Assisted Chemical Etching for Photovoltaic Application

Authors: B. Bouktif, M. Gaidi, M. Benrabha

Abstract:

Metal-nano particle-assisted chemical etching is an extraordinary developed wet etching method of producing uniform semiconductor nanostructure (nanowires) from the patterned metallic film on the crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs). Creation of different SiNWs morphologies by changing the etching time and its effects on optical and optoelectronic properties was investigated. Combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and optoelectronic properties are presented in this paper.

Keywords: semiconductor nanostructure, chemical etching, optoelectronic property, silicon surface

Procedia PDF Downloads 388
34016 Condition Monitoring for Controlling the Stability of the Rotating Machinery

Authors: A. Chellil, I. Gahlouz, S. Lecheb, A. Nour, S. Chellil, H. Mechakra, H. Kebir

Abstract:

In this paper, the experimental study for the instability of a separator rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor are developed. Numerical calculations on the model develop of three dimensions prove that the defects effect has a negative effect on the stability of the rotor. Experimentally, the study of the rotor in the transient system allowed to determine the vibratory responses due to the unbalances and various excitations.

Keywords: rotor, frequency, finite element, specter

Procedia PDF Downloads 382
34015 Spatial Emission of Ions Produced by the APF Plasma Focus Device

Authors: M. Habibi

Abstract:

The angular distribution of ion beam emission from the APF plasma focus device (15kV, 40μf, 115nH) filled with nitrogen gas has been examined through investigating the effect of ion beams on aluminum thin foils in different angular positions. The samples are studied in different distances from the anode end with different shots. The optimum pressure that would be obtained at the applied voltages of 12kV was 0.7 torr. The ions flux declined as the pressure inclined and the maximum ion density at 0.7 torr was about 10.26 × 1022 ions/steradian. The irradiated foils were analyzed with SEM method in order to study their surface and morphological changes. The results of the analysis showed melting and surface evaporation effects and generation of some cracks in the specimens. The result of ion patterns on the samples obtained in this study can be useful in determining ion spatial distributions on the top of anode.

Keywords: plasma focus, spatial distribution, high energy ions, ion angular distribution

Procedia PDF Downloads 458
34014 Relationship between Response of the Resistive Sensors on the Chosen Volatile Organic Compounds (VOCs) and Their Concentration

Authors: Marek Gancarz, Agnieszka Nawrocka, Robert Rusinek, Marcin Tadla

Abstract:

Volatile organic compounds (VOCs) are the fungi metabolites in the gaseous form produced during improper storage of agricultural commodities (e.g. grain, food). The spoilt commodities produce a wide range of VOCs including alcohols, esters, aldehydes, ketones, alkanes, alkenes, furans, phenols etc. The characteristic VOCs and odours can be determined by using electronic nose (e-Nose) which contains a matrix of different kinds of sensors e.g. resistive sensors. The aim of the present studies was to determine relationship between response of the resistive sensors on the chosen volatiles and their concentration. According to the literature, it was chosen volatiles characteristic for the cereals: ethanol, 3-methyl-1-butanol and hexanal. Analysis of the sensor signals shows that a signal shape is different for the different substances. Moreover, each VOC signal gives information about a maximum of the normalized sensor response (R/Rmax), an impregnation time (tIM) and a cleaning time at half maximum of R/Rmax (tCL). These three parameters can be regarded as a ‘VOC fingerprint’. Seven resistive sensors (TGS2600-B00, TGS2602-B00, TGS2610-C00, TGS2611-C00, TGS2611-E00, TGS2612-D00, TGS2620-C00) produced by Figaro USA Inc., and one (AS-MLV-P2) produced by AMS AG, Austria were used. Two out of seven sensors (TGS2611-E00, TGS2612-D00) did not react to the chosen VOCs. The most responsive sensor was AS-MLV-P2. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013.

