Search results for: deep feed forward neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8786

Search results for: deep feed forward neural network

7496 Impact Assessment of Information Communication, Network Providers, Teledensity, and Consumer Complaints on Gross Domestic Products

Authors: Essang Anwana Onuntuei, Chinyere Blessing Azunwoke

Abstract:

The study used secondary data from foreign and local organizations to explore major challenges and opportunities abound in Information Communication. The study aimed at exploring the tie between tele density (network coverage area) and the number of network subscriptions, probing if the degree of consumer complaints varies significantly among network providers, and assessing if network subscriptions do significantly influence the sector’s GDP contribution. Methods used for data analysis include Pearson product-moment correlation and regression analysis, and the Analysis of Variance (ANOVA) as well. At a two-tailed test of 0.05 confidence level, the results of findings established about 85.6% of network subscriptions were explained by tele density (network coverage area), and the number of network subscriptions; Consumer Complaints’ degree varied significantly among network providers as 80.158291 (F calculated) > 3.490295 (F critical) with very high confidence associated p-value = 0.000000 which is < 0.05; and finally, 65% of the nation’s GDP was explained by network subscription to show a high association.

Keywords: tele density, subscription, network coverage, information communication, consumer

Procedia PDF Downloads 43
7495 A New Resonance Solution to Suppress the Voltage Stresses in the Forward Topology Used in a Switch Mode Power Supply

Authors: Maamar Latroch, Mohamed Bourahla

Abstract:

Forward topology used in switch mode power supply (SMPS) is one of the most famous configuration feeding DC systems such as telecommunication systems and other specific applications where the galvanic isolation is required. This configuration benefits of the high frequency feature of the transformer to provide a small size and light weight of the over all system. However, the stresses existing on the power switch during an ON/OFF commutation limit the transmitted power to the DC load. This paper investigates the main causes of the stresses in voltage existing during a commutation cycle and suggest a low cost solution that eliminates the overvoltage. As a result, this configuration will yield the possibility of the use of this configuration in higher power applications. Simulation results will show the efficiency of the presented method.

Keywords: switch mode power supply, forward topology, resonance topology, high frequency commutation

Procedia PDF Downloads 437
7494 Performance and Pellet Quality in Broiler Fed with Different Levels of Fat and Pellet Binders

Authors: Reza Vakili

Abstract:

To assess the effect of different levels of soybean oil (SO: 1, 2%) and different types of pellet binders (sodium bentonite (SB), calcium lignosulfonate (Ca-Ls), and plant compounds (PC) on the pellet quality, and broilers’ performance, 480 one-day-old male broiler chickens (Ross 308) were used. The results showed that in the starter diet, the 1-PC group had the highest pellet durability index (PDI) (P<0.05). The PDI of the grower diet containing SB and PC was higher than others (P<0.05). The highest pellet hardness was observed in groups 1-SB, 1-PC, 2-SB, and 2-PC for the starter diet (P<0.05). For the finisher diet, the hardness of pellets containing SB and PC was higher (P<0.05). During the starter phase, the best feed conversion ratio (FCR) was obtained in 1-SB (P<0.05). The lowest and highest daily feed intake was observed in groups 2-PC and 1-SB, respectively, during the finisher phase. During the finisher and whole phases, the most daily body weight gain was observed in the SB group (P<0.05).

Keywords: bentonite, birds, body weight, feed processing, pellet durability, soybean oil

Procedia PDF Downloads 34
7493 Research on Urban Point of Interest Generalization Method Based on Mapping Presentation

Authors: Chengming Li, Yong Yin, Peipei Guo, Xiaoli Liu

Abstract:

Without taking account of the attribute richness of POI (point of interest) data and spatial distribution limited by roads, a POI generalization method considering both attribute information and spatial distribution has been proposed against the existing point generalization algorithm merely focusing on overall information of point groups. Hierarchical characteristic of urban POI information expression has been firstly analyzed to point out the measurement feature of the corresponding hierarchy. On this basis, an urban POI generalizing strategy has been put forward: POIs urban road network have been divided into three distribution pattern; corresponding generalization methods have been proposed according to the characteristic of POI data in different distribution patterns. Experimental results showed that the method taking into account both attribute information and spatial distribution characteristics of POI can better implement urban POI generalization in the mapping presentation.

Keywords: POI, road network, selection method, spatial information expression, distribution pattern

Procedia PDF Downloads 410
7492 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs

Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny

Abstract:

As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.

Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning

Procedia PDF Downloads 211
7491 Count of Trees in East Africa with Deep Learning

Authors: Nubwimana Rachel, Mugabowindekwe Maurice

Abstract:

Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.

Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization

Procedia PDF Downloads 71
7490 Bi-Criteria Objective Network Design Model for Multi Period Multi Product Green Supply Chain

Authors: Shahul Hamid Khan, S. Santhosh, Abhinav Kumar Sharma

Abstract:

Environmental performance along with social performance is becoming vital factors for industries to achieve global standards. With a good environmental policy global industries are differentiating them from their competitors. This paper concentrates on multi stage, multi product and multi period manufacturing network. Bi-objective mathematical models for total cost and total emission for the entire forward supply chain are considered. Here five different problems are considered by varying the number of suppliers, manufacturers, and environmental levels, for illustrating the taken mathematical model. GA, and Random search are used for finding the optimal solution. The input parameters of the optimal solution are used to find the tradeoff between the initial investment by the industry and the long term benefit of the environment.

Keywords: closed loop supply chain, genetic algorithm, random search, green supply chain

Procedia PDF Downloads 549
7489 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria

Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter

Abstract:

Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.

Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis

Procedia PDF Downloads 75
7488 Enhancing the Resilience of Combat System-Of-Systems Under Certainty and Uncertainty: Two-Phase Resilience Optimization Model and Deep Reinforcement Learning-Based Recovery Optimization Method

Authors: Xueming Xu, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

A combat system-of-systems (CSoS) comprises various types of functional combat entities that interact to meet corresponding task requirements in the present and future. Enhancing the resilience of CSoS holds significant military value in optimizing the operational planning process, improving military survivability, and ensuring the successful completion of operational tasks. Accordingly, this research proposes an integrated framework called CSoS resilience enhancement (CSoSRE) to enhance the resilience of CSoS from a recovery perspective. Specifically, this research presents a two-phase resilience optimization model to define a resilience optimization objective for CSoS. This model considers not only task baseline, recovery cost, and recovery time limit but also the characteristics of emergency recovery and comprehensive recovery. Moreover, the research extends it from the deterministic case to the stochastic case to describe the uncertainty in the recovery process. Based on this, a resilience-oriented recovery optimization method based on deep reinforcement learning (RRODRL) is proposed to determine a set of entities requiring restoration and their recovery sequence, thereby enhancing the resilience of CSoS. This method improves the deep Q-learning algorithm by designing a discount factor that adapts to changes in CSoS state at different phases, simultaneously considering the network’s structural and functional characteristics within CSoS. Finally, extensive experiments are conducted to test the feasibility, effectiveness and superiority of the proposed framework. The obtained results offer useful insights for guiding operational recovery activity and designing a more resilient CSoS.

Keywords: combat system-of-systems, resilience optimization model, recovery optimization method, deep reinforcement learning, certainty and uncertainty

Procedia PDF Downloads 16
7487 Application of Fourier Series Based Learning Control on Mechatronic Systems

Authors: Sandra Baßler, Peter Dünow, Mathias Marquardt

Abstract:

A Fourier series based learning control (FSBLC) algorithm for tracking trajectories of mechanical systems with unknown nonlinearities is presented. Two processes are introduced to which the FSBLC with PD controller is applied. One is a simplified service robot capable of climbing stairs due to special wheels and the other is a propeller driven pendulum with nearly the same requirements on control. Additionally to the investigation of learning the feed forward for the desired trajectories some considerations on the implementation of such an algorithm on low cost microcontroller hardware are made. Simulations of the service robot as well as practical experiments on the pendulum show the capability of the used FSBLC algorithm to perform the task of improving control behavior for repetitive task of such mechanical systems.

Keywords: climbing stairs, FSBLC, ILC, service robot

Procedia PDF Downloads 313
7486 The Economic Impact Analysis of the Use of Probiotics and Prebiotics in Broiler Feed

Authors: Hanan Al-Khalaifah, Afaf Al-Nasser

Abstract:

Probiotics and prebiotics claimed to serve as effective alternatives to antibiotics in the poultry. This study aims to investigate the effect of different probiotics and prebiotics on the economic impact analysis of the use of probiotics and prebiotics in broiler feed. The study involved four broiler cycles, two during winter and two during summer. In the first two cycles (summer and winter), different types of prebiotics and probiotics were used. The probiotics were Bacillus coagulans (1 g/kg dried culture) and Lactobacillus (1 g/kg dried culture of 12 commercial strains), and prebiotics included fructo-oligosaccharides (FOS) (5 g/kg) and mannan-oligosaccharide (MOS) derived from Saccharomyces cerevisiae (5 g/kg). Based on the results obtained, the best treatment was chosen to be FOS, from which different ratios were used in the last two cycles during winter and summer. The levels of FOS chosen were 0.3, 0.5, and 0.7% of the diet. From an economic point of view, it was generally concluded that in all dietary treatments, food was consumed less in cycle 1 than in cycle 2, the total body weight gain was more in cycle 1 than cycle 2, and the average feed efficiency was less in cycle l than cycle 2. This indicates that the weather condition affected better in cycle 1. Also, there were very small differences between the dietary treatments in each cycle. In cycle 1, the best total feed consumption was for the FOS treatment, the highest total body weight gain and average feed efficiency were for B. coagulans. In cycle 2, all performance was better in FOS treatment. FOS significantly reduced the Salmonella sp. counts in the intestine, where the environment was driven towards acidity. FOS was the best on the average taste panel study of the produced meat. Accordingly, FOS prebiotic was chosen to be the best treatment to be used in cycles 3 and 4. The economic impact analysis generally revealed that there were no big differences between the treatments in all of the studied indicators, but there was a difference between the cycles.

Keywords: antibiotic, economic impact, prebiotic, probiotic, broiler

Procedia PDF Downloads 151
7485 Design of Distribution Network for Gas Cylinders in Jordan

Authors: Hazem J. Smadi

Abstract:

Performance of a supply chain is directly related to a distribution network that entails the location of storing materials or products and how products are delivered to the end customer through different stages in the supply chain. This study analyses the current distribution network used for delivering gas cylinders to end customer in Jordan. Evaluation of current distribution has been conducted across customer service components. A modification on the current distribution network in terms of central warehousing in each city in the country improves the response time and customer experience. 

Keywords: distribution network, gas cylinder, Jordan, supply chain

Procedia PDF Downloads 459
7484 Isotopic Evidence (He, Ne, Ar) for Deep Fluid in the Caucasus Continental Collision Zone

Authors: Larisa Liamina, Vasily Lavrushin, Salvatore Inguaggiato

Abstract:

This study presents and summarizes the results of researching the isotopic signature of helium in the deep fluid eastern part of the Southern slope of the Greater Caucasus and the Lesser Caucasus (Azerbaijan and Armenia) for the period from 2010 to 2016. The results of isotope ratios of 3He/4He in 59 samples of the gas phase of geothermal fluids and mud volcanoes are presented. New data have been obtained not only on the isotopic ratios of helium, but also neon and argon. The R/Ra ratio was analyzed along the Ankara-Sevan ophiolite structure. The patterns of lateral variations of the 3He/4He ratio of different geological structural elements of the studied region are revealed.

Keywords: isotopes helium, deep fluids, tectonic structures, Caucasus

Procedia PDF Downloads 45
7483 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation

Authors: Simiao Ren, En Wei

Abstract:

Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.

Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN

Procedia PDF Downloads 101
7482 Quantitative Analysis of Presence, Consciousness, Subconsciousness, and Unconsciousness

Authors: Hooshmand Kalayeh

Abstract:

The human brain consists of reptilian, mammalian, and thinking brain. And mind consists of conscious, subconscious, and unconscious parallel neural-net programs. The primary objective of this paper is to propose a methodology for quantitative analysis of neural-nets associated with these mental activities in the neocortex. The secondary objective of this paper is to suggest a methodology for quantitative analysis of presence; the proposed methodologies can be used as a first-step to measure, monitor, and understand consciousness and presence. This methodology is based on Neural-Networks (NN), number of neuron in each NN associated with consciousness, subconsciouness, and unconsciousness, and number of neurons in neocortex. It is assumed that the number of neurons in each NN is correlated with the associated area and volume. Therefore, online and offline visualization techniques can be used to identify these neural-networks, and online and offline measurement methods can be used to measure areas and volumes associated with these NNs. So, instead of the number of neurons in each NN, the associated area or volume also can be used in the proposed methodology. This quantitative analysis and associated online and offline measurements and visualizations of different Neural-Networks enable us to rewire the connections in our brain for a more balanced living.

