Search results for: model based clustering
36738 Efficient Model Order Reduction of Descriptor Systems Using Iterative Rational Krylov Algorithm
Authors: Muhammad Anwar, Ameen Ullah, Intakhab Alam Qadri
Abstract:
This study presents a technique utilizing the Iterative Rational Krylov Algorithm (IRKA) to reduce the order of large-scale descriptor systems. Descriptor systems, which incorporate differential and algebraic components, pose unique challenges in Model Order Reduction (MOR). The proposed method partitions the descriptor system into polynomial and strictly proper parts to minimize approximation errors, applying IRKA exclusively to the strictly adequate component. This approach circumvents the unbounded errors that arise when IRKA is directly applied to the entire system. A comparative analysis demonstrates the high accuracy of the reduced model and a significant reduction in computational burden. The reduced model enables more efficient simulations and streamlined controller designs. The study highlights IRKA-based MOR’s effectiveness in optimizing complex systems’ performance across various engineering applications. The proposed methodology offers a promising solution for reducing the complexity of large-scale descriptor systems while maintaining their essential characteristics and facilitating their analysis, simulation, and control design.Keywords: model order reduction, descriptor systems, iterative rational Krylov algorithm, interpolatory model reduction, computational efficiency, projection methods, H₂-optimal model reduction
Procedia PDF Downloads 3136737 Research on Construction of Subject Knowledge Base Based on Literature Knowledge Extraction
Authors: Yumeng Ma, Fang Wang, Jinxia Huang
Abstract:
Researchers put forward higher requirements for efficient acquisition and utilization of domain knowledge in the big data era. As literature is an effective way for researchers to quickly and accurately understand the research situation in their field, the knowledge discovery based on literature has become a new research method. As a tool to organize and manage knowledge in a specific domain, the subject knowledge base can be used to mine and present the knowledge behind the literature to meet the users' personalized needs. This study designs the construction route of the subject knowledge base for specific research problems. Information extraction method based on knowledge engineering is adopted. Firstly, the subject knowledge model is built through the abstraction of the research elements. Then under the guidance of the knowledge model, extraction rules of knowledge points are compiled to analyze, extract and correlate entities, relations, and attributes in literature. Finally, a database platform based on this structured knowledge is developed that can provide a variety of services such as knowledge retrieval, knowledge browsing, knowledge q&a, and visualization correlation. Taking the construction practices in the field of activating blood circulation and removing stasis as an example, this study analyzes how to construct subject knowledge base based on literature knowledge extraction. As the system functional test shows, this subject knowledge base can realize the expected service scenarios such as a quick query of knowledge, related discovery of knowledge and literature, knowledge organization. As this study enables subject knowledge base to help researchers locate and acquire deep domain knowledge quickly and accurately, it provides a transformation mode of knowledge resource construction and personalized precision knowledge services in the data-intensive research environment.Keywords: knowledge model, literature knowledge extraction, precision knowledge services, subject knowledge base
Procedia PDF Downloads 16336736 A Mathematical Analysis of Behavioural Epidemiology: Drugs Users Transmission Dynamics Based on Level Education for Susceptible Population
Authors: Firman Riyudha, Endrik Mifta Shaiful
Abstract:
The spread of drug users is one kind of behavioral epidemiology that becomes a threat to every country in the world. This problem caused various crisis simultaneously, including financial or economic crisis, social, health, until human crisis. Most drug users are teenagers at school age. A new deterministic model would be constructed to determine the dynamics of the spread of drug users by considering level of education in a susceptible population. Based on the analytical model, two equilibria points were obtained; there were E₀ (zero user) and E₁ (endemic equilibrium). Existence of equilibrium and local stability of equilibria depended on the Basic Reproduction Ratio (R₀). This parameter was defined as the expected rate of secondary prevalence and primary prevalence in virgin population along spreading primary prevalence. The zero-victim equilibrium would be locally asymptotically stable if R₀ < 1 while if R₀ > 1 the endemic equilibrium would be locally asymptotically stable. The result showed that R₀ was proportional to the rate of interaction of each susceptible population based on educational level with the users' population. It is concluded that there was a need to be given a control in interaction, so that drug users population could be minimized. Numerical simulations were also provided to support analytical results.Keywords: drugs users, level education, mathematical model, stability
Procedia PDF Downloads 47536735 Hourly Solar Radiations Predictions for Anticipatory Control of Electrically Heated Floor: Use of Online Weather Conditions Forecast
Authors: Helene Thieblemont, Fariborz Haghighat
Abstract:
Energy storage systems play a crucial role in decreasing building energy consumption during peak periods and expand the use of renewable energies in buildings. To provide a high building thermal performance, the energy storage system has to be properly controlled to insure a good energy performance while maintaining a satisfactory thermal comfort for building’s occupant. In the case of passive discharge storages, defining in advance the required amount of energy is required to avoid overheating in the building. Consequently, anticipatory supervisory control strategies have been developed forecasting future energy demand and production to coordinate systems. Anticipatory supervisory control strategies are based on some predictions, mainly of the weather forecast. However, if the forecasted hourly outdoor temperature may be found online with a high accuracy, solar radiations predictions are most of the time not available online. To estimate them, this paper proposes an advanced approach based on the forecast of weather conditions. Several methods to correlate hourly weather conditions forecast to real hourly solar radiations are compared. Results show that using weather conditions forecast allows estimating with an acceptable accuracy solar radiations of the next day. Moreover, this technique allows obtaining hourly data that may be used for building models. As a result, this solar radiation prediction model may help to implement model-based controller as Model Predictive Control.Keywords: anticipatory control, model predictive control, solar radiation forecast, thermal storage