Keywords: agricultural commodities, organic compounds, resistive sensors, volatile

Procedia PDF Downloads 369
34013 The Impact of COVID-19 Waste on Aquatic Organisms: Nano/microplastics and Molnupiravir in Salmo trutta Embryos and Lervae

Authors: Živilė Jurgelėnė, Vitalijus Karabanovas, Augustas Morkvėnas, Reda Dzingelevičienė, Nerijus Dzingelevičius, Saulius Raugelė, Boguslaw Buszewski

Abstract:

The short- and long-term effects of COVID-19 antiviral drug molnupiravir and micro/nanoplastics on the early development of Salmo trutta were investigated using accumulation and exposure studies. Salmo trutta were used as standardized test organisms in toxicity studies of COVID-19 waste contaminants. The 2D/3D imaging was performed using confocal fluorescence spectral imaging microscopy to assess the uptake, bioaccumulation, and distribution of molnupiravir and micro/nanoplastics complex in live fish. Our study results demonstrated that molnupiravir may interact with a micro/nanoplastics and modify their spectroscopic parameters and toxicity to S. trutta embryos and larvae. The 0.2 µm size microplastics at a concentration of 10 mg/L were found to be stable in aqueous media than 0.02 µm, and 2 µm sizes polymeric particles. This study demonstrated that polymeric particles can adsorb molnupiravir that are present in mixtures and modify the accumulation of molnupiravir in Salmo trutta embryos and larvae. In addition, 2D/3D confocal fluorescence imaging showed that the single polymeric particle hardly accumulates and couldn't penetrate outer tissues of the tested organism. However, co-exposure micro/nanoplastics and molnupiravir could significantly enhance the polymeric particles capability of accumulating on surface tissues and penetrating surface tissue of fish in early development. Exposure to molnupiravir at 2 g/L concentration and co-exposure to micro/nanoplastics and molnupiravir did not bring about survival changes in in the early stages of Salmo trutta development, but we observed the reduction in heart rate and decrease in gill ventilation. The statistical analysis confirmed that micro/nanoplastics used in combination with molnupiravir enhance the toxicity of the latter micro/nanoplastics to embryos and larvae. This research has received funding from the European Regional Development Fund (project No 13.1.1-LMT-K-718-05-0014) under a grant agreement with the Research Council of Lithuania (LMTLT), and it was funded as part of the European Union’s measure in response to the COVID-19 pandemic.

Keywords: fish, micro/nanoplastics, molnupiravir, toxicity

Procedia PDF Downloads 95
34012 Analytical Solutions for Tunnel Collapse Mechanisms in Circular Cross-Section Tunnels under Seepage and Seismic Forces

Authors: Zhenyu Yang, Qiunan Chen, Xiaocheng Huang

Abstract:

Reliable prediction of tunnel collapse remains a prominent challenge in the field of civil engineering. In this study, leveraging the nonlinear Hoek-Brown failure criterion and the upper-bound theorem, an analytical solution for the collapse surface of shallowly buried circular tunnels was derived, taking into account the coupled effects of surface loads and pore water pressures. Initially, surface loads and pore water pressures were introduced as external force factors, equating the energy dissipation rate to the external force, yielding our objective function. Subsequently, the variational method was employed for optimization, and the outcomes were juxtaposed with previous research findings. Furthermore, we utilized the deduced equation set to systematically analyze the influence of various rock mass parameters on collapse shape and extent. To validate our analytical solutions, a comparison with prior studies was executed. The corroboration underscored the efficacy of our proposed methodology, offering invaluable insights for collapse risk assessment in practical engineering applications.

Keywords: tunnel roof stability, analytical solution, hoek–brown failure criterion, limit analysis

Procedia PDF Downloads 84
34011 The Application of Extend Spectrum-Based Pushover Analysis for Seismic Evaluation of Reinforced Concrete Wall Structures

Authors: Yang Liu

Abstract:

Reinforced concrete (RC) shear wall structures are one of the most popular and efficient structural forms for medium- and high-rise buildings to resist the action of earthquake loading. Thus, it is of great significance to evaluate the seismic demands of the RC shear walls. In this paper, the application of the extend spectrum-based pushover analysis (ESPA) method on the seismic evaluation of the shear wall structure is presented. The ESPA method includes a nonlinear consecutive pushover analysis procedure and a linear elastic modal response analysis procedure to consider the combination of modes in both elastic and inelastic cases. It is found from the results of case study that the ESPA method can predict the seismic performance of shear wall structures, including internal forces and deformations very well.

