Search results for: electrical impedance of skin
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3420

Search results for: electrical impedance of skin

2130 Design and Fabrication of a Programmable Stiffness-Sensitive Gripper for Object Handling

Authors: Mehdi Modabberifar, Sanaz Jabary, Mojtaba Ghodsi

Abstract:

Stiffness sensing is an important issue in medical diagnostic, robotics surgery, safe handling, and safe grasping of objects in production lines. Detecting and obtaining the characteristics in dwelling lumps embedded in a soft tissue and safe removing and handling of detected lumps is needed in surgery. Also in industry, grasping and handling an object without damaging in a place where it is not possible to access a human operator is very important. In this paper, a method for object handling is presented. It is based on the use of an intelligent gripper to detect the object stiffness and then setting a programmable force for grasping the object to move it. The main components of this system includes sensors (sensors for measuring force and displacement), electrical (electrical and electronic circuits, tactile data processing and force control system), mechanical (gripper mechanism and driving system for the gripper) and the display unit. The system uses a rotary potentiometer for measuring gripper displacement. A microcontroller using the feedback received by the load cell, mounted on the finger of the gripper, calculates the amount of stiffness, and then commands the gripper motor to apply a certain force on the object. Results of Experiments on some samples with different stiffness show that the gripper works successfully. The gripper can be used in haptic interfaces or robotic systems used for object handling.

Keywords: gripper, haptic, stiffness, robotic

Procedia PDF Downloads 358
2129 A Wideband CMOS Power Amplifier with 23.3 dB S21, 10.6 dBm Psat and 12.3% PAE for 60 GHz WPAN and 77 GHz Automobile Radar Systems

Authors: Yo-Sheng Lin, Chien-Chin Wang, Yun-Wen Lin, Chien-Yo Lee

Abstract:

A wide band power amplifier (PA) for 60 GHz and 77 GHz direct-conversion transceiver using standard 90 nm CMOS technology is reported. The PA comprises a cascode input stage with a wide band T-type input-matching network and inductive interconnection and load, followed by a common-source (CS) gain stage and a CS output stage. To increase the saturated output power (PSAT) and power-added efficiency (PAE), the output stage adopts a two-way power dividing and combining architecture. Instead of the area-consumed Wilkinson power divider and combiner, miniature low-loss transmission-line inductors are used at the input and output terminals of each of the output stages for wide band input and output impedance matching to 100 ohm. This in turn results in further PSAT and PAE enhancement. The PA consumes 92.2 mW and achieves maximum power gain (S21) of 23.3 dB at 56 GHz, and S21 of 21.7 dB and 14 dB, respectively, at 60 GHz and 77 GHz. In addition, the PA achieves excellent saturated output power (PSAT) of 10.6 dB and maximum power added efficiency (PAE) of 12.3% at 60 GHz. At 77 GHz, the PA achieves excellent PSAT of 10.4 dB and maximum PAE of 6%. These results demonstrate the proposed wide band PA architecture is very promising for 60 GHz wireless personal local network (WPAN) and 77 GHz automobile radar systems.

Keywords: 60 GHz, 77 GHz, PA, WPAN, automotive radar

Procedia PDF Downloads 575
2128 Mentoring of Health Professionals to Ensure Better Child-Birth and Newborn Care in Bihar, India: An Intervention Study

Authors: Aboli Gore, Aritra Das, Sunil Sonthalia, Tanmay Mahapatra, Sridhar Srikantiah, Hemant Shah

Abstract:

AMANAT is an initiative, taken in collaboration with the Government of Bihar, aimed at improving the Quality of Maternal and Neonatal care services at Bihar’s public health facilities – those offering either the Basic Emergency Obstetric and Neonatal care (BEmONC) or Comprehensive Emergency Obstetric and Neonatal care (CEmONC) services. The effectiveness of this program is evaluated by conducting cross-sectional assessments at the concerned facilities prior to (baseline) and following completion (endline) of intervention. Direct Observation of Delivery (DOD) methodology is employed for carrying out the baseline and endline assessments – through which key obstetric and neonatal care practices among the Health Care Providers (especially the nurses) are assessed quantitatively by specially trained nursing professionals. Assessment of vitals prior to delivery improved during all three phases of BEmONC and all four phases of CEmONC training with statistically significant improvement noted in: i) pulse measurement in BEmONC phase 2 (9% to 68%), 3 (4% to 57%) & 4 (14% to 59%) and CEmONC phase 2 (7% to 72%) and 3 (0% to 64%); ii) blood pressure measurement in BEmONC phase 2 (27% to 84%), 3 (21% to 76%) & 4 (36% to 71%) and CEmONC phase 2 (23% to 76%) and 3 (2% to 70%); iii) fetal heart rate measurement in BEmONC phase 2 (10% to 72%), 3 (11% to 77%) & 4 (13% to 64%) and CEmONC phase 1 (24% to 38%), 2 (14% to 82%) and 3 (1% to 73%); and iv) abdominal examination in BEmONC phase 2 (14% to 59%), 3 (3% to 59%) & 4 (6% to 56%) and CEmONC phase 1 (0% to 24%), 2 (7% to 62%) & 3 (0% to 62%). Regarding infection control, wearing of apron, mask and cap by the delivery conductors improved significantly in all BEmONC phases. Similarly, the practice of handwashing improved in all BEmONC and CEmONC phases. Even on disaggregation, the handwashing showed significant improvement in all phases but CEmONC phase-4. Not only the positive practices related to handwashing improved but also negative practices such as turning off the tap with bare hands declined significantly in the aforementioned phases. Significant decline was also noted in negative maternal care practices such as application of fundal pressure for hastening the delivery process and administration of oxytocin prior to delivery. One of the notable achievement of AMANAT is an improvement in active management of the third stage of labor (AMTSL). The overall AMTSL (including administration of oxytocin or other uterotonics uterotonic in proper dose, route and time along with controlled cord traction and uterine massage) improved in all phases of BEmONC and CEmONC mentoring. Another key area of improvement, across phases, was in proper cutting/clamping of the umbilical cord. AMANAT mentoring also led to improvement in important immediate newborn care practices such as initiation of skin-to-skin care and timely initiation of breastfeeding. The next phase of the mentoring program seeks to institutionalize mentoring across the state that could potentially perpetuate improvement with minimal external intervention.