Procedia PDF Downloads 27136734 Catalytic Effect of Graphene Oxide on the Oxidation of Paraffin-Based Fuels
Authors: Lin-Lin Liu, Song-Qi Hu, Yin Wang
Abstract:
Paraffin-based fuels are regarded to be a promising fuel of hybrid rocked motor because of the high regression rate, low price, and environmental friendliness. Graphene Oxide (GO) is an attractive energetic material which is expected to be widely used in propellants, explosives, and some high energy fuels. Paraffin-based fuels with paraffin and GO as raw materials were prepared, and the oxidation process of the samples was investigated by thermogravimetric analysis differential scanning calorimetry (TG/DSC) under oxygen (O₂) and nitrous oxide (N₂O) atmospheres. The oxidation reaction kinetics of the fuels was estimated through the non-isothermal measurements and model-free isoconversional methods based on the experimental results of TGA. The results show that paraffin-based fuels are easier oxidized under O₂ rather than N₂O with atmospheres due to the lower activation energy; GO plays a catalytic role for the oxidation of paraffin-based fuels under the both atmospheres, and the activation energy of the oxidation process decreases with the increase of GO; catalytic effect of GO on the oxidation of paraffin-based fuels are more obvious under O₂ atmospheres than under N₂O atmospheres.Keywords: graphene oxide, paraffin-based fuels, oxidation, activation energy, TGA
Procedia PDF Downloads 40236733 Satellite LiDAR-Based Digital Terrain Model Correction using Gaussian Process Regression
Authors: Keisuke Takahata, Hiroshi Suetsugu
Abstract:
Forest height is an important parameter for forest biomass estimation, and precise elevation data is essential for accurate forest height estimation. There are several globally or nationally available digital elevation models (DEMs) like SRTM and ASTER. However, its accuracy is reported to be low particularly in mountainous areas where there are closed canopy or steep slope. Recently, space-borne LiDAR, such as the Global Ecosystem Dynamics Investigation (GEDI), have started to provide sparse but accurate ground elevation and canopy height estimates. Several studies have reported the high degree of accuracy in their elevation products on their exact footprints, while it is not clear how this sparse information can be used for wider area. In this study, we developed a digital terrain model correction algorithm by spatially interpolating the difference between existing DEMs and GEDI elevation products by using Gaussian Process (GP) regression model. The result shows that our GP-based methodology can reduce the mean bias of the elevation data from 3.7m to 0.3m when we use airborne LiDAR-derived elevation information as ground truth. Our algorithm is also capable of quantifying the elevation data uncertainty, which is critical requirement for biomass inventory. Upcoming satellite-LiDAR missions, like MOLI (Multi-footprint Observation Lidar and Imager), are expected to contribute to the more accurate digital terrain model generation.Keywords: digital terrain model, satellite LiDAR, gaussian processes, uncertainty quantification
Procedia PDF Downloads 18236732 Monitoring Three-Dimensional Models of Tree and Forest by Using Digital Close-Range Photogrammetry
Authors: S. Y. Cicekli
Abstract:
In this study, tree-dimensional model of tree was created by using terrestrial close range photogrammetry. For this close range photos were taken. Photomodeler Pro 5 software was used for camera calibration and create three-dimensional model of trees. In first test, three-dimensional model of a tree was created, in the second test three-dimensional model of three trees were created. This study aim is creating three-dimensional model of trees and indicate the use of close-range photogrammetry in forestry. At the end of the study, three-dimensional model of tree and three trees were created. This study showed that usability of close-range photogrammetry for monitoring tree and forests three-dimensional model.Keywords: close- range photogrammetry, forest, tree, three-dimensional model
Procedia PDF Downloads 38936731 Spatial Accessibility Analysis of Kabul City Public Transport
Authors: Mohammad Idrees Yusofzai, Hirobata Yasuhiro, Matsuo Kojiro
Abstract:
Kabul is the capital of Afghanistan. It is the focal point of educational, industrial, etc. of Afghanistan. Additionally, the population of Kabul has grown recently and will increase because of return of refugees and shifting of people from other province to Kabul city. However, this increase in population, the issues of urban congestion and other related problems of urban transportation in Kabul city arises. One of the problems is public transport (large buses) service and needs to be modified and enhanced especially large bus routes that are operating in each zone of the 22 zone of Kabul City. To achieve the above mentioned goal of improving public transport, Spatial Accessibility Analysis is one of the important attributes to assess the effectiveness of transportation system and urban transport policy of a city, because accessibility indicator as an alternative tool to support public policy that aims the reinforcement of sustainable urban space. The case study of this research compares the present model (present bus route) and the modified model of public transport. Furthermore, present model, the bus routes in most of the zones are active, however, with having low frequency and unpublished schedule, and accessibility result is analyzed in four cases, based on the variables of accessibility. Whereas in modified model all zones in Kabul is taken into consideration with having specified origin and high frequency. Indeed the number of frequencies is