Keywords: reinforced concrete shear wall, seismic performance, high mode effect, nonlinear analysis

Procedia PDF Downloads 157
34010 Fabrication of Superhydrophobic Galvanized Steel by Sintering Zinc Nanopowder

Authors: Francisco Javier Montes Ruiz-Cabello, Guillermo Guerrero-Vacas, Sara Bermudez-Romero, Miguel Cabrerizo Vilchez, Miguel Angel Rodriguez-Valverde

Abstract:

Galvanized steel is one of the widespread metallic materials used in industry. It consists on a iron-based alloy (steel) coated with a layer of zinc with variable thickness. The zinc is aimed to prevent the inner steel from corrosion and staining. Its production is cheaper than the stainless steel and this is the reason why it is employed in the construction of materials with large dimensions in aeronautics, urban/ industrial edification or ski-resorts. In all these applications, turning the natural hydrophilicity of the metal surface into superhydrophobicity is particularly interesting and would open a wide variety of additional functionalities. However, producing a superhydrophobic surface on galvanized steel may be a very difficult task. Superhydrophobic surfaces are characterized by a specific surface texture which is reached either by coating the surface with a material that incorporates such texture, or by conducting several roughening methods. Since galvanized steel is already a coated material, the incorporation of a second coating may be undesired. On the other hand, the methods that are recurrently used to incorporate the surface texture leading to superhydrophobicity in metals are aggressive and may damage their surface. In this work, we used a novel strategy which goal is to produce superhydrophobic galvanized steel by a two-step non-aggressive process. The first process is aimed to create a hierarchical structure by incorporating zinc nanoparticles sintered on the surface at a temperature slightly lower than the zinc’s melting point. The second one is a hydrophobization by a thick fluoropolymer layer deposition. The wettability of the samples is characterized in terms of tilting plate and bouncing drop experiments, while the roughness is analyzed by confocal microscopy. The durability of the produced surfaces was also explored.

Keywords: galvanaized steel, superhydrophobic surfaces, sintering nanoparticles, zinc nanopowder

Procedia PDF Downloads 150
34009 Thermo-Physical Properties and Solubility of CO2 in Piperazine Activated Aqueous Solutions of β-Alanine

Authors: Ghulam Murshid

Abstract:

Carbon dioxide is one of the major greenhouse gas (GHG) contributors. It is an obligation of the industry to reduce the amount of carbon dioxide emission to the acceptable limits. Tremendous research and studies are reported in the past and still the quest to find the suitable and economical solution of this problem needed to be explored in order to develop the most plausible absorber for carbon dioxide removal. Amino acids are reported by the researchers as a potential solvent for absorption of carbon dioxide to replace alkanolamines due to its ability to resist oxidative degradation, low volatility due to its ionic structure and higher surface tension. In addition, the introduction of promoter-like piperazine to amino acid helps to further enhance the solubility. In this work, the effect of piperazine on thermophysical properties and solubility of β-Alanine aqueous solutions were studied for various concentrations. The measured physicochemical properties data was correlated as a function of temperature using least-squares method and the correlation parameters are reported together with it respective standard deviations. The effect of activator piperazine on the CO2 loading performance of selected amino acid under high-pressure conditions (1bar to 10bar) at temperature range of (30 to 60)oC was also studied. Solubility of CO2 decreases with increasing temperature and increases with increasing pressure. Quadratic representation of solubility using Response Surface Methodology (RSM) shows that the most important parameter to optimize solubility is system pressure. The addition of promoter increases the solubility effect of the solvent.

