Search results for: panel stochastic frontier models
6715 Elastoplastic and Ductile Damage Model Calibration of Steels for Bolt-Sphere Joints Used in China’s Space Structure Construction
Authors: Huijuan Liu, Fukun Li, Hao Yuan
Abstract:
The bolted spherical node is a common type of joint in space steel structures. The bolt-sphere joint portion almost always controls the bearing capacity of the bolted spherical node. The investigation of the bearing performance and progressive failure in service often requires high-fidelity numerical models. This paper focuses on the constitutive models of bolt steel and sphere steel used in China’s space structure construction. The elastoplastic model is determined by a standard tensile test and calibrated Voce saturated hardening rule. The ductile damage is found dominant based on the fractography analysis. Then Rice-Tracey ductile fracture rule is selected and the model parameters are calibrated based on tensile tests of notched specimens. These calibrated material models can benefit research or engineering work in similar fields.Keywords: bolt-sphere joint, steel, constitutive model, ductile damage, model calibration
Procedia PDF Downloads 1376714 Modeling Core Flooding Experiments for Co₂ Geological Storage Applications
Authors: Avinoam Rabinovich
Abstract:
CO₂ geological storage is a proven technology for reducing anthropogenic carbon emissions, which is paramount for achieving the ambitious net zero emissions goal. Core flooding experiments are an important step in any CO₂ storage project, allowing us to gain information on the flow of CO₂ and brine in the porous rock extracted from the reservoir. This information is important for understanding basic mechanisms related to CO₂ geological storage as well as for reservoir modeling, which is an integral part of a field project. In this work, a different method for constructing accurate models of CO₂-brine core flooding will be presented. Results for synthetic cases and real experiments will be shown and compared with numerical models to exhibit their predictive capabilities. Furthermore, the various mechanisms which impact the CO₂ distribution and trapping in the rock samples will be discussed, and examples from models and experiments will be provided. The new method entails solving an inverse problem to obtain a three-dimensional permeability distribution which, along with the relative permeability and capillary pressure functions, constitutes a model of the flow experiments. The model is more accurate when data from a number of experiments are combined to solve the inverse problem. This model can then be used to test various other injection flow rates and fluid fractions which have not been tested in experiments. The models can also be used to bridge the gap between small-scale capillary heterogeneity effects (sub-core and core scale) and large-scale (reservoir scale) effects, known as the upscaling problem.Keywords: CO₂ geological storage, residual trapping, capillary heterogeneity, core flooding, CO₂-brine flow
Procedia PDF Downloads 706713 Developing A Third Degree Of Freedom For Opinion Dynamics Models Using Scales
Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle
Abstract:
Opinion dynamics models use an agent-based modeling approach to model people’s opinions. Model's properties are usually explored by testing the two 'degrees of freedom': the interaction rule and the network topology. The latter defines the connection, and thus the possible interaction, among agents. The interaction rule, instead, determines how agents select each other and update their own opinion. Here we show the existence of the third degree of freedom. This can be used for turning one model into each other or to change the model’s output up to 100% of its initial value. Opinion dynamics models represent the evolution of real-world opinions parsimoniously. Thus, it is fundamental to know how real-world opinion (e.g., supporting a candidate) could be turned into a number. Specifically, we want to know if, by choosing a different opinion-to-number transformation, the model’s dynamics would be preserved. This transformation is typically not addressed in opinion dynamics literature. However, it has already been studied in psychometrics, a branch of psychology. In this field, real-world opinions are converted into numbers using abstract objects called 'scales.' These scales can be converted one into the other, in the same way as we convert meters to feet. Thus, in our work, we analyze how this scale transformation may affect opinion dynamics models. We perform our analysis both using mathematical modeling and validating it via agent-based simulations. To distinguish between scale transformation and measurement error, we first analyze the case of perfect scales (i.e., no error or noise). Here we show that a scale transformation may change the model’s dynamics up to a qualitative level. Meaning that a researcher may reach a totally different conclusion, even using the same dataset just by slightly changing the way data are pre-processed. Indeed, we quantify that this effect may alter the model’s output by 100%. By using two models from the standard literature, we show that a scale transformation can transform one model into the other. This transformation is exact, and it holds for every result. Lastly, we also test the case of using real-world data (i.e., finite precision). We perform this test using a 7-points Likert scale, showing how even a small scale change may result in different predictions or a number of opinion clusters. Because of this, we think that scale transformation should be considered as a third-degree of freedom for opinion dynamics. Indeed, its properties have a strong impact both on theoretical models and for their application to real-world data.Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics
Procedia PDF Downloads 1556712 Understanding the Role of Gas Hydrate Morphology on the Producibility of a Hydrate-Bearing Reservoir