Keywords: brain, mind, consciousness, presence, sub-consciousness, unconsciousness, skills, concentrations, attention

Procedia PDF Downloads 314
7481 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 54
7480 Effect of Microencapsulated Butyric Acid Supplementation on Growth Performance, Ileal Digestibility of Protein, Gut Health and Immunity in Broilers

Authors: Saeed Ahmed, Muhammad Imran, Yasir Allah Ditta, Shahid Mehmood, Zahid Rasool

Abstract:

A study was conducted to investigate the effect of different levels of microencapsulated butyric (MEB) on growth performance, gut health and immunity in commercial broiler chickens. In total, 336 day-old Hubbard classic broilers chicks were randomly assigned to 4 dietary treatments (Control, 0.25, 0.35 and 0.45g/kg of butyric acid) under completely randomized design. Each treatment was replicated 3 times with 28 birds in each replicate. Feed intake, body weight gain, feed conversion ratio, intestinal morphology, apparent ileal digestibility of protein and immunity parameters were evaluated. At the end of the experiment (35-d) 3 birds/replicate in each group were randomly selected and slaughtered to collect blood, duodenal samples and ileal digesta. The data were analyzed by using ANOVA technique. The results indicated improved body weight gain (P = 0.0222), feed conversion ratio (P = 0.0056), duodenal villus height (P = 0.0512), AID (P = 0.0098) antibody titer against Newcastle disease improved (P = 0.0326). Treatments remained unresponsive with respect to feed intake (P = 0.9685).

Keywords: butyric acid, broilers, gut health, ileal digestibility

Procedia PDF Downloads 324
7479 Effects of Dietary Protein and Lipid Levels on Growth and Body Composition of Juvenile Fancy Carp, Cyprinus carpio var. Koi

Authors: Jin Choi, Zahra Aminikhoei, Yi-Oh Kim, Sang-Min Lee

Abstract:

A 4 × 2 factorial experiment was conducted to determine the optimum dietary protein and lipid levels for juvenile fancy carp, Cyprinus carpio var. koi. Eight experimental diets were formulated to contain four protein levels (200, 300, 400, and 500 g kg-1) with two lipid levels (70 and 140 g kg-1). Triplicate groups of fish (initial weight, 12.1±0.2 g fish-1) were hand-fed the diets to apparent satiation for 8 weeks. Weight gain, daily feed intake, feed efficiency ratio and protein efficiency ratio were significantly (P < 0.0001) affected by dietary protein level, but not by dietary lipid level (P > 0.05). Weight gain and feed efficiency ratio tended to increase as dietary protein level increased up to 400 and 500 g kg-1, respectively. Daily feed intake of fish decreased with increasing dietary protein level and that of fish fed diet contained 500 g kg-1 protein was significantly lower than other fish groups. The protein efficiency ratio of fish fed 400 and 500 g kg-1 protein was lower than that of fish fed 200 and 300 g kg-1 protein. Moisture, crude protein and crude lipid contents of muscle and liver were significantly affected by dietary protein, but not by dietary lipid level (P > 0.05). The increase in dietary lipid level resulted in an increase in linoleic acid in liver and muscle paralleled with a decrease in n-3 highly unsaturated fatty acids content in muscle of fish. In considering these results, it was concluded that the diet containing 400 g kg-1 protein with 70 g kg-1 lipid level is optimal for growth and efficient feed utilization of juvenile fancy carp.

Keywords: fancy carp, dietary protein, dietary lipid, Cyprinus carpio, fatty acid

Procedia PDF Downloads 403
7478 Design of a Novel Fractal Multiband Planar Antenna with a CPW-Feed

Authors: T. Benyetho, L. El Abdellaoui, J. Terhzaz, H. Bennis, N. Ababssi, A. Tajmouati, A. Tribak, M. Latrach

Abstract:

This work presents a new planar multiband antenna based on fractal geometry. This structure is optimized and validated into simulation by using CST-MW Studio. To feed this antenna we have used a CPW line which makes it easy to be incorporated with integrated circuits. The simulation results presents a good matching input impedance and radiation pattern in the GSM band at 900 MHz and ISM band at 2.4 GHz. The final structure is a dual band fractal antenna with 70 x 70 mm² as a total area by using an FR4 substrate.

Keywords: Antenna, CPW, fractal, GSM, multiband

Procedia PDF Downloads 386
7477 Dissolved Gas Analysis Based Regression Rules from Trained ANN for Transformer Fault Diagnosis

Authors: Deepika Bhalla, Raj Kumar Bansal, Hari Om Gupta

Abstract:

Dissolved Gas Analysis (DGA) has been widely used for fault diagnosis in a transformer. Artificial neural networks (ANN) have high accuracy but are regarded as black boxes that are difficult to interpret. For many problems it is desired to extract knowledge from trained neural networks (NN) so that the user can gain a better understanding of the solution arrived by the NN. This paper applies a pedagogical approach for rule extraction from function approximating neural networks (REFANN) with application to incipient fault diagnosis using the concentrations of the dissolved gases within the transformer oil, as the input to the NN. The input space is split into subregions and for each subregion there is a linear equation that is used to predict the type of fault developing within a transformer. The experiments on real data indicate that the approach used can extract simple and useful rules and give fault predictions that match the actual fault and are at times also better than those predicted by the IEC method.