Keywords: amino acids, co2, global warming, solubility

Procedia PDF Downloads 414
34008 Morphological Characteristic of Hybrid Thin Films

Authors: Azyuni Aziz, Syed A. Malik, Shahrul Kadri Ayop, Fatin Hana Naning

Abstract:

Currently, organic-inorganic hybrid thin films have attracted researchers to explore them, where these thin films can give a lot of benefits. Hybrid thin films are thin films that consist of inorganic and organic materials. Inorganic and organic materials give high efficiency and low manufacturing cost in some applications such as solar cells application, furthermore, organic materials are environment-friendly. In this study, poly (3-hexylthiophene) was choosing as organic material which combined with inorganic nanoparticles, Cadmium Sulfide (CdS) quantum dots. Samples were prepared using new technique, Angle Lifting Deposition (ALD) at different weight percentage. All prepared samples were then characterized by Field Emission Scanning Electron Microscopy (FESEM) with Energy-dispersive X-ray spectroscopy (EDX) and Atomic Force Microscopy (AFM) to study surface of samples and determine their surface roughness. Results show that these inorganic nanoparticles have affected the surface of samples and surface roughness of samples increased due to increasing of weight percentage of CdS in the thin films samples.

Keywords: AFM, CdS, FESEM-EDX, hybrid thin films, P3HT

Procedia PDF Downloads 502
34007 Dynamic Response Analyses for Human-Induced Lateral Vibration on Congested Pedestrian Bridges

Authors: M. Yoneda

Abstract:

In this paper, a lateral walking design force per person is proposed and compared with Imperial College test results. Numerical simulations considering the proposed walking design force which is incorporated into the neural-oscillator model are carried out placing much emphasis on the synchronization (the lock-in phenomenon) for a pedestrian bridge model with the span length of 50 m. Numerical analyses are also conducted for an existing pedestrian suspension bridge. As compared with full scale measurements for this suspension bridge, it is confirmed that the analytical method based on the neural-oscillator model might be one of the useful ways to explain the synchronization (the lock-in phenomenon) of pedestrians being on the bridge.

Keywords: pedestrian bridge, human-induced lateral vibration, neural-oscillator, full scale measurement, dynamic response analysis

Procedia PDF Downloads 201
34006 Modeling of a Stewart Platform for Analyzing One Directional Dynamics for Spacecraft Docking Operations

Authors: Leonardo Herrera, Shield B. Lin, Stephen J. Montgomery-Smith, Ziraguen O. Williams

Abstract:

A one-directional dynamic model of a Stewart Platform was developed to assist NASA in analyzing the dynamic response in spacecraft docking operations. A simplified mechanical drawing was created, capturing the physical structure's main features. A simplified schematic diagram was developed into a lumped mass model from the mechanical drawing. Three differential equations were derived according to the schematic diagram. A Simulink diagram was created using MATLAB to represent the three equations. System parameters, including spring constants and masses, are derived in detail from the physical system. The model can be used for further analysis via computer simulation in predicting dynamic response in its main docking direction, i.e., up-and-down motion.

Keywords: stewart platform, docking operation, spacecraft, spring constant

Procedia PDF Downloads 199
34005 Study Properties of Bamboo Composite after Treatment Surface by Chemical Method

Authors: Kiatnarong Supapanmanee, Ekkarin Phongphinittana, Pongsak Nimdum

Abstract:

Natural fibers are readily available raw materials that are widely used as composite materials. The most common problem facing many researchers with composites made from this fiber is the adhesion between the natural fiber contact surface and the matrix material. Part of the problem is due to the hydrophilic properties of natural fibers and the hydrophobic properties of the matrix material. Based on the aforementioned problems, this research selected bamboo fiber, which is a strong natural fiber in the research study. The first step was to study the effect of the mechanical properties of the pure bamboo strip by testing the tensile strength of different measurement lengths. The bamboo strip was modified surface with sodium hydroxide (NaOH) at 6wt% concentrations for different soaking periods. After surface modification, the physical and mechanical properties of the pure bamboo strip fibers were studied. The modified and unmodified bamboo strips were molded into a composite material using epoxy as a matrix to compare the mechanical properties and adhesion between the fiber surface and the material with tensile and bending tests. In addition, the results of these tests were compared with the finite element method (FEM). The results showed that the length of the bamboo strip affects the strength of the fibers, with shorter fibers causing higher tensile stress. Effects of surface modification of bamboo strip with NaOH, this chemical eliminates lignin and hemicellulose, resulting in the smaller dimension of the bamboo strip and increased density. From the pretreatment results above, it was found that the treated bamboo strip and composite material had better Ultimate tensile stress and Young's modulus. Moreover, that results in better adhesion between bamboo fiber and matrix material.