Authors: David Lall, Vikram Vishal, P. G. Ranjith
Abstract:
Numerical modeling of gas production from hydrate-bearing reservoirs requires the solution of various thermal, hydrological, chemical, and mechanical phenomena in a coupled manner. Among the various reservoir properties that influence gas production estimates, the distribution of permeability across the domain is one of the most crucial parameters since it determines both heat transfer and mass transfer. The aspect of permeability in hydrate-bearing reservoirs is particularly complex compared to conventional reservoirs since it depends on the saturation of gas hydrates and hence, is dynamic during production. The dependence of permeability on hydrate saturation is mathematically represented using permeability-reduction models, which are specific to the expected morphology of hydrate accumulations (such as grain-coating or pore-filling hydrates). In this study, we demonstrate the impact of various permeability-reduction models, and consequently, different morphologies of hydrate deposits on the estimates of gas production using depressurization at the reservoir scale. We observe significant differences in produced water volumes and cumulative mass of produced gas between the models, thereby highlighting the uncertainty in production behavior arising from the ambiguity in the prevalent gas hydrate morphology.Keywords: gas hydrate morphology, multi-scale modeling, THMC, fluid flow in porous media
Procedia PDF Downloads 2206711 Hybrid Direct Numerical Simulation and Large Eddy Simulating Wall Models Approach for the Analysis of Turbulence Entropy
Authors: Samuel Ahamefula
Abstract:
Turbulent motion is a highly nonlinear and complex phenomenon, and its modelling is still very challenging. In this study, we developed a hybrid computational approach to accurately simulate fluid turbulence phenomenon. The focus is coupling and transitioning between Direct Numerical Simulation (DNS) and Large Eddy Simulating Wall Models (LES-WM) regions. In the framework, high-order fidelity fluid dynamical methods are utilized to simulate the unsteady compressible Navier-Stokes equations in the Eulerian format on the unstructured moving grids. The coupling and transitioning of DNS and LES-WM are conducted through the linearly staggered Dirichlet-Neumann coupling scheme. The high-fidelity framework is verified and validated based on namely, DNS ability for capture full range of turbulent scales, giving accurate results and LES-WM efficiency in simulating near-wall turbulent boundary layer by using wall models.Keywords: computational methods, turbulence modelling, turbulence entropy, navier-stokes equations
Procedia PDF Downloads 1016710 Comparison of Spiking Neuron Models in Terms of Biological Neuron Behaviours
Authors: Fikret Yalcinkaya, Hamza Unsal
Abstract:
To understand how neurons work, it is required to combine experimental studies on neural science with numerical simulations of neuron models in a computer environment. In this regard, the simplicity and applicability of spiking neuron modeling functions have been of great interest in computational neuron science and numerical neuroscience in recent years. Spiking neuron models can be classified by exhibiting various neuronal behaviors, such as spiking and bursting. These classifications are important for researchers working on theoretical neuroscience. In this paper, three different spiking neuron models; Izhikevich, Adaptive Exponential Integrate Fire (AEIF) and Hindmarsh Rose (HR), which are based on first order differential equations, are discussed and compared. First, the physical meanings, derivatives, and differential equations of each model are provided and simulated in the Matlab environment. Then, by selecting appropriate parameters, the models were visually examined in the Matlab environment and it was aimed to demonstrate which model can simulate well-known biological neuron behaviours such as Tonic Spiking, Tonic Bursting, Mixed Mode Firing, Spike Frequency Adaptation, Resonator and Integrator. As a result, the Izhikevich model has been shown to perform Regular Spiking, Continuous Explosion, Intrinsically Bursting, Thalmo Cortical, Low-Threshold Spiking and Resonator. The Adaptive Exponential Integrate Fire model has been able to produce firing patterns such as Regular Ignition, Adaptive Ignition, Initially Explosive Ignition, Regular Explosive Ignition, Delayed Ignition, Delayed Regular Explosive Ignition, Temporary Ignition and Irregular Ignition. The Hindmarsh Rose model showed three different dynamic neuron behaviours; Spike, Burst and Chaotic. From these results, the Izhikevich cell model may be preferred due to its ability to reflect the true behavior of the nerve cell, the ability to produce different types of spikes, and the suitability for use in larger scale brain models. The most important reason for choosing the Adaptive Exponential Integrate Fire model is that it can create rich ignition patterns with fewer parameters. The chaotic behaviours of the Hindmarsh Rose neuron model, like some chaotic systems, is thought to be used in many scientific and engineering applications such as physics, secure communication and signal processing.Keywords: Izhikevich, adaptive exponential integrate fire, Hindmarsh Rose, biological neuron behaviours, spiking neuron models
Procedia PDF Downloads 1816709 Fuzzy Decision Support System for Human-Realistic Overtaking in Railway Traffic Simulations
Authors: Tomáš Vyčítal
Abstract:
In a simulation model of a railway system it is important, besides other crucial algorithms, to have correct behaviour of train overtaking in stochastic conditions. This problem is being addressed in many simulation tools focused on railway traffic, however these are not very human-realistic. The goal of this paper is to create a more human-realistic overtaking decision support system for the use in railway traffic simulations. A fuzzy system has been chosen for this task as fuzzy systems are well-suited for human-like decision making. The fuzzy system designed takes into account timetables, train positions, delays and buffer times as inputs and provides an instruction to overtake or not overtake.Keywords: decision-making support, fuzzy systems, simulation, railway, transport