kept high; however, this number is based on the number of buses Millie Bus Enterprise Authority (MBEA) owns. The same approach of cases is applied in modified model to figure out the best accessibility for the modified model. Indeed, the modified model is having a positive impact in congestion level in Kabul city. Besides, analyses of person trip and trip distribution have been also analyzed because how people move in the study area by each mode of transportation. So, the general aims of this research are to assess the present movement of people, identify zones in need of public transport and assess equity level of accessibility in Kabul city. The framework of methodology used in this research is based on gravity analysis model of accessibility; besides, generalized cost (time) of travel and travel mode is calculated. The main data come from person trip survey, socio-economic characteristics, demographic data by Japan International Cooperation Agency, 2008, study of Kabul city and also from the previous researches on travel pattern and the remaining data regarding present bus line and routes have been from MBEA. In conclusion, this research explores zones where public transport accessibility level is high and where it is low. It was found that both models the downtown area or central zones of Kabul city is having high level accessibility. Besides, the present model is the most unfavorable compared with the modified model based on the accessibility analysis.Keywords: accessibility, bus generalized cost, gravity model, public transportation network
Procedia PDF Downloads 19236730 Performance and Availability Analysis of 2N Redundancy Models
Authors: Yutae Lee
Abstract:
In this paper, we consider the performance and availability of a redundancy model. The redundancy model is a form of resilience that ensures service availability in the event of component failure. This paper considers a 2N redundancy model. In the model there are at most one active service unit and at most one standby service unit. The active one is providing the service while the standby is prepared to take over the active role when the active fails. We design our analysis model using Stochastic Reward Nets, and then evaluate the performance and availability of 2N redundancy model using Stochastic Petri Net Package (SPNP).Keywords: availability, performance, stochastic reward net, 2N redundancy
Procedia PDF Downloads 42136729 Modeling Driving Distraction Considering Psychological-Physical Constraints
Authors: Yixin Zhu, Lishengsa Yue, Jian Sun, Lanyue Tang
Abstract:
Modeling driving distraction in microscopic traffic simulation is crucial for enhancing simulation accuracy. Current driving distraction models are mainly derived from physical motion constraints under distracted states, in which distraction-related error terms are added to existing microscopic driver models. However, the model accuracy is not very satisfying, due to a lack of modeling the cognitive mechanism underlying the distraction. This study models driving distraction based on the Queueing Network Human Processor model (QN-MHP). This study utilizes the queuing structure of the model to perform task invocation and switching for distracted operation and control of the vehicle under driver distraction. Based on the assumption of the QN-MHP model about the cognitive sub-network, server F is a structural bottleneck. The latter information must wait for the previous information to leave server F before it can be processed in server F. Therefore, the waiting time for task switching needs to be calculated. Since the QN-MHP model has different information processing paths for auditory information and visual information, this study divides driving distraction into two types: auditory distraction and visual distraction. For visual distraction, both the visual distraction task and the driving task need to go through the visual perception sub-network, and the stimuli of the two are asynchronous, which is called stimulus on asynchrony (SOA), so when calculating the waiting time for switching tasks, it is necessary to consider it. In the case of auditory distraction, the auditory distraction task and the driving task do not need to compete for the server resources of the perceptual sub-network, and their stimuli can be synchronized without considering the time difference in receiving the stimuli. According to the Theory of Planned Behavior for drivers (TPB), this study uses risk entropy as the decision criterion for driver task switching. A logistic regression model is used with risk entropy as the independent variable to determine whether the driver performs a distraction task, to explain the relationship between perceived risk and distraction. Furthermore, to model a driver’s perception characteristics, a neurophysiological model of visual distraction tasks is incorporated into the QN-MHP, and executes the classical Intelligent Driver Model. The proposed driving distraction model integrates the psychological cognitive process of a driver with the physical motion characteristics, resulting in both high accuracy and interpretability. This paper uses 773 segments of distracted car-following in Shanghai Naturalistic Driving Study data (SH-NDS) to classify the patterns of distracted behavior on different road facilities and obtains three types of distraction patterns: numbness, delay, and aggressiveness. The model was calibrated and verified by simulation. The results indicate that the model can effectively simulate the distracted car-following behavior of different patterns on various roadway facilities, and its performance is better than the traditional IDM model with distraction-related error terms. The proposed model overcomes the limitations of physical-constraints-based models in replicating dangerous driving behaviors, and internal characteristics of an individual. Moreover, the model is demonstrated to effectively generate more dangerous distracted driving scenarios, which can be used to construct high-value automated driving test scenarios.Keywords: computational cognitive model, driving distraction, microscopic traffic simulation, psychological-physical constraints
Procedia PDF Downloads 9136728 Estimation of Sediment Transport into a Reservoir Dam
Authors: Kiyoumars Roushangar, Saeid Sadaghian
Abstract:
Although accurate sediment load prediction is very important in planning, designing, operating and maintenance of water resources structures, the transport mechanism is complex, and the deterministic transport models are based on simplifying assumptions often lead to large prediction errors. In this research, firstly, two intelligent ANN methods, Radial Basis and General Regression Neural Networks, are adopted to model of total sediment load transport into Madani Dam reservoir (north of Iran) using the measured data and then applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang, and Toffaleti for predicting of sediment load discharge are evaluated. Based on comparison of the results, it is found that the GRNN model gives better estimates than the sediment rating curve and mentioned classic methods.Keywords: sediment transport, dam reservoir, RBF, GRNN, prediction
Procedia PDF Downloads 49636727 Improved Soil and Snow Treatment with the Rapid Update Cycle Land-Surface Model for Regional and Global Weather Predictions
Authors: Tatiana G. Smirnova, Stan G. Benjamin
Abstract:
Rapid Update Cycle (RUC) land surface model (LSM) was a land-surface component in several generations of operational weather prediction models at the National Center for Environment Prediction (NCEP) at the National Oceanic and Atmospheric Administration (NOAA). It was designed for short-range weather predictions with an emphasis on severe weather and originally was intentionally simple to avoid uncertainties from poorly known parameters. Nevertheless, the RUC LSM, when coupled with the hourly-assimilating atmospheric model, can produce a realistic evolution of time-varying soil moisture and temperature, as well as the evolution of snow cover on the ground surface. This result is possible only if the soil/vegetation/snow component of the coupled weather prediction model has sufficient skill to avoid long-term drift. RUC LSM was first implemented in the operational NCEP Rapid Update Cycle (RUC) weather model in 1998 and later in the Weather Research Forecasting Model (WRF)-based Rapid Refresh (RAP) and High-resolution Rapid Refresh (HRRR). Being available to the international WRF community, it was implemented in operational weather models in Austria, New Zealand, and Switzerland. Based on the feedback from the US weather service offices and the international WRF community and also based on our own validation, RUC LSM has matured over the years. Also, a sea-ice module was added to RUC LSM for surface predictions over the Arctic sea-ice. Other modifications include refinements to the snow model and a more accurate specification of albedo, roughness length, and other surface properties. At present, RUC LSM is being tested in the regional application of the Unified Forecast System (UFS). The next generation UFS-based regional Rapid Refresh FV3 Standalone (RRFS) model will replace operational RAP and HRRR at NCEP. Over time, RUC LSM participated in several international model intercomparison projects to verify its skill using observed atmospheric forcing. The ESM-SnowMIP was the last of these experiments focused on the verification of snow models for open and forested regions. The simulations were performed for ten sites located in different climatic zones of the world forced with observed atmospheric conditions. While most of the 26 participating models have more sophisticated snow parameterizations than in RUC, RUC LSM got a high ranking in simulations of both snow water equivalent and surface temperature. However, ESM-SnowMIP experiment also revealed some issues in the RUC snow model, which will be addressed in this paper. One of them is the treatment of grid cells partially covered with snow. RUC snow module computes energy and moisture budgets of snow-covered and snow-free areas separately by aggregating the solutions at the end of each time step. Such treatment elevates the importance of computing in the model snow cover fraction. Improvements to the original simplistic threshold-based approach have been implemented and tested both offline and in the coupled weather model. The detailed description of changes to the snow cover fraction and other modifications to RUC soil and snow parameterizations will be described in this paper.Keywords: land-surface models, weather prediction, hydrology, boundary-layer processes
Procedia PDF Downloads 8836726 Method for Tuning Level Control Loops Based on Internal Model Control and Closed Loop Step Test Data
Authors: Arnaud Nougues
Abstract:
This paper describes a two-stage methodology derived from internal model control (IMC) for tuning a proportional-integral-derivative (PID) controller for levels or other integrating processes in an industrial environment. Focus is the ease of use and implementation speed which are critical for an industrial application. Tuning can be done with minimum effort and without the need for time-consuming open-loop step tests on the plant. The first stage of the method applies to levels only: the vessel residence time is calculated from equipment dimensions and used to derive a set of preliminary proportional-integral (PI) settings with IMC. The second stage, re-tuning in closed-loop, applies to levels as well as other integrating processes: a tuning correction mechanism has been developed based on a series of closed-loop simulations with model errors. The tuning correction is done from a simple closed-loop step test and the application of a generic correlation between observed overshoot and integral time correction. A spin-off of the method is that an estimate of the vessel residence time (levels) or open-loop process gain (other integrating process) is obtained from the closed-loop data.Keywords: closed-loop model identification, IMC-PID tuning method, integrating process control, on-line PID tuning adaptation
Procedia PDF Downloads 22136725 Mending Broken Fences Policing: Developing the Intelligence-Led/Community-Based Policing Model(IP-CP) and Quality/Quantity/Crime(QQC) Model
Authors: Anil Anand
Abstract:
Despite enormous strides made during the past decade, particularly with the adoption and expansion of community policing, there remains much that police leaders can do to improve police-public relations. The urgency is particularly evident in cities across the United States and Europe where an increasing number of police interactions over the past few years have ignited large, sometimes even national, protests against police policy and strategy, highlighting a gap between what police leaders feel they have archived in terms of public satisfaction, support, and legitimacy and the perception of bias among many marginalized communities. The decision on which one policing strategy is chosen over another, how many resources are allocated, and how strenuously the policy is applied resides primarily with the police and the units and subunits tasked with its enforcement. The scope and opportunity for police officers in impacting social attitudes and social policy are important elements that cannot be overstated. How do police leaders, for instance, decide when to apply one strategy—say community-based policing—over another, like intelligence-led policing? How do police leaders measure performance and success? Should these measures be based on quantitative preferences over qualitative, or should the preference be based on some other criteria? And how do police leaders define, allow, and control discretionary decision-making? Mending Broken Fences Policing provides police and security services leaders with a model based on social cohesion, that incorporates intelligence-led and community policing (IP-CP), supplemented by a quality/quantity/crime (QQC) framework to provide a four-step process for the articulable application of police intervention, performance measurement, and application of discretion.Keywords: social cohesion, quantitative performance measurement, qualitative performance measurement, sustainable leadership
Procedia PDF Downloads 29536724 A Parallel Implementation of k-Means in MATLAB
Authors: Dimitris Varsamis, Christos Talagkozis, Alkiviadis Tsimpiris, Paris Mastorocostas
Abstract:
The aim of this work is the parallel implementation of k-means in MATLAB, in order to reduce the execution time. Specifically, a new function in MATLAB for serial k-means algorithm is developed, which meets all the requirements for the conversion to a function in MATLAB with parallel computations. Additionally, two different variants for the definition of initial values are presented. In the sequel, the parallel approach is presented. Finally, the performance tests for the computation times respect to the numbers of features and classes are illustrated.Keywords: K-means algorithm, clustering, parallel computations, Matlab
Procedia PDF Downloads 38536723 An Investigation on Smartphone-Based Machine Vision System for Inspection
Authors: They Shao Peng
Abstract:
Machine vision system for inspection is an automated technology that is normally utilized to analyze items on the production line for quality control purposes, it also can be known as an automated visual inspection (AVI) system. By applying automated visual inspection, the existence of items, defects, contaminants, flaws, and other irregularities in manufactured products can be easily detected in a short time and accurately. However, AVI systems are still inflexible and expensive due to their uniqueness for a specific task and consuming a lot of set-up time and space. With the rapid development of mobile devices, smartphones can be an alternative device for the visual system to solve the existing problems of AVI. Since the smartphone-based AVI system is still at a nascent stage, this led to the motivation to investigate the smartphone-based AVI system. This study is aimed to provide a low-cost AVI system with high efficiency and flexibility. In this project, the object detection models, which are You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD) model, are trained, evaluated, and integrated with the smartphone and webcam devices. The performance of the smartphone-based AVI is compared with the webcam-based AVI according to the precision and inference time in this study. Additionally, a mobile application is developed which allows users to implement real-time object detection and object detection from image storage.Keywords: automated visual inspection, deep learning, machine vision, mobile application
Procedia PDF Downloads 12336722 Convergence Analysis of Reactive Power Based Schemes Used in Sensorless Control of Induction Motors
Authors: N. Ben Si Ali, N. Benalia, N. Zerzouri
Abstract:
Many electronic drivers for the induction motor control are based on sensorless technologies. Speed and torque control is usually attained by application of a speed or position sensor which requires the additional mounting space, reduce the reliability and increase the cost. This paper seeks to analyze dynamical performances and sensitivity to motor parameter changes of reactive power based technique used in sensorless control of induction motors. Validity of theoretical results is verified by simulation.Keywords: adaptive observers, model reference adaptive system, RP-based estimator, sensorless control, stability analysis
Procedia PDF Downloads 54636721 Evaluation of the Weight-Based and Fat-Based Indices in Relation to Basal Metabolic Rate-to-Weight Ratio
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Basal metabolic rate is questioned as a risk factor for weight gain. The relations between basal metabolic rate and body composition have not been cleared yet. The impact of fat mass on basal metabolic rate is also uncertain. Within this context, indices based upon total body mass as well as total body fat mass are available. In this study, the aim is to investigate the potential clinical utility of these indices in the adult population. 287 individuals, aged from 18 to 79 years, were included into the scope of the study. Based upon body mass index values, 10 underweight, 88 normal, 88 overweight, 81 obese, and 20 morbid obese individuals participated. Anthropometric measurements including height (m), and weight (kg) were performed. Body mass index, diagnostic obesity notation model assessment index I, diagnostic obesity notation model assessment index II, basal metabolic rate-to-weight ratio were calculated. Total body fat mass (kg), fat percent (%), basal metabolic rate, metabolic age, visceral adiposity, fat mass of upper as well as lower extremities and trunk, obesity degree were measured by TANITA body composition monitor using bioelectrical impedance analysis technology. Statistical evaluations were performed by statistical package (SPSS) for Windows Version 16.0. Scatterplots of individual measurements for the parameters concerning correlations were drawn. Linear regression lines were displayed. The statistical significance degree was accepted as p < 0.05. The strong correlations between body mass index and diagnostic obesity notation model assessment index I as well as diagnostic obesity notation model assessment index II