Keywords: capacity building, nurse-mentoring, quality of care, pregnancy, newborn care

Procedia PDF Downloads 162
2127 Dielectric Properties in Frequency Domain of Main Insulation System of Printed Circuit Board

Authors: Xize Dai, Jian Hao, Claus Leth Bak, Gian Carlo Montanari, Huai Wang

Abstract:

Printed Circuit Board (PCB) is a critical component applicable to power electronics systems, especially for high-voltage applications involving several high-voltage and high-frequency SiC/GaN devices. The insulation system of PCB is facing more challenges from high-voltage and high-frequency stress that can alter the dielectric properties. Dielectric properties of the PCB insulation system also determine the electrical field distribution that correlates with intrinsic and extrinsic aging mechanisms. Hence, investigating the dielectric properties in the frequency domain of the PCB insulation system is a must. The paper presents the frequency-dependent, temperature-dependent, and voltage-dependent dielectric properties, permittivity, conductivity, and dielectric loss tangents of PCB insulation systems. The dielectric properties mechanisms associated with frequency, temperature, and voltage are revealed from the design perspective. It can be concluded that the dielectric properties of PCB in the frequency domain show a strong dependence on voltage, frequency, and temperature. The voltage-, frequency-, and temperature-dependent dielectric properties are associated with intrinsic conduction behavior and polarization patterns from the perspective of dielectric theory. The results may provide some reference for the PCB insulation system design in high voltage, high frequency, and high-temperature power electronics applications.

Keywords: electrical insulation system, dielectric properties, high voltage and frequency, printed circuit board

Procedia PDF Downloads 94
2126 Delineation of Oil – Polluted Sites in Ibeno LGA, Nigeria, Using Geophysical Techniques

Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John

Abstract:

Ibeno, Nigeria hosts the operational base of Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the current highest oil and condensate producer in Nigeria. Besides MPNU, other oil companies operate onshore, on the continental shelf and deep offshore of the Atlantic Ocean in Ibeno, Nigeria. This study was designed to delineate oil polluted sites in Ibeno, Nigeria using geophysical methods of electrical resistivity (ER) and ground penetrating radar (GPR). Results obtained revealed that there have been hydrocarbon contaminations of this environment by past crude oil spills as observed from high resistivity values and GPR profiles which clearly show the distribution, thickness and lateral extent of hydrocarbon contamination as represented on the radargram reflector tones. Contaminations were of varying degrees, ranging from slight to high, indicating levels of substantial attenuation of crude oil contamination over time. Moreover, the display of relatively lower resistivities of locations outside the impacted areas compared to resistivity values within the impacted areas and the 3-D Cartesian images of oil contaminant plume depicted by red, light brown and magenta for high, low and very low oil impacted areas, respectively confirmed significant recent pollution of the study area with crude oil.

Keywords: electrical resistivity, geophysical investigations, ground penetrating radar, oil-polluted sites

Procedia PDF Downloads 418
2125 Preliminary Geophysical Assessment of Soil Contaminants around Wacot Rice Factory Argungu, North-Western Nigeria

Authors: A. I. Augie, Y. Alhassan, U. Z. Magawata

Abstract:

Geophysical investigation was carried out at wacot rice factory Argungu north-western Nigeria, using the 2D electrical resistivity method. The area falls between latitude 12˚44′23ʺN to 12˚44′50ʺN and longitude 4032′18′′E to 4032′39′′E covering a total area of about 1.85 km. Two profiles were carried out with Wenner configuration using resistivity meter (Ohmega). The data obtained from the study area were modeled using RES2DIVN software which gave an automatic interpretation of the apparent resistivity data. The inverse resistivity models of the profiles show the high resistivity values ranging from 208 Ωm to 651 Ωm. These high resistivity values in the overburden were due to dryness and compactness of the strata that lead to consolidation, which is an indication that the area is free from leachate contaminations. However, from the inverse model, there are regions of low resistivity values (1 Ωm to 18 Ωm), these zones were observed and identified as clayey and the most contaminated zones. The regions of low resistivity thereby indicated the leachate plume or the highly leachate concentrated zones due to similar resistivity values in both clayey and leachate. The regions of leachate are mainly from the factory into the surrounding area and its groundwater. The maximum leachate infiltration was found at depths 1 m to 15.9 m (P1) and 6 m to 15.9 m (P2) vertically, as well as distance along the profiles from 67 m to 75 m (P1), 155 m to 180 m (P1), and 115 m to 192 m (P2) laterally.

Keywords: contaminant, leachate, soil, groundwater, electrical, resistivity

Procedia PDF Downloads 160
2124 Comprehensive Multilevel Practical Condition Monitoring Guidelines for Power Cables in Industries: Case Study of Mobarakeh Steel Company in Iran

Authors: S. Mani, M. Kafil, E. Asadi

Abstract:

Condition Monitoring (CM) of electrical equipment has gained remarkable importance during the recent years; due to huge production losses, substantial imposed costs and increases in vulnerability, risk and uncertainty levels. Power cables feed numerous electrical equipment such as transformers, motors, and electric furnaces; thus their condition assessment is of a very great importance. This paper investigates electrical, structural and environmental failure sources, all of which influence cables' performances and limit their uptimes; and provides a comprehensive framework entailing practical CM guidelines for maintenance of cables in industries. The multilevel CM framework presented in this study covers performance indicative features of power cables; with a focus on both online and offline diagnosis and test scenarios, and covers short-term and long-term threats to the operation and longevity of power cables. The study, after concisely overviewing the concept of CM, thoroughly investigates five major areas of power quality, Insulation Quality features of partial discharges, tan delta and voltage withstand capabilities, together with sheath faults, shield currents and environmental features of temperature and humidity; and elaborates interconnections and mutual impacts between those areas; using mathematical formulation and practical guidelines. Detection, location, and severity identification methods for every threat or fault source are also elaborated. Finally, the comprehensive, practical guidelines presented in the study are presented for the specific case of Electric Arc Furnace (EAF) feeder MV power cables in Mobarakeh Steel Company (MSC), the largest steel company in MENA region, in Iran. Specific technical and industrial characteristics and limitations of a harsh industrial environment like MSC EAF feeder cable tunnels are imposed on the presented framework; making the suggested package more practical and tangible.