Procedia PDF Downloads 1406708 Aggregate Production Planning Framework in a Multi-Product Factory: A Case Study
Authors: Ignatio Madanhire, Charles Mbohwa
Abstract:
This study looks at the best model of aggregate planning activity in an industrial entity and uses the trial and error method on spreadsheets to solve aggregate production planning problems. Also linear programming model is introduced to optimize the aggregate production planning problem. Application of the models in a furniture production firm is evaluated to demonstrate that practical and beneficial solutions can be obtained from the models. Finally some benchmarking of other furniture manufacturing industries was undertaken to assess relevance and level of use in other furniture firmsKeywords: aggregate production planning, trial and error, linear programming, furniture industry
Procedia PDF Downloads 5566707 Machine Learning Techniques for Estimating Ground Motion Parameters
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine
Procedia PDF Downloads 1236706 Grid Connected Photovoltaic Micro Inverter
Authors: S. J. Bindhu, Edwina G. Rodrigues, Jijo Balakrishnan
Abstract:
A grid-connected photovoltaic (PV) micro inverter with good performance properties is proposed in this paper. The proposed inverter with a quadrupler, having more efficiency and less voltage stress across the diodes. The stress that come across the diodes that use in the inverter section is considerably low in the proposed converter, also the protection scheme that we provided can eliminate the chances of the error due to fault. The proposed converter is implemented using perturb and observe algorithm so that the fluctuation in the voltage can be reduce and can attain maximum power point. Finally, some simulation and experimental results are also presented to demonstrate the effectiveness of the proposed converter.Keywords: DC-DC converter, MPPT, quadrupler, PV panel
Procedia PDF Downloads 8426705 Inappropriate Prescribing Defined by START and STOPP Criteria and Its Association with Adverse Drug Events among Older Hospitalized Patients
Authors: Mohd Taufiq bin Azmy, Yahaya Hassan, Shubashini Gnanasan, Loganathan Fahrni
Abstract:
Inappropriate prescribing in older patients has been associated with resource utilization and adverse drug events (ADE) such as hospitalization, morbidity and mortality. Globally, there is a lack of published data on ADE induced by inappropriate prescribing. Our study is specific to an older population and is aimed at identifying risk factors for ADE and to develop a model that will link ADE to inappropriate prescribing. The design of the study was prospective whereby computerized medical records of 302 hospitalized elderly aged 65 years and above in 3 public hospitals in Malaysia (Hospital Serdang, Hospital Selayang and Hospital Sungai Buloh) were studied over a 7 month period from September 2013 until March 2014. Potentially inappropriate medications and potential prescribing omissions were determined using the published and validated START-STOPP criteria. Patients who had at least one inappropriate medication were included in Phase II of the study where ADE were identified by local expert consensus panel based on the published and validated Naranjo ADR probability scale. The panel also assessed whether ADE were causal or contributory to current hospitalization. The association between inappropriate prescribing and ADE (hospitalization, mortality and adverse drug reactions) was determined by identifying whether or not the former was causal or contributory to the latter. Rate of ADE avoidability was also determined. Our findings revealed that the prevalence of potential inappropriate prescribing was 58.6%. A total of ADEs were detected in 31 of 105 patients (29.5%) when STOPP criteria were used to identify potentially inappropriate medication; All of the 31 ADE (100%) were considered causal or contributory to admission. Of the 31 ADEs, 28 (90.3%) were considered avoidable or potentially avoidable. After adjusting for age, sex, comorbidity, dementia, baseline activities of daily living function, and number of medications, the likelihood of a serious avoidable ADE increased significantly when a potentially inappropriate medication was prescribed (odds ratio, 11.18; 95% confidence interval [CI], 5.014 - 24.93; p < .001). The medications identified by STOPP criteria, are significantly associated with avoidable ADE in older people that cause or contribute to urgent hospitalization but contributed less towards morbidity and mortality. Findings of the study underscore the importance of preventing inappropriate prescribing.Keywords: adverse drug events, appropriate prescribing, health services research
Procedia PDF Downloads 3996704 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models
Authors: I. V. Pinto, M. R. Sooriyarachchi
Abstract:
It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.Keywords: goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, penalized quasi-likelihood, power, quasi-likelihood, type-I error
Procedia PDF Downloads 1426703 Using Machine Learning to Classify Different Body Parts and Determine Healthiness
Authors: Zachary Pan
Abstract:
Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.Keywords: body part, healthcare, machine learning, neural networks
Procedia PDF Downloads 1046702 Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process
Authors: Oluwatosin Olofintoye, Josiah Adeyemo, Gbemileke Shomade
Abstract:
The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed.Keywords: artificial intelligence, artificial neural networks, evolutionary algorithms, gradient training method, rainfall-runoff model