Keywords: bamboo fiber, bamboo strip, composite material, bamboo composite, pure bamboo, surface modification, mechanical properties of bamboo, bamboo finite element method

Procedia PDF Downloads 92
34004 GIS-Based Automatic Flight Planning of Camera-Equipped UAVs for Fire Emergency Response

Authors: Mohammed Sulaiman, Hexu Liu, Mohamed Binalhaj, William W. Liou, Osama Abudayyeh

Abstract:

Emerging technologies such as camera-equipped unmanned aerial vehicles (UAVs) are increasingly being applied in building fire rescue to provide real-time visualization and 3D reconstruction of the entire fireground. However, flight planning of camera-equipped UAVs is usually a manual process, which is not sufficient to fulfill the needs of emergency management. This research proposes a Geographic Information System (GIS)-based approach to automatic flight planning of camera-equipped UAVs for building fire emergency response. In this research, Haversine formula and lawn mowing patterns are employed to automate flight planning based on geometrical and spatial information from GIS. The resulting flight mission satisfies the requirements of 3D reconstruction purposes of the fireground, in consideration of flight execution safety and visibility of camera frames. The proposed approach is implemented within a GIS environment through an application programming interface. A case study is used to demonstrate the effectiveness of the proposed approach. The result shows that flight mission can be generated in a timely manner for application to fire emergency response.

Keywords: GIS, camera-equipped UAVs, automatic flight planning, fire emergency response

Procedia PDF Downloads 125
34003 Study of the Best Algorithm to Estimate Sunshine Duration from Global Radiation on Horizontal Surface for Tropical Region

Authors: Tovondahiniriko Fanjirindratovo, Olga Ramiarinjanahary, Paulisimone Rasoavonjy

Abstract:

The sunshine duration, which is the sum of all the moments when the solar beam radiation is up to a minimal value, is an important parameter for climatology, tourism, agriculture and solar energy. Its measure is usually given by a pyrheliometer installed on a two-axis solar tracker. Due to the high cost of this device and the availability of global radiation on a horizontal surface, on the other hand, several studies have been done to make a correlation between global radiation and sunshine duration. Most of these studies are fitted for the northern hemisphere using a pyrheliometric database. The aim of the present work is to list and assess all the existing methods and apply them to Reunion Island, a tropical region in the southern hemisphere. Using a database of ten years, global, diffuse and beam radiation for a horizontal surface are employed in order to evaluate the uncertainty of existing algorithms for a tropical region. The methodology is based on indirect comparison because the solar beam radiation is not measured but calculated by the beam radiation on a horizontal surface and the sun elevation angle.

Keywords: Carpentras method, data fitting, global radiation, sunshine duration, Slob and Monna algorithm, step algorithm

Procedia PDF Downloads 127
34002 Identifying Dynamic Structural Parameters of Soil-Structure System Based on Data Recorded during Strong Earthquakes

Authors: Vahidreza Mahmoudabadi, Omid Bahar, Mohammad Kazem Jafari

Abstract:

In many applied engineering problems, structural analysis is usually conducted by assuming a rigid bed, while imposing the effect of structure bed flexibility can affect significantly on the structure response. This article focuses on investigation and evaluation of the effects arising from considering a soil-structure system in evaluation of dynamic characteristics of a steel structure with respect to elastic and inelastic behaviors. The recorded structure acceleration during Taiwan’s strong Chi-Chi earthquake on different floors of the structure was our evaluation criteria. The respective structure is an eight-story steel bending frame structure designed using a displacement-based direct method assuring weak beam - strong column function. The results indicated that different identification methods i.e. reverse Fourier transform or transfer functions, is capable to determine some of the dynamic parameters of the structure precisely, rather than evaluating all of them at once (mode frequencies, mode shapes, structure damping, structure rigidity, etc.). Response evaluation based on the input and output data elucidated that the structure first mode is not significantly affected, even considering the soil-structure interaction effect, but the upper modes have been changed. Also, it was found that the response transfer function of the different stories, in which plastic hinges have occurred in the structure components, provides similar results.