Keywords: condition monitoring, diagnostics, insulation, maintenance, partial discharge, power cables, power quality

Procedia PDF Downloads 228
2123 Chemical Synthesis and Microwave Sintering of SnO2-Based Nanoparticles for Varistor Films

Authors: Glauco M. M. M. Lustosa, João Paulo C. Costa, Leinig Antônio Perazolli, Maria Aparecida Zaghete

Abstract:

SnO2 has electrical conductivity due to the excess of electrons and structural defects, being its electrical behavior highly dependent on sintering temperature and chemical composition. The addition of metals modifiers into the crystalline structure can improve and controlling the behavior of some semiconductor oxides that can therefore develop different applications such as varistors (ceramic with non-ohmic behavior between current and voltage, i.e. conductive during normal operation and resistive during overvoltage). The polymeric precursor method, based on the complexation reaction between metal ion and policarboxylic acid and then polymerized with ethylene glycol, was used to obtain nanopowders ceramic. The metal immobilization reduces its segregation during the decomposition of the polyester resulting in a crystalline oxide with high chemical homogeneity. The preparation of films from ceramics nanoparticles using electrophoretic deposition method (EPD) brings prospects for a new generation of smaller size devices with easy integration technology. EPD allows to control time and current and therefore it can have control of the thickness, surface roughness and the film density, quickly and with low production costs. The sintering process is key to control size and grain boundary density of the film. In this step, there is the diffusion of metals that promote densification and control of intrinsic defects or change these defects which will form and modify the potential barrier in the grain boundary. The use of microwave oven for sintering is an advantageous process due to the fast and homogeneous heating rate, promoting the diffusion and densification without irregular grain growth. This research was done a comparative study of sintering temperature by use of zinc as modifier agent to verify the influence on sintering step aiming to promote densification and grain growth, which influences the potential barrier formation and then changed the electrical behavior. SnO2-nanoparticles were obtained with 1 %mol of ZnO + 0.05 %mol of Nb2O5 (SZN), deposited as film through EPD (voltage 2 kV, time of 10 min) on Si/Pt substrate. Sintering was made in a microwave oven at 800, 900 and 1000 °C. For complete coverage of the substrate by nanoparticles with low surface roughness and uniform thickness was added 0.02 g of solid iodine in alcoholic suspension SnO2 to increase particle surface charge. They were also used magneto in EPD system that improved the deposition rate forming a compact film. Using a scanning electron microscope of high resolution (SEM_FEG) it was observed nanoparticles with average size between 10-20 nm, after sintering the average size was 150 to 200 nm and thickness of 5 µm. Also, it was verified that the temperature at 1000 °C was the most efficient in sintering. The best sintering time was also recorded and determined as 40 minutes. After sintering, the films were recovered with Cr3+ ions layer by EPD, then the films were again thermally treated. The electrical characterizations (nonlinear coefficient of 11.4, voltage rupture of ~60 V and leakage current = 4.8x10−6 A), allow considering the new methodology suitable for prepare SnO2-based varistor applied for development of electrical protection devices for low voltage.

Keywords: chemical synthesis, electrophoretic deposition, microwave sintering, tin dioxide

Procedia PDF Downloads 272
2122 Quantification of Polychlorinated Biphenyls (PCBs) in Soil Samples of Electrical Power Substations from Different Cities in Nigeria

Authors: Omasan Urhie Urhie, Adenipekun C. O, Eke W., Ogwu K., Erinle K. O

Abstract:

Polychlorinated Biphenyls (PCBs) are Persistent organic pollutants (POPs) that are very toxic; they possess ability to accumulate in soil and in human tissues hence resulting in health issues like birth defect, reproductive disorder and cancer. The air is polluted by PCBs through volatilization and dispersion; they also contaminate soil and sediments and are not easily degraded. Soil samples were collected from a depth of 0-15 cm from three substations (Warri, Ughelli and Ibadan) of Power Holding Company of Nigeria (PHCN) where old transformers were dumped in Nigeria. Extraction and cleanup of soil samples were conducted using Accelerated Solvent Extraction (ASE) with Pressurized Liquid extraction (PLE). The concentration of PCBs was determined using gsas chromatography/mass spectrometry (GC/MS). Mean total PCB concentrations in the soil samples increased in the order Ughelli ˂ Ibadan˂ Warri, 2.457757ppm Ughelli substation 4.198926ppm, for Ibadan substation and 14.05065ppm at Warri substation. In the Warri samples, PCB-167 was the most abundant at about 30% (4.28086ppm) followed by PCB-157 at about 20% (2.77871), of the total PCB concentrations (14.05065ppm). Of the total PCBs in the Ughelli and Ibadan samples, PCB-156 was the most abundant at about 44% and 40%, respectively. This study provides a baseline report on the presence of PCBs in the vicinity of abandoned electrical power facilities in different cities in Nigeria.