were obtained (p < 0.001). A much stronger correlation was detected between basal metabolic rate and diagnostic obesity notation model assessment index I in comparison with that calculated for basal metabolic rate and body mass index (p < 0.001). Upon consideration of the associations between basal metabolic rate-to-weight ratio and these three indices, the best association was observed between basal metabolic rate-to-weight and diagnostic obesity notation model assessment index II. In a similar manner, this index was highly correlated with fat percent (p < 0.001). Being independent of the indices, a strong correlation was found between fat percent and basal metabolic rate-to-weight ratio (p < 0.001). Visceral adiposity was much strongly correlated with metabolic age when compared to that with chronological age (p < 0.001). In conclusion, all three indices were associated with metabolic age, but not with chronological age. Diagnostic obesity notation model assessment index II values were highly correlated with body mass index values throughout all ranges starting with underweight going towards morbid obesity. This index is the best in terms of its association with basal metabolic rate-to-weight ratio, which can be interpreted as basal metabolic rate unit.Keywords: basal metabolic rate, body mass index, children, diagnostic obesity notation model assessment index, obesity
Procedia PDF Downloads 15036720 A Mathematical Equation to Calculate Stock Price of Different Growth Model
Authors: Weiping Liu
Abstract:
This paper presents an equation to calculate stock prices of different growth model. This equation is mathematically derived by using discounted cash flow method. It has the advantages of being very easy to use and very accurate. It can still be used even when the first stage is lengthy. This equation is more generalized because it can be used for all the three popular stock price models. It can be programmed into financial calculator or electronic spreadsheets. In addition, it can be extended to a multistage model. It is more versatile and efficient than the traditional methods.Keywords: stock price, multistage model, different growth model, discounted cash flow method
Procedia PDF Downloads 40636719 Developing an Edutainment Game for Children with ADHD Based on SAwD and VCIA Model
Authors: Bruno Gontijo Batista
Abstract:
This paper analyzes how the Socially Aware Design (SAwD) and the Value-oriented and Culturally Informed Approach (VCIA) design model can be used to develop an edutainment game for children with Attention Deficit Hyperactivity Disorder (ADHD). The SAwD approach seeks a design that considers new dimensions in human-computer interaction, such as culture, aesthetics, emotional and social aspects of the user's everyday experience. From this perspective, the game development was VCIA model-based, including the users in the design process through participatory methodologies, considering their behavioral patterns, culture, and values. This is because values, beliefs, and behavioral patterns influence how technology is understood and used and the way it impacts people's lives. This model can be applied at different stages of design, which goes from explaining the problem and organizing the requirements to the evaluation of the prototype and the final solution. Thus, this paper aims to understand how this model can be used in the development of an edutainment game for children with ADHD. In the area of education and learning, children with ADHD have difficulties both in behavior and in school performance, as they are easily distracted, which is reflected both in classes and on tests. Therefore, they must perform tasks that are exciting or interesting for them, once the pleasure center in the brain is activated, it reinforces the center of attention, leaving the child more relaxed and focused. In this context, serious games have been used as part of the treatment of ADHD in children aiming to improve focus and attention, stimulate concentration, as well as be a tool for improving learning in areas such as math and reading, combining education and entertainment (edutainment). Thereby, as a result of the research, it was developed, in a participatory way, applying the VCIA model, an edutainment game prototype, for a mobile platform, for children between 8 and 12 years old.Keywords: ADHD, edutainment, SAwD, VCIA
Procedia PDF Downloads 19036718 A Conceptual Model of Preparing School Counseling Students as Related Service Providers in the Transition Process
Authors: LaRon A. Scott, Donna M. Gibson
Abstract:
Data indicate that counselor education programs in the United States do not prepare their students adequately to serve students with disabilities nor provide counseling as a related service. There is a need to train more school counselors to provide related services to students with disabilities, for many reasons, but specifically, school counselors are participating in Individualized Education Programs (IEP) and transition planning meetings for students with disabilities where important academic, mental health and post-secondary education decisions are made. While school counselors input is perceived very important to the process, they may not have the knowledge or training in this area to feel confident in offering required input in these meetings. Using a conceptual research design, a model that can be used to prepare school counseling students as related service providers and effective supports to address transition for students with disabilities was developed as a component of this research. The authors developed the Collaborative Model of Preparing School Counseling Students as Related Service Providers to Students with Disabilities, based on a conceptual framework that involves an integration of Social Cognitive Career Theory (SCCT) and evidenced-based practices based on Self-Determination Theory (SDT) to provide related and transition services and planning with students with disabilities. The authors’ conclude that with five overarching competencies, (1) knowledge and understanding of disabilities, (2) knowledge and expertise in group counseling to students with disabilities, (3), knowledge and experience in specific related service components, (4) knowledge and experience in evidence-based counseling interventions, (5) knowledge and experiencing in evidenced-based transition and career planning services, that school counselors can enter the field with the necessary expertise to adequately serve all students. Other examples and strategies are suggested, and recommendations for preparation programs seeking to integrate a model to prepare school counselors to implement evidenced-based transition strategies in supporting students with disabilities are includedKeywords: transition education, social cognitive career theory, self-determination, counseling