Keywords: bending steel frame structure, dynamic characteristics, displacement-based design, soil-structure system, system identification

Procedia PDF Downloads 503
34001 Behavior Factors Evaluation for Reinforced Concrete Structures

Authors: Muhammad Rizwan, Naveed Ahmad, Akhtar Naeem Khan

Abstract:

Seismic behavior factors are evaluated for the performance assessment of low rise reinforced concrete RC frame structures based on experimental study of unidirectional dynamic shake table testing of two 1/3rd reduced scaled two storey frames, with a code confirming special moment resisting frame (SMRF) model and a noncompliant model of similar characteristics but built in low strength concrete .The models were subjected to a scaled accelerogram record of 1994 Northridge earthquake to deformed the test models to final collapse stage in order to obtain the structural response parameters. The fully compliant model was observed with more stable beam-sway response, experiencing beam flexure yielding and ground-storey column base yielding upon subjecting to 100% of the record. The response modification factor - R factor obtained for the code complaint and deficient prototype structures were 7.5 and 4.5 respectively, which is about 10% and 40% less than the UBC-97 specified value for special moment resisting reinforced concrete frame structures.

Keywords: Northridge 1994 earthquake, reinforced concrete frame, response modification factor, shake table testing

Procedia PDF Downloads 173
34000 Using GIS and Map Data for the Analysis of the Relationship between Soil and Groundwater Quality at Saline Soil Area of Kham Sakaesaeng District, Nakhon Ratchasima, Thailand

Authors: W. Thongwat, B. Terakulsatit

Abstract:

The study area is Kham Sakaesaeng District in Nakhon Ratchasima Province, the south section of Northeastern Thailand, located in the Lower Khorat-Ubol Basin. This region is the one of saline soil area, located in a dry plateau and regularly experience standing with periods of floods and alternating with periods of drought. Especially, the drought in the summer season causes the major saline soil and saline water problems of this region. The general cause of dry land salting resulted from salting on irrigated land, and an excess of water leading to the rising water table in the aquifer. The purpose of this study is to determine the relationship of physical and chemical properties between the soil and groundwater. The soil and groundwater samples were collected in both rainy and summer seasons. The content of pH, electrical conductivity (EC), total dissolved solids (TDS), chloride and salinity were investigated. The experimental result of soil and groundwater samples show the slightly pH less than 7, EC (186 to 8,156 us/cm and 960 to 10,712 us/cm), TDS (93 to 3,940 ppm and 480 to 5,356 ppm), chloride content (45.58 to 4,177,015 mg/l and 227.90 to 9,216,736 mg/l), and salinity (0.07 to 4.82 ppt and 0.24 to 14.46 ppt) in the rainy and summer seasons, respectively. The distribution of chloride content and salinity content were interpolated and displayed as a map by using ArcMap 10.3 program, according to the season. The result of saline soil and brined groundwater in the study area were related to the low-lying topography, drought area, and salt-source exposure. Especially, the Rock Salt Member of Maha Sarakham Formation was exposed or lies near the ground surface in this study area. During the rainy season, salt was eroded or weathered from the salt-source rock formation and transported by surface flow or leached into the groundwater. In the dry season, the ground surface is dry enough resulting salt precipitates from the brined surface water or rises from the brined groundwater influencing the increasing content of chloride and salinity in the ground surface and groundwater.

Keywords: environmental geology, soil salinity, geochemistry, groundwater hydrology

Procedia PDF Downloads 120