Keywords: polychlorintated biphenyls, persistent organic pollutants, soil, transformer

Procedia PDF Downloads 139
2121 [Keynote Talk]: Morphological Analysis of Continuous Graphene Oxide Fibers Incorporated with Carbon Nanotube and MnCl₂

Authors: Nuray Ucar, Pelin Altay, Ilkay Ozsev Yuksek

Abstract:

Graphene oxide fibers have recently received increasing attention due to their excellent properties such as high specific surface area, high mechanical strength, good thermal properties and high electrical conductivity. They have shown notable potential in various applications including batteries, sensors, filtration and separation and wearable electronics. Carbon nanotubes (CNTs) have unique structural, mechanical, and electrical properties and can be used together with graphene oxide fibers for several application areas such as lithium ion batteries, wearable electronics, etc. Metals salts that can be converted into metal ions and metal oxide can be also used for several application areas such as battery, purification natural gas, filtration, absorption. This study investigates the effects of CNT and metal complex compounds (MnCl₂, metal salts) on the morphological structure of graphene oxide fibers. The graphene oxide dispersion was manufactured by modified Hummers method, and continuous graphene oxide fibers were produced with wet spinning. The CNT and MnCl₂ were incorporated into the coagulation baths during wet spinning process. Produced composite continuous fibers were analyzed with SEM, SEM-EDS and AFM microscopies and as spun fiber counts were measured.

Keywords: continuous graphene oxide fiber, Hummers' method, CNT, MnCl₂

Procedia PDF Downloads 176
2120 Prediction of Physical Properties and Sound Absorption Performance of Automotive Interior Materials

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Seong-Jin Cho, Tae-Hyeon Oh, Dae-Kyu Park

Abstract:

Sound absorption coefficient is considered important when designing because noise affects emotion quality of car. It is designed with lots of experiment tunings in the field because it is unreliable to predict it for multi-layer material. In this paper, we present the design of sound absorption for automotive interior material with multiple layers using estimation software of sound absorption coefficient for reverberation chamber. Additionally, we introduce the method for estimation of physical properties required to predict sound absorption coefficient of car interior materials with multiple layers too. It is calculated by inverse algorithm. It is very economical to get information about physical properties without expensive equipment. Correlation test is carried out to ensure reliability for accuracy. The data to be used for the correlation is sound absorption coefficient measured in the reverberation chamber. In this way, it is considered economical and efficient to design automotive interior materials. And design optimization for sound absorption coefficient is also easy to implement when it is designed.

Keywords: sound absorption coefficient, optimization design, inverse algorithm, automotive interior material, multiple layers nonwoven, scaled reverberation chamber, sound impedance tubes

Procedia PDF Downloads 309
2119 A Comprehensive Approach in Calculating the Impact of the Ground on Radiated Electromagnetic Fields Due to Lightning

Authors: Lahcene Boukelkoul

Abstract:

The influence of finite ground conductivity is of great importance in calculating the induced voltages from the radiated electromagnetic fields due to lightning. In this paper, we try to give a comprehensive approach to calculate the impact of the ground on the radiated electromagnetic fields to lightning. The vertical component of lightning electric field is calculated with a reasonable approximation assuming a perfectly conducting ground in case the observation point does not exceed a few kilometres from the lightning channel. However, for distant observation points the radiated vertical component of lightning electric field is attenuated due finitely conducting ground. The attenuation is calculated using the expression elaborated for both low and high frequencies. The horizontal component of the electric field, however, is more affected by a finite conductivity of a ground. Besides, the contribution of the horizontal component of the electric field, to induced voltages on an overhead transmission line, is greater than that of the vertical component. Therefore, the calculation of the horizontal electric field is great concern for the simulation of lightning-induced voltages. For field to transmission lines coupling the ground impedance is calculated for early time behaviour and for low frequency range.

Keywords: power engineering, radiated electromagnetic fields, lightning-induced voltages, lightning electric field

Procedia PDF Downloads 405
2118 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications

Authors: Manisha A. Hira, Arup Rakshit

Abstract:

Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.

Keywords: carbon fiber, conductive textiles, electrostatic dissipative materials, hybrid yarns

Procedia PDF Downloads 304
2117 Stimulation of Nerve Tissue Differentiation and Development Using Scaffold-Based Cell Culture in Bioreactors

Authors: Simon Grossemy, Peggy P. Y. Chan, Pauline M. Doran

Abstract:

Nerve tissue engineering is the main field of research aimed at finding an alternative to autografts as a treatment for nerve injuries. Scaffolds are used as a support to enhance nerve regeneration. In order to successfully design novel scaffolds and in vitro cell culture systems, a deep understanding of the factors affecting nerve regeneration processes is needed. Physical and biological parameters associated with the culture environment have been identified as potentially influential in nerve cell differentiation, including electrical stimulation, exposure to extracellular-matrix (ECM) proteins, dynamic medium conditions and co-culture with glial cells. The mechanisms involved in driving the cell to differentiation in the presence of these factors are poorly understood; the complexity of each of them raises the possibility that they may strongly influence each other. Some questions that arise in investigating nerve regeneration include: What are the best protein coatings to promote neural cell attachment? Is the scaffold design suitable for providing all the required factors combined? What is the influence of dynamic stimulation on cell viability and differentiation? In order to study these effects, scaffolds adaptable to bioreactor culture conditions were designed to allow electrical stimulation of cells exposed to ECM proteins, all within a dynamic medium environment. Gold coatings were used to make the surface of viscose rayon microfiber scaffolds (VRMS) conductive, and poly-L-lysine (PLL) and laminin (LN) surface coatings were used to mimic the ECM environment and allow the attachment of rat PC12 neural cells. The robustness of the coatings was analyzed by surface resistivity measurements, scanning electron microscope (SEM) observation and immunocytochemistry. Cell attachment to protein coatings of PLL, LN and PLL+LN was studied using DNA quantification with Hoechst. The double coating of PLL+LN was selected based on high levels of PC12 cell attachment and the reported advantages of laminin for neural differentiation. The underlying gold coatings were shown to be biocompatible using cell proliferation and live/dead staining assays. Coatings exhibiting stable properties over time under dynamic fluid conditions were developed; indeed, cell attachment and the conductive power of the scaffolds were maintained over 2 weeks of bioreactor operation. These scaffolds are promising research tools for understanding complex neural cell behavior. They have been used to investigate major factors in the physical culture environment that affect nerve cell viability and differentiation, including electrical stimulation, bioreactor hydrodynamic conditions, and combinations of these parameters. The cell and tissue differentiation response was evaluated using DNA quantification, immunocytochemistry, RT-qPCR and functional analyses.