Procedia PDF Downloads 24336717 Predictive Semi-Empirical NOx Model for Diesel Engine
Authors: Saurabh Sharma, Yong Sun, Bruce Vernham
Abstract:
Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model. Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.Keywords: diesel engine, machine learning, NOₓ emission, semi-empirical
Procedia PDF Downloads 11436716 Environmental Decision Making Model for Assessing On-Site Performances of Building Subcontractors
Authors: Buket Metin
Abstract:
Buildings cause a variety of loads on the environment due to activities performed at each stage of the building life cycle. Construction is the first stage that affects both the natural and built environments at different steps of the process, which can be defined as transportation of materials within the construction site, formation and preparation of materials on-site and the application of materials to realize the building subsystems. All of these steps require the use of technology, which varies based on the facilities that contractors and subcontractors have. Hence, environmental consequences of the construction process should be tackled by focusing on construction technology options used in every step of the process. This paper presents an environmental decision-making model for assessing on-site performances of subcontractors based on the construction technology options which they can supply. First, construction technologies, which constitute information, tools and methods, are classified. Then, environmental performance criteria are set forth related to resource consumption, ecosystem quality, and human health issues. Finally, the model is developed based on the relationships between the construction technology components and the environmental performance criteria. The Fuzzy Analytical Hierarchy Process (FAHP) method is used for weighting the environmental performance criteria according to environmental priorities of decision-maker(s), while the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used for ranking on-site environmental performances of subcontractors using quantitative data related to the construction technology components. Thus, the model aims to provide an insight to decision-maker(s) about the environmental consequences of the construction process and to provide an opportunity to improve the overall environmental performance of construction sites.Keywords: construction process, construction technology, decision making, environmental performance, subcontractor
Procedia PDF Downloads 24736715 Measuring Banking Risk
Authors: Mike Tsionas
Abstract:
The paper develops new indices of financial stability based on an explicit model of expected utility maximization by financial institutions subject to the classical technology restrictions of neoclassical production theory. The model can be estimated using standard econometric techniques, like GMM for dynamic panel data and latent factor analysis for the estimation of co-variance matrices. An explicit functional form for the utility function is not needed and we show how measures of risk aversion and prudence (downside risk aversion) can be derived and estimated from the model. The model is estimated using data for Eurozone countries and we focus particularly on (i) the use of the modeling approach as an “early warning mechanism”, (ii) the bank- and country-specific estimates of risk aversion and prudence (downside risk aversion), and (iii) the derivation of a generalized measure of risk that relies on loan-price uncertainty.Keywords: financial stability, banking, expected utility maximization, sub-prime crisis, financial crisis, eurozone, PIIGS
Procedia PDF Downloads 34836714 A Dynamic Neural Network Model for Accurate Detection of Masked Faces
Authors: Oladapo Tolulope Ibitoye
Abstract:
Neural networks have become prominent and widely engaged in algorithmic-based machine learning networks. They are perfect in solving day-to-day issues to a certain extent. Neural networks are computing systems with several interconnected nodes. One of the numerous areas of application of neural networks is object detection. This is a prominent area due to the coronavirus disease pandemic and the post-pandemic phases. Wearing a face mask in public slows the spread of the virus, according to experts’ submission. This calls for the development of a reliable and effective model for detecting face masks on people's faces during compliance checks. The existing neural network models for facemask detection are characterized by their black-box nature and large dataset requirement. The highlighted challenges have compromised the performance of the existing models. The proposed model utilized Faster R-CNN Model on Inception V3 backbone to reduce system complexity and dataset requirement. The model was trained and validated with very few datasets and evaluation results shows an overall accuracy of 96% regardless of skin tone.Keywords: convolutional neural network, face detection, face mask, masked faces
Procedia PDF Downloads 6836713 Energy Enterprise Information System for Strategic Decision-Making
Authors: Woosik Jang, Seung H. Han, Seung Won Baek, Chan Young Park
Abstract:
Natural gas (NG) is a local energy resource that exists in certain countries, and most NG producers operate within unstable governments. Moreover, about 90% of the liquefied natural gas (LNG) market is governed by a small number of international oil companies (IOCs) and national oil companies (NOCs), market entry of second movers is extremely limited. To overcome these barriers, project viability should be assessed based on limited information at the project screening perspective. However, there have been difficulties at the early stages of projects as follows: (1) What factors should be considered? (2) How many experts are needed to make a decision? and (3) How to make an optimal decision with limited information? To answer these questions, this research suggests a LNG project viability assessment model based on the Dempster-Shafer theory (DST). Total of 11 indices for the gas field analysis and 23 indices for the market environment analysis are identified that reflect unique characteristics of LNG industry. Moreover, the proposed model evaluates LNG projects based on questionnaire survey and it provides not only quantified results but also uncertainty level of results based on DST. Consequently, the proposed model as a systematic framework can support the decision-making process from the gas field projects using quantitative results, and it is developed to a stand-alone system to enhance the practical usability. It is expected to improve the decision-making quality and opportunity in LNG projects for enterprise through informed decision.Keywords: project viability, LNG project, enterprise information system, Dempster-Shafer Theory, strategic decision-making