Procedia PDF Downloads 4546701 Control of Photovoltaic System Interfacing Grid
Authors: Zerzouri Nora
Abstract:
In this paper, author presented the generalities of a photovoltaic system study and simulation. Author inserted the DC-DC converter to raise the voltage level and improve the operation of the PV panel by continuing the operating point at maximum power by using the Perturb and Observe technique (P&O). The connection to the network is made by inserting a three-phase voltage inverter allowing synchronization with the network the inverter is controlled by a PWM control. The simulation results allow the author to visualize the operation of the different components of the system, as well as the behavior of the system during the variation of meteorological values.Keywords: photovoltaic generator PV, boost converter, P&O MPPT, PWM inverter, three phase grid
Procedia PDF Downloads 1196700 The Effect of Symmetry on the Perception of Happiness and Boredom in Design Products
Authors: Michele Sinico
Abstract:
The present research investigates the effect of symmetry on the perception of happiness and boredom in design products. Three experiments were carried out in order to verify the degree of the visual expressive value on different models of bookcases, wall clocks, and chairs. 60 participants directly indicated the degree of happiness and boredom using 7-point rating scales. The findings show that the participants acknowledged a different value of expressive quality in the different product models. Results show also that symmetry is not a significant constraint for an emotional design project.Keywords: product experience, emotional design, symmetry, expressive qualities
Procedia PDF Downloads 1476699 Airliner-UAV Flight Formation in Climb Regime
Authors: Pavel Zikmund, Robert Popela
Abstract:
Extreme formation is a theoretical concept of self-sustain flight when a big Airliner is followed by a small UAV glider flying in airliner’s wake vortex. The paper presents results of climb analysis with a goal to lift the gliding UAV to airliner’s cruise altitude. Wake vortex models, the UAV drag polar and basic parameters and airliner’s climb profile are introduced at first. Then, flight performance of the UAV in the wake vortex is evaluated by analytical methods. Time history of optimal distance between the airliner and the UAV during the climb is determined. The results are encouraging, therefore available UAV drag margin for electricity generation is figured out for different vortex models.Keywords: flight in formation, self-sustained flight, UAV, wake vortex
Procedia PDF Downloads 4416698 Factors of Non-Conformity Behavior and the Emergence of a Ponzi Game in the Riba-Free (Interest-Free) Banking System of Iran
Authors: Amir Hossein Ghaffari Nejad, Forouhar Ferdowsi, Reza Mashhadi
Abstract:
In the interest-free banking system of Iran, the savings of society are in the form of bank deposits, and banks using the Islamic contracts, allocate the resources to applicants for obtaining facilities and credit. In the meantime, the central bank, with the aim of introducing monetary policy, determines the maximum interest rate on bank deposits in terms of macroeconomic requirements. But in recent years, the country's economic constraints with the stagflation and the consequence of the institutional weaknesses of the financial market of Iran have resulted in massive disturbances in the balance sheet of the banking system, resulting in a period of mismatch maturity in the banks' assets and liabilities and the implementation of a Ponzi game. This issue caused determination of the interest rate in long-term bank deposit contracts to be associated with non-observance of the maximum rate set by the central bank. The result of this condition was in the allocation of new sources of equipment to meet past commitments towards the old depositors and, as a result, a significant part of the supply of equipment was leaked out of the facilitating cycle and credit crunch emerged. The purpose of this study is to identify the most important factors affecting the occurrence of non-confirmatory financial banking behavior using data from 19 public and private banks of Iran. For this purpose, the causes of this non-confirmatory behavior of banks have been investigated using the panel vector autoregression method (PVAR) for the period of 2007-2015. Granger's causality test results suggest that the return of parallel markets for bank deposits, non-performing loans and the high share of the ratio of facilities to banks' deposits are all a cause of the formation of non-confirmatory behavior. Also, according to the results of impulse response functions and variance decomposition, NPL and the ratio of facilities to deposits have the highest long-term effect and also have a high contribution to explaining the changes in banks' non-confirmatory behavior in determining the interest rate on deposits.Keywords: non-conformity behavior, Ponzi Game, panel vector autoregression, nonperforming loans
Procedia PDF Downloads 2186697 Determinants of Profit Efficiency among Poultry Egg Farmers in Ondo State, Nigeria: A Stochastic Profit Function Approach
Authors: Olufunke Olufunmilayo Ilemobayo, Barakat. O Abdulazeez
Abstract:
Profit making among poultry egg farmers has been a challenge to efficient distribution of scarce farm resources over the years, due majorly to low capital base, inefficient management, technical inefficiency, economic inefficiency, thus poultry egg production has moved into an underperformed situation, characterised by low profit margin. Though previous studies focus mainly on broiler production and efficiency of its production, however, paucity of information exist in the areas of profit efficiency in the study area. Hence, determinants of profit efficiency among poultry egg farmers in Ondo State, Nigeria were investigated. A purposive sampling technique was used to obtain primary data from poultry egg farmers in Owo and Akure local government area of Ondo State, through a well-structured questionnaire. socio-economic characteristics such as age, gender, educational level, marital status, household size, access to credit, extension contact, other variables were input and output data like flock size, cost of feeder and drinker, cost of feed, cost of labour, cost of drugs and medications, cost of energy, price of crate of table egg, price of spent layers were variables used in the study. Data were analysed using descriptive statistics, budgeting analysis, and stochastic profit function/inefficiency model. Result of the descriptive statistics shows that 52 per cent of the poultry farmers were between 31-40 years, 62 per cent were male, 90 per cent had tertiary education, 66 per cent were primarily poultry farmers, 78 per cent were original poultry farm owners and 55 per cent had more than 5 years’ work experience. Descriptive statistics on cost and returns indicated that 64 per cent of the return were from sales of egg, while the remaining 36 per cent was from sales of spent layers. The cost of feeding take the highest proportion of 69 per cent of cost of production and cost of medication the lowest (7 per cent). A positive gross margin of N5, 518,869.76, net farm income of ₦ 5, 500.446.82 and net return on investment of 0.28 indicated poultry egg production is profitable. Equipment’s cost (22.757), feeding cost (18.3437), labour cost (136.698), flock size (16.209), drug and medication cost (4.509) were factors that affecting profit efficiency, while education (-2.3143), household size (-18.4291), access to credit (-16.027), and experience (-7.277) were determinant of profit efficiency. Education, household size, access to credit and experience in poultry production were the main determinants of profit efficiency of poultry egg production in Ondo State. Other factors that affect profit efficiency were cost of feeding, cost of labour, flock size, cost of drug and medication, they positively and significantly influenced profit efficiency in Ondo State, Nigeria.Keywords: cost and returns, economic inefficiency, profit margin, technical inefficiency
Procedia PDF Downloads 1296696 The Efficiency Analysis in the Health Sector: Marmara Region
Authors: Hale Kirer Silva Lecuna, Beyza Aydin
Abstract:
Health is one of the main components of human capital and sustainable development, and it is very important for economic growth. Health economics, which is an indisputable part of the science of economics, has five stages in general. These are health and development, financing of health services, economic regulation in the health, allocation of resources and efficiency of health services. A well-developed and efficient health sector plays a major role by increasing the level of development of countries. The most crucial pillars of the health sector are the hospitals that are divided into public and private. The main purpose of the hospitals is to provide more efficient services. Therefore the aim is to meet patients’ satisfaction by increasing the service quality. Health-related studies in Turkey date back to the Ottoman and Seljuk Empires. In the near past, Turkey applied 'Health Sector Transformation Programs' under different titles between 2003 and 2010. Our aim in this paper is to measure how effective these transformation programs are for the health sector, to see how much they can increase the efficiency of hospitals over the years, to see the return of investments, to make comments and suggestions on the results, and to provide a new reference for the literature. Within this framework, the public and private hospitals in Balıkesir, Bilecik, Bursa, Çanakkale, Edirne, Istanbul, Kirklareli, Kocaeli, Sakarya, Tekirdağ, Yalova will be examined by using Data Envelopment Analysis (DEA) for the years between 2000 and 2019. DEA is a linear programming-based technique, which gives relatively good results in multivariate studies. DEA basically estimates an efficiency frontier and make a comparison. Constant returns to scale and variable returns to scale are two most commonly used DEA methods. Both models are divided into two as input and output-oriented. To analyze the data, the number of personnel, number of specialist physicians, number of practitioners, number of beds, number of examinations will be used as input variables; and the number of surgeries, in-patient ratio, and crude mortality rate as output variables. 11 hospitals belonging to the Marmara region were included in the study. It is seen that these hospitals worked effectively only in 7 provinces (Balıkesir, Bilecik, Bursa, Edirne, İstanbul, Kırklareli, Yalova) for the year 2001 when no transformation program was implemented. After the transformation program was implemented, for example, in 2014 and 2016, 10 hospitals (Balıkesir, Bilecik, Bursa, Çanakkale, Edirne, İstanbul, Kocaeli, Kırklareli, Tekirdağ, Yalova) were found to be effective. In 2015, ineffective results were observed for Sakarya, Tekirdağ and Yalova. However, since these values are closer to 1 after the transformation program, we can say that the transformation program has positive effects. For Sakarya alone, no effective results have been achieved in any year. When we look at the results in general, it shows that the transformation program has a positive effect on the effectiveness of hospitals.Keywords: data envelopment analysis, efficiency, health sector, Marmara region
Procedia PDF Downloads 1306695 Problem Gambling in the Conceptualization of Health Professionals: A Qualitative Analysis of the Discourses Produced by Psychologists, Psychiatrists and General Practitioners
Authors: T. Marinaci, C. Venuleo
Abstract:
Different conceptualizations of disease affect patient care. This study aims to address this gap. It explores how health professionals conceptualize gambling problem, addiction and the goals of recovery process. In-depth, semi-structured, open-ended interviews were conducted with Italian psychologists, psychiatrists, general practitioners, and support staff (N= 114), working within health centres for the treatment of addiction (public health services or therapeutic communities) or medical offices. A Lexical Correspondence Analysis (LCA) was applied to the verbatim transcripts. LCA allowed to identify two main factorial dimensions, which organize similarity and dissimilarity in the discourses of the interviewed. The first dimension labelled 'Models of relationship with the problem', concerns two different models of relationship with the health problem: one related to the request for help and the process of taking charge and the other related to the identification of the psychopathology underlying the disorder. The second dimension, labelled 'Organisers of the intervention' reflects the dialectic between two ways to address the problem. On the one hand, they are the gambling dynamics and its immediate life-consequences to organize the intervention (whatever the request of the user is); on the other hand, they are the procedures and the tools which characterize the health service to organize the way the professionals deal with the user’ s problem (whatever it is and despite the specify of the user’s request). The results highlight how, despite the differences, the respondents share a central assumption: understanding gambling problem implies the reference to the gambler’s identity, more than, for instance, to the relational, social, cultural or political context where the gambler lives. A passive stance is attributed to the user, who does not play any role in the definition of the goal of the intervention. The results will be discussed to highlight the relationship between professional models and users’ ways to understand and deal with the problems related to gambling.Keywords: cultural models, health professionals, intervention models, problem gambling
Procedia PDF Downloads 1546694 Probing Syntax Information in Word Representations with Deep Metric Learning
Authors: Bowen Ding, Yihao Kuang
Abstract:
In recent years, with the development of large-scale pre-trained lan-guage models, building vector representations of text through deep neural network models has become a standard practice for natural language processing tasks. From the performance on downstream tasks, we can know that the text representation constructed by these models contains linguistic information, but its encoding mode and extent are unclear. In this work, a structural probe is proposed to detect whether the vector representation produced by a deep neural network is embedded with a syntax tree. The probe is trained with the deep metric learning method, so that the distance between word vectors in the metric space it defines encodes the distance of words on the syntax tree, and the norm of word vectors encodes the depth of words on the syntax tree. The experiment results on ELMo and BERT show that the syntax tree is encoded in their parameters and the word representations they produce.Keywords: deep metric learning, syntax tree probing, natural language processing, word representations
Procedia PDF Downloads 686693 Prediction of Bodyweight of Cattle by Artificial Neural Networks Using Digital Images
Authors: Yalçın Bozkurt
Abstract:
Prediction models were developed for accurate prediction of bodyweight (BW) by using Digital Images of beef cattle body dimensions by Artificial Neural Networks (ANN). For this purpose, the animal data were collected at a private slaughter house and the digital images and the weights of each live animal were taken just before they were slaughtered and the body dimensions such as digital wither height (DJWH), digital body length (DJBL), digital body depth (DJBD), digital hip width (DJHW), digital hip height (DJHH) and digital pin bone length (DJPL) were determined from the images, using the data with 1069 observations for each traits. Then, prediction models were developed by ANN. Digital body measurements were analysed by ANN for body prediction and R2 values of DJBL, DJWH, DJHW, DJBD, DJHH and DJPL were approximately 94.32, 91.31, 80.70, 83.61, 89.45 and 70.56 % respectively. It can be concluded that in management situations where BW cannot be measured it can be predicted accurately by measuring DJBL and DJWH alone or both DJBD and even DJHH and different models may be needed to predict BW in different feeding and environmental conditions and breedsKeywords: artificial neural networks, bodyweight, cattle, digital body measurements
Procedia PDF Downloads 3726692 Forecasting Equity Premium Out-of-Sample with Sophisticated Regression Training Techniques
Authors: Jonathan Iworiso
Abstract:
Forecasting the equity premium out-of-sample is a major concern to researchers in finance and emerging markets. The quest for a superior model that can forecast the equity premium with significant economic gains has resulted in several controversies on the choice of variables and suitable techniques among scholars. This research focuses mainly on the application of Regression Training (RT) techniques to forecast monthly equity premium out-of-sample recursively with an expanding window method. A broad category of sophisticated regression models involving model complexity was employed. The RT models include Ridge, Forward-Backward (FOBA) Ridge, Least Absolute Shrinkage and Selection Operator (LASSO), Relaxed LASSO, Elastic Net, and Least Angle Regression were trained and used to forecast the equity premium out-of-sample. In this study, the empirical investigation of the RT models demonstrates significant evidence of equity premium predictability both statistically and economically relative to the benchmark historical average, delivering significant utility gains. They seek to provide meaningful economic information on mean-variance portfolio investment for investors who are timing the market to earn future gains at minimal risk. Thus, the forecasting models appeared to guarantee an investor in a market setting who optimally reallocates a monthly portfolio between equities and risk-free treasury bills using equity premium forecasts at minimal risk.Keywords: regression training, out-of-sample forecasts, expanding window, statistical predictability, economic significance, utility gains