Keywords: bioreactor, electrical stimulation, nerve differentiation, PC12 cells, scaffold

Procedia PDF Downloads 245
2116 Energy Efficient Microgrid Design with Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Today’s electrical networks, including microgrids, are evolving into smart grids. The smart grid concept brings the idea that the power comes from various sources (continuous or intermittent), in various forms (AC or DC, high, medium or low voltage, etc.), and it must be integrated into the electric power system in a smart way to guarantee a continuous and reliable supply that complies with power quality and energy efficiency standards and grid code requirements. This idea brings questions for the different players like how the required power will be generated, what kind of power will be more suitable, how to store exceeding levels for short or long-term usage, and how to combine and distribute all the different generation power sources in an efficient way. To address these issues, there has been lots of development in recent years on the field of on-grid and off-grid hybrid power systems (HPS). These systems usually combine one or more modes of electricity generation together with energy storage to ensure optimal supply reliability and high level of energy security. Hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, power quality improvement

Procedia PDF Downloads 143
2115 Effect of Magnetic Field on Mixed Convection Boundary Layer Flow over an Exponentially Shrinking Vertical Sheet with Suction

Authors: S. S. P. M. Isa, N. M. Arifin, R. Nazar, N. Bachok, F. M. Ali, I. Pop

Abstract:

A theoretical study has been presented to describe the boundary layer flow and heat transfer on an exponentially shrinking sheet with a variable wall temperature and suction, in the presence of magnetic field. The governing nonlinear partial differential equations are converted into ordinary differential equations by similarity transformation, which are then solved numerically using the shooting method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented through graphs and tables for several sets of values of the parameters. The effects of the governing parameters on the flow and heat transfer characteristics are thoroughly examined.

Keywords: exponentially shrinking sheet, magnetic field, mixed convection, suction

Procedia PDF Downloads 331
2114 Digital Twin of Real Electrical Distribution System with Real Time Recursive Load Flow Calculation and State Estimation

Authors: Anosh Arshad Sundhu, Francesco Giordano, Giacomo Della Croce, Maurizio Arnone

Abstract:

Digital Twin (DT) is a technology that generates a virtual representation of a physical system or process, enabling real-time monitoring, analysis, and simulation. DT of an Electrical Distribution System (EDS) can perform online analysis by integrating the static and real-time data in order to show the current grid status and predictions about the future status to the Distribution System Operator (DSO), producers and consumers. DT technology for EDS also offers the opportunity to DSO to test hypothetical scenarios. This paper discusses the development of a DT of an EDS by Smart Grid Controller (SGC) application, which is developed using open-source libraries and languages. The developed application can be integrated with Supervisory Control and Data Acquisition System (SCADA) of any EDS for creating the DT. The paper shows the performance of developed tools inside the application, tested on real EDS for grid observability, Smart Recursive Load Flow (SRLF) calculation and state estimation of loads in MV feeders.

Keywords: digital twin, distributed energy resources, remote terminal units, supervisory control and data acquisition system, smart recursive load flow

Procedia PDF Downloads 110
2113 Numerical Modeling of hybrid Photovoltaic-Thermoelectric Solar Unit by Applying Various Cross-Sections of Cooling Ducts

Authors: Ziba Khalili, Mohsen Sheikholeslami, Ladan Momayez

Abstract:

Combining the photovoltaic/thermal (PVT) systems with a thermoelectric (TE) module can raise energy yields since the TE module boosts the system's energy conversion efficiency. In the current study, a PVT system integrated with a TE module was designed and simulated in ANSYS Fluent 19.2. A copper heat transfer tube (HTT) was employed for cooling the photovoltaic (PV) cells. Four different shapes of HTT cross-section, i.e., circular, square, elliptical, and triangular, with equal cross-section areas were investigated. Also, the influence of Cu-Al2O3/water hybrid nanofluid (0.024% volume concentration), fluid inlet velocity (uᵢ ), and amount of solar radiation (G), on the PV temperature (Tₚᵥ) and system performance were investigated. The ambient temperature (Tₐ), wind speed (u𝓌), and fluid inlet temperature (Tᵢ), were considered to be 25°C, 1 m/s, and 27°C, respectively. According to the obtained data, the triangular case had the greatest impact on reducing the compared to other cases. In the triangular case, examination of the effect of hybrid nanofluid showed that the use of hybrid nanofluid at 800 W/m2 led to a reduction of the TPV by 0.6% compared to water, at 0.19 m/s. Moreover, the thermal efficiency ( ) and the overall electrical efficiency (nₜ) of the system improved by 0.93% and 0.22%, respectively, at 0.19 m/s. In a triangular case where G and were 800 W/m2 and 19 m/s, respectively, the highest amount of, thermal power (Eₜ), and, were obtained as 72.76%, 130.84 W and 12.03%, respectively.

Keywords: electrical performance, photovoltaic/thermal, thermoelectric, hybrid nanofluid, thermal efficiency

Procedia PDF Downloads 78
2112 Enhancing the Oxidation Resistance of Copper at High Temperature by Surface Fluorination

Authors: Jae-Ho Kim, Ryosuke Yokochi, Miho Fuzihashi, Susumu Yonezawa

Abstract:

The use of silver nanoparticles in conductive inks and their printing by injecting technology has been known for years. However, the very high cost of silver limits wide industrial applications. Since copper is much cheaper but possesses a very high conductivity (only 6% less than that of Ag), Cu nanoparticles can be considered as a replacement for silver nanoparticles. However, a major problem in utilizing their copper nanoparticles is their inherent tendency to oxidize in ambient conditions. In conductive printing applications, the presence of copper oxide on the surface of nanoparticles has two negative consequences: it increases the required sintering temperature and reduces the electrical conductivity. Only a limited number of reports have attempted to address the oxidation problem, which in general is based on minimizing the exposure of the copper nanoparticles to oxygen by a protective layer composed of a second material at the surface of the particles. To form the protective layer on the surface, carbon-based materials, surfactants, metals, and so on. In this study, we tried to modify the oxide on Cu particles using fluorine gas. And the creation effects of oxyfluorides or fluorides on the oxidation resistance of Cu particles were investigated. Compared with untreated sample (a), the fluorinated samples can restrain the weight increase even at 200℃ from the TG-DTA results. It might be considered that the substantial oxyfluorides on the surface play a role in protecting metal oxidation.