Procedia PDF Downloads 25836712 The Quality of Management: A Leadership Maturity Model to Leverage Complexity
Authors: Marlene Kuhn, Franziska Schäfer, Heiner Otten
Abstract:
Today´s production processes experience a constant increase in complexity paving new ways for progressive forms of leadership. In the customized production, individual customer requirements drive companies to adapt their manufacturing processes constantly while the pressure for smaller lot sizes, lower costs and faster lead times grows simultaneously. When production processes are becoming more dynamic and complex, the conventional quality management approaches show certain limitations. This paper gives an introduction to complexity science from a quality management perspective. By analyzing and evaluating different characteristics of complexity, the critical complexity parameters are identified and assessed. We found that the quality of leadership plays a crucial role when dealing with increasing complexity. Therefore, we developed a concept for qualitative leadership customized for the management within complex processes based on a maturity model. The maturity model was then applied in the industry to assess the leadership quality of several shop floor managers with a positive evaluation feedback. In result, the maturity model proved to be a sustainable approach to leverage the rising complexity in production processes more effectively.Keywords: maturity model, process complexity, quality of leadership, quality management
Procedia PDF Downloads 37036711 Simulating Human Behavior in (Un)Built Environments: Using an Actor Profiling Method
Authors: Hadas Sopher, Davide Schaumann, Yehuda E. Kalay
Abstract:
This paper addresses the shortcomings of architectural computation tools in representing human behavior in built environments, prior to construction and occupancy of those environments. Evaluating whether a design fits the needs of its future users is currently done solely post construction, or is based on the knowledge and intuition of the designer. This issue is of high importance when designing complex buildings such as hospitals, where the quality of treatment as well as patient and staff satisfaction are of major concern. Existing computational pre-occupancy human behavior evaluation methods are geared mainly to test ergonomic issues, such as wheelchair accessibility, emergency egress, etc. As such, they rely on Agent Based Modeling (ABM) techniques, which emphasize the individual user. Yet we know that most human activities are social, and involve a number of actors working together, which ABM methods cannot handle. Therefore, we present an event-based model that manages the interaction between multiple Actors, Spaces, and Activities, to describe dynamically how people use spaces. This approach requires expanding the computational representation of Actors beyond their physical description, to include psychological, social, cultural, and other parameters. The model presented in this paper includes cognitive abilities and rules that describe the response of actors to their physical and social surroundings, based on the actors’ internal status. The model has been applied in a simulation of hospital wards, and showed adaptability to a wide variety of situated behaviors and interactions.Keywords: agent based modeling, architectural design evaluation, event modeling, human behavior simulation, spatial cognition
Procedia PDF Downloads 26436710 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework
Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim
Abstract:
Background modeling and subtraction in video analysis has been widely proved to be an effective method for moving objects detection in many computer vision applications. Over the past years, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are two of the most frequently occurring issues in the practical situation. This paper presents a new two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean values of RGB color channels. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block-wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the outputs of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate a very competitive performance compared to previous models.Keywords: background subtraction, codebook model, local binary pattern, dynamic background, illumination change
Procedia PDF Downloads 21736709 Leadership Strategies in Social Enterprises through Reverse Accountability: Analysis of Social Control for Pragmatic Organizational Design
Authors: Ananya Rajagopal
Abstract:
The study is based on an analysis of qualitative data used to analyze the business performance of entrepreneurs in emerging markets based on core variables such as collective leadership in reference to social entrepreneurship and reverse accountability attributes of stakeholders. In-depth interviews were conducted with 25 emerging enterprises within Mexico across five industrial segments. The study has been conducted focusing on five major research questions, which helped in developing the grounded theory related to reverser accountability. The results of the study revealed that the traditional entrepreneurship model based on an individualistic leadership style is being replaced by a collective leadership model. The study focuses on the leadership styles within social enterprises aimed at enhancing managerial capabilities and competencies, stakeholder values, and entrepreneurial growth. The theoretical motivation of this study has been derived from stakeholder theory and agency theory.Keywords: reverse accountability, social enterprises, collective leadership, grounded theory, social governance
Procedia PDF Downloads 121