Procedia PDF Downloads 1076691 Structure of Turbulence Flow in the Wire-Wrappes Fuel Assemblies of BREST-OD-300
Authors: Dmitry V. Fomichev, Vladimir I. Solonin
Abstract:
In this paper, experimental and numerical study of hydrodynamic characteristics of the air coolant flow in the test wire-wrapped assembly is presented. The test assembly has 37 rods, which are similar to the real fuel pins of the BREST-OD-300 fuel assemblies geometrically. Air open loop test facility installed at the “Nuclear Power Plants and Installations” department of BMSTU was used to obtain the experimental data. The obtaining altitudinal distribution of static pressure in the near-wall test assembly as well as velocity and temperature distribution of coolant flow in the test sections can give us some new knowledge about the mechanism of formation of the turbulence flow structure in the wire wrapped fuel assemblies. Numerical simulations of the turbulence flow has been accomplished using ANSYS Fluent 14.5. Different non-local turbulence models have been considered, such as standard and RNG k-e models and k-w SST model. Results of numerical simulations of the flow based on the considered turbulence models give the best agreement with the experimental data and help us to carry out strong analysis of flow characteristics.Keywords: wire-spaces fuel assembly, turbulent flow structure, computation fluid dynamics
Procedia PDF Downloads 4596690 The Relationship between Working Models and Psychological Safety
Authors: Rosyellen Rabelo Szvarça, Pedro Fialho, Auristela Duarte de Lima Moser
Abstract:
Background: New ways of working, such as teleworking or hybrid working, have changed and have impacted both employees and organizations. To understand the individuals' perceptions among different working models, this study aimed to investigate levels of psychological safety among employees working in person, hybrid, and remote environments and the correlation of demographic or professional characteristics. Methods: A cross-sectional survey was distributed electronically. A self-administered questionnaire was composed of sociodemographic data, academic status, professional contexts, working models, and the seven-item instrument of psychological safety. The psychological safety instrument was computed to determine its reliability, showing a Cronbach’s 0.75, considering a good scale when compared to the original, analyzed with 51 teams from a North American company, with a Cronbach's alpha coefficient of 0.82. Results: The survey was completed by 328 individuals, 60% of whom were in-person, 29.3% hybrid, and 10.7% remote. The Chi-Square test with the Bonferroni post-test for qualitative variables associated with the working models indicates a significant association (p 0.001) for academic qualifications. In-person models present 29.4% of individuals with secondary education and 38.1% undergraduate; hybrid present 51% postgraduate and 35.4% undergraduate. This was similar to remote workers, with 48.6% postgraduate and 34.3% undergraduate. There were no significant differences in gender composition between work models (p = 0.738), with most respondents being female in all three work groups. Remote workers predominated in areas such as commerce, marketing, and services; education and the public sector were common in the in-person group, while technology and the financial sector were predominant among hybrid workers (p < 0.001). As for leadership roles, there was no significant association with working models (p = 0.126). The decision on the working model was predominantly made by the organization for in-person and hybrid workers (p < 0.001). Preference for the working model was in line with the workers' scenario at that time (p < 0.001). Kruskal-Wallis test with Bonferroni's post hoc test compared the psychological safety scores between working groups, reveling statistically higher scores in hybrid group x̃ = 5.64 compared to in-person group x̃ = 5, with remote workers showing scores similar to other groups x̃ = 5.43 (p = 0.004). Age demonstrated no significant difference between the working groups (p = 0.052). On the other hand, organization tenure and job tenure were higher in in-person groups compared to the hybrid and remote groups (p < 0.001). The hybrid model illustrates a balance between in-person and remote models. The results highlight that higher levels of psychological safety can be correlated with the flexibility of hybrid work, as well as physical interaction, spontaneity, and informal relationships, which are considered determinants of high levels of psychological safety. Conclusions: Psychological safety at the group level using the seven-item scale is widely employed in comparison to other commonly employed measures. Despite psychological safety having been around for decades, primarily studied in in-person work contexts, the current findings contribute to expanding research with hybrid or remote settings. Ultimately, this investigation has demonstrated the significance of work models in assessing psychological safety levels.Keywords: hybrid work, new ways of working, psychological safety, workplace, working models
Procedia PDF Downloads 26689 Advances in Design Decision Support Tools for Early-stage Energy-Efficient Architectural Design: A Review
Authors: Maryam Mohammadi, Mohammadjavad Mahdavinejad, Mojtaba Ansari
Abstract:
The main driving force for increasing movement towards the design of High-Performance Buildings (HPB) are building codes and rating systems that address the various components of the building and their impact on the environment and energy conservation through various methods like prescriptive methods or simulation-based approaches. The methods and tools developed to meet these needs, which are often based on building performance simulation tools (BPST), have limitations in terms of compatibility with the integrated design process (IDP) and HPB design, as well as use by architects in the early stages of design (when the most important decisions are made). To overcome these limitations in recent years, efforts have been made to develop Design Decision Support Systems, which are often based on artificial intelligence. Numerous needs and steps for designing and developing a Decision Support System (DSS), which complies with the early stages of energy-efficient architecture design -consisting of combinations of different methods in an integrated package- have been listed in the literature. While various review studies have been conducted in connection with each of these techniques (such as optimizations, sensitivity and uncertainty analysis, etc.) and their integration of them with specific targets; this article is a critical and holistic review of the researches which leads to the development of applicable systems or introduction of a comprehensive framework for developing models complies with the IDP. Information resources such as Science Direct and Google Scholar are searched using specific keywords and the results are divided into two main categories: Simulation-based DSSs and Meta-simulation-based DSSs. The strengths and limitations of different models are highlighted, two general conceptual models are introduced for each category and the degree of compliance of these models with the IDP Framework is discussed. The research shows movement towards Multi-Level of Development (MOD) models, well combined with early stages of integrated design (schematic design stage and design development stage), which are heuristic, hybrid and Meta-simulation-based, relies on Big-real Data (like Building Energy Management Systems Data or Web data). Obtaining, using and combining of these data with simulation data to create models with higher uncertainty, more dynamic and more sensitive to context and culture models, as well as models that can generate economy-energy-efficient design scenarios using local data (to be more harmonized with circular economy principles), are important research areas in this field. The results of this study are a roadmap for researchers and developers of these tools.Keywords: integrated design process, design decision support system, meta-simulation based, early stage, big data, energy efficiency
Procedia PDF Downloads 1626688 Proposed Alternative System for Existing Traffic Signal System
Authors: Alluri Swaroopa, L. V. N. Prasad
Abstract:
Alone with fast urbanization in world, traffic control problem became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown.Keywords: bridges, junctions, ramps, urban traffic control
Procedia PDF Downloads 5546687 Airport Check-In Optimization by IP and Simulation in Combination
Authors: Ahmed Al-Sultan
Abstract:
The check-in area of airport terminal is one of the busiest sections at airports at certain periods. The passengers are subjected to queues and delays during the check-in process. These delays and queues are due to constraints in the capacity of service facilities. In this project, the airport terminal is decomposed into several check-in areas. The airport check-in scheduling problem requires both a deterministic (integer programming) and stochastic (simulation) approach. Integer programming formulations are provided to minimize the total number of counters in each check-in area under the realistic constraint that counters for one and the same flight should be adjacent and the desired number of counters remaining in each area should be fixed during check-in operations. By using simulation, the airport system can be modeled to study the effects of various parameters such as number of passengers on a flight and check-in counter opening and closing time.Keywords: airport terminal, integer programming, scheduling, simulation
Procedia PDF Downloads 3896686 Development of an Interactive Display-Control Layout Design System for Trains Based on Train Drivers’ Mental Models
Authors: Hyeonkyeong Yang, Minseok Son, Taekbeom Yoo, Woojin Park
Abstract:
Human error is the most salient contributing factor to railway accidents. To reduce the frequency of human errors, many researchers and train designers have adopted ergonomic design principles for designing display-control layout in rail cab. There exist a number of approaches for designing the display control layout based on optimization methods. However, the ergonomically optimized layout design may not be the best design for train drivers, since the drivers have their own mental models based on their experiences. Consequently, the drivers may prefer the existing display-control layout design over the optimal design, and even show better driving performance using the existing design compared to that using the optimal design. Thus, in addition to ergonomic design principles, train drivers’ mental models also need to be considered for designing display-control layout in rail cab. This paper developed an ergonomic assessment system of display-control layout design, and an interactive layout design system that can generate design alternatives and calculate ergonomic assessment score in real-time. The design alternatives generated from the interactive layout design system may not include the optimal design from the ergonomics point of view. However, the system’s strength is that it considers train drivers’ mental models, which can help generate alternatives that are more friendly and easier to use for train drivers. Also, with the developed system, non-experts in ergonomics, such as train drivers, can refine the design alternatives and improve ergonomic assessment score in real-time.Keywords: display-control layout design, interactive layout design system, mental model, train drivers
Procedia PDF Downloads 306