Keywords: copper metal, electrical conductivity, oxidation resistance, surface fluorination

Procedia PDF Downloads 109
2111 Enhanced Dielectric Properties of La Substituted CoFe2O4 Magnetic Nanoparticles

Authors: M. Vadivel, R. Ramesh Babu

Abstract:

Spinel ferrite magnetic nanomaterials have received a great deal of attention in recent years due to their wide range of potential applications in various fields such as magnetic data storage and microwave device applications. Among the family of spinel ferrites, cobalt ferrite (CoFe2O4) has been widely used in the field of high-frequency applications because of its remarkable material qualities such as moderate saturation magnetization, high coercivity, large permeability at higher frequency and high electrical resistivity. For aforementioned applications, the materials should have an improved electrical property, especially enhancement in the dielectric properties. It is well known that the substitution of rare earth metal cations in Fe3+ site of CoFe2O4 nanoparticles leads to structural distortion and thus significantly influences the structural and morphological properties whereas greatly modifies the electrical and magnetic properties of a material. In the present investigation, we report on the influence of lanthanum (La3+) ion substitution on the structural, morphological, dielectric and magnetic properties of CoFe2O4 magnetic nanoparticles prepared by co-precipitation method. Powder X-ray diffraction patterns reveal the formation of inverse cubic spinel structure with the signature of LaFeO3 phase at higher La3+ ion concentrations. Raman and Fourier transform infrared spectral analysis also confirms the formation of inverse cubic spinel structure and Fe-O symmetrical stretching vibrations of CoFe2O4 nanoparticles, respectively. Transmission electron microscopy study reveals that the size of the particles gradually increases with increasing La3+ ion concentrations whereas the agglomeration gets slightly reduced for La3+ ion substituted CoFe2O4 nanoparticles than that of undoped CoFe2O4 nanoparticles. Dielectric properties such as dielectric constant and dielectric loss were recorded as a function of frequency and temperature which reveals that the dielectric constant gradually increases with increasing temperatures as well as La3+ ion concentrations. The increased dielectric constant might be the reason that the formation of LaFeO3 secondary phase at higher La3+ ion concentrations. Magnetic measurement demonstrates that the saturation magnetization gradually decreases from 61.45 to 25.13 emu/g with increasing La3+ ion concentrations which is due to the nonmagnetic nature of La3+ ions substitution.

Keywords: cobalt ferrite, co-precipitation, dielectric properties, saturation magnetization

Procedia PDF Downloads 317
2110 Modeling and Minimizing the Effects of Ferroresonance for Medium Voltage Transformers

Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Arian Amirnia, Atena Taheri, Mohammadreza Arabi, Mahmud Fotuhi-Firuzabad

Abstract:

Ferroresonance effects cause overvoltage in medium voltage transformers and isolators used in electrical networks. Ferroresonance effects are nonlinear and occur between the network capacitor and the nonlinear inductance of the voltage transformer during saturation. This phenomenon is unwanted for transformers since it causes overheating, introduction of high dynamic forces in primary coils, and rise of voltage in primary coils for the voltage transformer. Furthermore, it results in electrical and thermal failure of the transformer. Expansion of distribution lines, design of the transformer in smaller sizes, and the increase of harmonics in distribution networks result in an increase of ferroresonance. There is limited literature available to improve the effects of ferroresonance; therefore, optimizing its effects for voltage transformers is of great importance. In this study, comprehensive modeling of a medium voltage block-type voltage transformer is performed. In addition, a recent model is proposed to improve the performance of voltage transformers during the occurrence of ferroresonance using damping oscillations. Also, transformer design optimization is presented in this study to show further improvements in the performance of the voltage transformer. The recently proposed model is experimentally tested and verified on a medium voltage transformer in the laboratory, and simulation results show a large reduction of the effects of ferroresonance.

Keywords: optimization, voltage transformer, ferroresonance, modeling, damper

Procedia PDF Downloads 101
2109 Autonomous Taxiing Robot for Grid Resilience Enhancement in Green Airport

Authors: Adedayo Ajayi, Patrick Luk, Liyun Lao

Abstract:

This paper studies the supportive needs for the electrical infrastructure of the green airport. In particular, the core objective revolves around the choice of electric grid configuration required to meet the expected electrified loads, i.e., the taxiing and charging loads of hybrid /pure electric aircraft in the airport. Further, reliability and resilience are critical aspects of a newly proposed grid; the concept of mobile energy storage as energy as a service (EAAS) for grid support in the proposed green airport is investigated using an autonomous electric taxiing robot (A-ETR) at a case study (Cranfield Airport). The performance of the model is verified and validated through DigSILENT power factory simulation software to compare the networks in terms of power quality, short circuit fault levels, system voltage profile, and power losses. Contingency and reliability index analysis are further carried out to show the potential of EAAS on the grid. The results demonstrate that the low voltage a.c network ( LVAC) architecture gives better performance with adequate compensation than the low voltage d.c (LVDC) microgrid architecture for future green airport electrification integration. And A-ETR can deliver energy as a service (EaaS) to improve the airport's electrical power system resilience and energy supply.

Keywords: reliability, voltage profile, flightpath 2050, green airport

Procedia PDF Downloads 82
2108 Oil Reservoirs Bifurcation Analysis in the Democratic Republic of Congo: Fractal Characterization Approach of Makelekese MS-25 Field

Authors: Leonard Mike McNelly Longwa, Divine Kusosa Musiku, D. Nahum Kabeya

Abstract:

In this paper the bifurcation analysis of oilfield in Democratic Republic of Congo is presented in order to enhance petroleum production in an intense tectonic evolution characterized by distinct compressive and extensive phases and the digenetic transformation in the reservoirs during burial geological configuration. The use of porous media in Makelekese MS-25 field has been established to simulate the boundaries within 3 sedimentary basins open to exploration including the coastal basin with an area of 5992 km2, a central basin with an area of 800,000 km2, the western branch of the East African Rift in which there are 50,000 km2. The fractal characterization of complex hydro-dynamic fractures in oilfield is developed to facilitate oil production process based on reservoirs bifurcation model.

Keywords: reservoir bifurcation, fractal characterisation, permeability, conductivity, skin effect

Procedia PDF Downloads 199
2107 Inhibition of the Corrosion of Copper in 0.5 NaCl Solutions by Aqueous Extract and Hydrolysis Acid of Olive Leaf Extract

Authors: Chahla Rahal, Philippe Refait

Abstract:

Oleuropein-rich extract from olive leaf and acid hydrolysates, rich in hydroxytyrosol and elenolic acid was prepared under different experimental conditions. These phenolic compounds may be used as a corrosion inhibitor. The inhibitive action of these extracts and its major constituents on the corrosion of copper in 0.5 M NaCl solution has been evaluated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The product of extraction was analyzed with high performance liquid chromatography (HPLC), whose analysis shows that olive leaf extract are greatly rich in phenolic compounds, mainly Oleuropeine (OLE), Hydroxytyrosol (HT) and elenolic acid (EA). After the acid hydrolysis and high temperature of extraction, an increase in hydroxytyrosol concentration was detected, coupled with relatively low oleuropeine content and high concentration of elenolic acid. The potentiodynamic measurements have shown that this extract acts as a mixed-type corrosion inhibitor, and good inhibition efficiency is observed with the increase in HT and EA concentration. These results suggest that the inhibitive effect of olive leaf extract might be due to the adsorption of the various phenolic compounds onto the copper surface.

Keywords: olive leaf extract, oleuropein, voltammetry, copper, corrosion, HPLC, EIS

Procedia PDF Downloads 302
2106 Real-Time Nonintrusive Heart Rate Measurement: Comparative Case Study of LED Sensorics' Accuracy and Benefits in Heart Monitoring

Authors: Goran Begović

Abstract:

In recent years, many researchers are focusing on non-intrusive measuring methods when it comes to human biosignals. These methods provide solutions for everyday use, whether it’s health monitoring or finessing the workout routine. One of the biggest issues with these solutions is that the sensors’ accuracy is highly variable due to many factors, such as ambiental light, skin color diversity, etc. That is why we wanted to explore different outcomes under those kinds of circumstances in order to find the most optimal algorithm(s) for extracting heart rate (HR) information. The optimization of such algorithms can benefit the wider, cheaper, and safer application of home health monitoring, without having to visit medical professionals as often when it comes to observing heart irregularities. In this study, we explored the accuracy of infrared (IR), red, and green LED sensorics in a controlled environment and compared the results with a medically accurate ECG monitoring device.

Keywords: data science, ECG, heart rate, holter monitor, LED sensors

Procedia PDF Downloads 127
2105 Identifying Physiological Markers That Are Sensitive to Cognitive Load in Preschoolers

Authors: Priyashri Kamlesh Sridhar, Suranga Nanayakkara

Abstract:

Current frameworks in assessment follow lesson delivery and rely heavily on test performance or teacher’s observations. This, however, neglects the underlying cognitive load during the learning process. Identifying the pivotal points when the load occurs helps design effective pedagogies and tools that respond to learners’ cognitive state. There has been limited research on quantifying cognitive load in preschoolers, real-time. In this study, we recorded electrodermal activity and heart rate variability (HRV) from 10 kindergarteners performing executive function tasks and Johnson Woodcock test of cognitive abilities. Preliminary findings suggest that there are indeed sensitive task-dependent markers in skin conductance (number of SCRs and average amplitude of SCRs) and HRV (mean heart rate and low frequency component) captured during the learning process.

Keywords: early childhood, learning, methodologies, pedagogies

Procedia PDF Downloads 320
2104 Separation of Composites for Recycling: Measurement of Electrostatic Charge of Carbon and Glass Fiber Particles

Authors: J. Thirunavukkarasu, M. Poulet, T. Turner, S. Pickering

Abstract:

Composite waste from manufacturing can consist of different fiber materials, including blends of different fiber. Commercially, the recycling of composite waste is currently limited to carbon fiber waste and recycling glass fiber waste is currently not economically viable due to the low cost of virgin glass fiber and the reduced mechanical properties of the recovered fibers. For this reason, the recycling of hybrid fiber materials, where carbon fiber is combined with a proportion of glass fiber, cannot be processed economically. Therefore, a separation method is required to remove the glass fiber materials during the recycling process. An electrostatic separation method is chosen for this work because of the significant difference between carbon and glass fiber electrical properties. In this study, an experimental rig has been developed to measure the electrostatic charge achievable as the materials are passed through a tube. A range of particle lengths (80-100 µm, 6 mm and 12 mm), surface state conditions (0%SA, 2%SA and 6%SA), and several tube wall materials have been studied. A polytetrafluoroethylene (PTFE) tube and recycled without sizing agent was identified as the most suitable parameters for the electrical separation method. It was also found that shorter fiber lengths helped to encourage particle flow and attain higher charge values. These findings can be used to develop a separation process to enable the cost-effective recycling of hybrid fiber composite waste.

Keywords: electrostatic charging, hybrid fiber composites, recycling, short fiber composites

Procedia PDF Downloads 129
2103 Novel Anticorrosion Epoxy Reinforced Graphitic Nanocomposite as a Durable Surface

Authors: Shimaa A. Higazy, Mohamed S. Selim, Olfat E. El-Azabawy, Abeer A. Hassan

Abstract:

We designed novel epoxy/graphitic carbon nitride (g-C₃N₄) nanocomposite materials as suitable surface coatings. g-C₃N₄ nanosheets were facilely prepared and dispersed in the epoxy resin via solution casting. This research focuses on the mechanical and anticorrosion properties of g-C₃N₄ nanofiller reinforced epoxy nanocomposites. The structures, sizes, and morphologies of designed polymeric nanocomposites and nanofillers were elucidated using various techniques such as FT-IR, NMR, FE-TEM, FE-SEM. The developed nanocomposite was applied as a surface coating by air-assisted spray method. The structure-property relationship was studied for different concentrations of nanofiller in the epoxy matrix. The anticorrosive properties were studied via electrochemical experiments, including potentiodynamic polarization, electrochemical impedance, and open-circuit potential analyses, as well as salt spray test. Mechanical durability was assessed by various methods, such as impact, T-bending, and crosscut tests. Surface heterogeneity, elasticity, and corrosion-resistance features are among the merits of developed composite. The highest improvement was achieved with well dispersion of g-C₃N₄ sheets fillers. This fascinating epoxy nanostructured coating provides a promising anticorrosive coatings for a sustainable future environment.

Keywords: epoxy, nanocomposite, surface coating, anticorrosive properties, mechanical durability

Procedia PDF Downloads 88
2102 50/50 Oil-Water Ratio Invert Emulsion Drilling Mud Using Vegetable Oil as Continuous Phase

Authors: P. C. Ihenacho, M. Burby, G. G. Nasr, G. C. Enyi

Abstract:

Formulation of a low oil-water ratio drilling mud with vegetable oil continuous phase without adversely affecting the mud rheology and stability has been a major challenge. A low oil-water ratio is beneficial in producing low fluid loss which is essential for wellbore stability. This study examined the possibility of 50/50 oil-water ratio invert emulsion drilling mud using a vegetable oil continuous phase. Jatropha oil was used as continuous phase. 12 ml of egg yolk which was separated from the albumen was added as the primary emulsifier additive. The rheological, stability and filtration properties were examined. The plastic viscosity and yield point were found to be 36cp and 17 Ib/100 ft2 respectively. The electrical stability at 48.9ºC was 353v and the 30 minutes fluid loss was 6ml. The results compared favourably with a similar formulation using 70/30 oil - water ratio giving plastic viscosity of 31cp, yield point of 17 Ib/100 ft2, electrical stability value of 480v and 12ml for the 30 minutes fluid loss. This study indicates that with a good mud composition using guided empiricism, 50/50 oil-water ratio invert emulsion drilling mud is feasible with a vegetable oil continuous phase. The choice of egg yolk as emulsifier additive is for compatibility with the vegetable oil and environmental concern. The high water content with no fluid loss additive will also minimise the cost of mud formulation.

Keywords: environmental compatibility, low cost of mud formulation, low fluid loss, wellbore stability

Procedia PDF Downloads 390
2101 Subcutan Isosulfan Blue Administration May Interfere with Pulse Oximetry

Authors: Esra Yuksel, Dilek Duman, Levent Yeniay, Sezgin Ulukaya

Abstract:

Sentinel lymph node biopsy (SLNB) is a minimal invasive technique with lower morbidity in axillary staging of breast cancer. Isosulfan blue stain is frequently used in SLNB and regarded as safe. The present case report aimed to report severe decrement in SpO2 following isosulfan blue administration, as well as skin and urine signs and inconsistency with clinical picture in a 67-year-old ,77 kg, ASA II female case that underwent SLNB under general anesthesia. Ten minutes after subcutaneous administration of 10 ml 1% isosulfan blue by the surgeons into the patient, who were hemodynamically stable, SpO2 first reduced to 87% from 99%, and then to 75% in minutes despite 100% oxygen support. Meanwhile, blood pressure and EtCO2 monitoring was unremarkable. After specifying that anesthesia device worked normally, airway pressure did not increase and the endotracheal tube has been placed accurately, the blood sample was taken from the patient for arterial gas analysis. A severe increase was thought in MetHb concentration since SpO2 persisted to be 75% although the concentration of inspired oxygen was 100%, and solution of 2500 mg ascorbic acid in 500 ml 5% Dextrose was given to the patient via intravenous route until the results of arterial blood gas were obtained. However, arterial blood gas results were as follows: pH: 7.54, PaCO2: 23.3 mmHg, PaO2: 281 mmHg, SaO2: %99, and MetHb: %2.7. Biochemical analysis revealed a blood MetHb concentration of 2%.However, since arterial blood gas parameters were good, hemodynamics of the patient was stable and methemoglobin concentration was not so high, the patient was extubated after surgery when she was relaxed, cooperated and had adequate respiration. Despite the absence of respiratory or neurological distress, SpO2 value was increased only up to 85% within 2 hours with 5 L/min oxygen support via face mask in the surgery room as the patient was extubated. At that time, the skin of particularly the upper part of her body has turned into blue, more remarkable on the face. The color of plasma of the blood taken from the patient for biochemical analysis was blue. The color of urine coming throughout the urinary catheter placed in intensive care unit was also blue. Twelve hours after 5 L/min. oxygen inhalation via a mask, the SpO2 reached to 90%. During monitoring in intensive care unit on the postoperative 1st day, facial color and urine color of the patient was still blue, SpO2 was 92%, and arterial blood gas levels were as follows: pH: 7.44, PaO2: 76.1 mmHg, PaCO2: 38.2 mmHg, SaO2: 99%, and MetHb 1%. During monitoring in clinic on the postoperative 2nd day, SpO2 was 95% without oxygen support and her facial and urine color turned into normal. The patient was discharged on the 3rd day without any problem.In conclusion, SLNB is a less invasive alternative to axillary dissection. However, false pulse oximeter reading due to pigment interference is a rare complication of this procedure. Arterial blood gas analysis should be used to confirm any fall in SpO2 reading during monitoring.

Keywords: isosulfan blue, pulse oximetry, SLNB, methemoglobinemia

Procedia PDF Downloads 315