Keywords: artificial neural networks, dissolved gas analysis, rules extraction, transformer

Procedia PDF Downloads 536
7476 A Hybrid Simulation Approach to Evaluate Cooling Energy Consumption for Public Housings of Subtropics

Authors: Kwok W. Mui, Ling T. Wong, Chi T. Cheung

Abstract:

Cooling energy consumption in the residential sector, different from shopping mall, office or commercial buildings, is significantly subject to occupant decisions where in-depth investigations are found limited. It shows that energy consumptions could be associated with housing types. Surveys have been conducted in existing Hong Kong public housings to understand the housing characteristics, apartment electricity demands, occupant’s thermal expectations, and air–conditioning usage patterns for further cooling energy-saving assessments. The aim of this study is to develop a hybrid cooling energy prediction model, which integrated by EnergyPlus (EP) and artificial neural network (ANN) to estimate cooling energy consumption in public residential sector. Sensitivity tests are conducted to find out the energy impacts with changing building parameters regarding to external wall and window material selection, window size reduction, shading extension, building orientation and apartment size control respectively. Assessments are performed to investigate the relationships between cooling demands and occupant behavior on thermal environment criteria and air-conditioning operation patterns. The results are summarized into a cooling energy calculator for layman use to enhance the cooling energy saving awareness in their own living environment. The findings can be used as a directory framework for future cooling energy evaluation in residential buildings, especially focus on the occupant behavioral air–conditioning operation and criteria of energy-saving incentives.

Keywords: artificial neural network, cooling energy, occupant behavior, residential buildings, thermal environment

Procedia PDF Downloads 168
7475 Software-Defined Networks in Utility Power Networks

Authors: Ava Salmanpour, Hanieh Saeedi, Payam Rouhi, Elahe Hamzeil, Shima Alimohammadi, Siamak Hossein Khalaj, Mohammad Asadian

Abstract:

Software-defined network (SDN) is a network architecture designed to control network using software application in a central manner. This ability enables remote control of the whole network regardless of the network technology. In fact, in this architecture network intelligence is separated from physical infrastructure, it means that required network components can be implemented virtually using software applications. Today, power networks are characterized by a high range of complexity with a large number of intelligent devices, processing both huge amounts of data and important information. Therefore, reliable and secure communication networks are required. SDNs are the best choice to meet this issue. In this paper, SDN networks capabilities and characteristics will be reviewed and different basic controllers will be compared. The importance of using SDNs to escalate efficiency and reliability in utility power networks is going to be discussed and the comparison between the SDN-based power networks and traditional networks will be explained.

Keywords: software-defined network, SDNs, utility network, open flow, communication, gas and electricity, controller

Procedia PDF Downloads 113
7474 Deep Learning Based-Object-classes Semantic Classification of Arabic Texts

Authors: Imen Elleuch, Wael Ouarda, Gargouri Bilel

Abstract:

We proposes in this paper a Deep Learning based approach to classify text in order to enrich an Arabic ontology based on the objects classes of Gaston Gross. Those object classes are defined by taking into account the syntactic and semantic features of the treated language. Thus, our proposed approach is a hybrid one. In fact, it is based on the one hand on the object classes that represents a knowledge based-approach on classification of text and in the other hand it uses the deep learning approach that use the word embedding-based-approach to classify text. We have applied our proposed approach on a corpus constructed from an Arabic dictionary. The obtained semantic classification of text will enrich the Arabic objects classes ontology. In fact, new classes can be added to the ontology or an expansion of the features that characterizes each object class can be updated. The obtained results are compared to a similar work that treats the same object with a classical linguistic approach for the semantic classification of text. This comparison highlight our hybrid proposed approach that can be ameliorated by broaden the dataset used in the deep learning process.

Keywords: deep-learning approach, object-classes, semantic classification, Arabic

Procedia PDF Downloads 88
7473 The Use of Palm Kernel Cake in Ration and Its Influence on VFA, NH3 and pH Rumen Fluid of Goat

Authors: Arief, Noovirman Jamarun, Benni Satria

Abstract:

Background: The main problem in the development of livestock in Indonesia is feed both in terms of quality and quantity. On the other hand, conventional feed ingredients are expensive and difficult to obtain. Therefore, it is necessary to find alternative feed ingredients that have good quality, potential, and low cost. Feed ingredients that meet the above requirements are by-products of the palm oil industry, namely palm kernel cake (PKC). This study aims to obtain the best PKC composition for Etawa goat concentrate ration. Material and Methode : This research consists of 2 stages. Stage I is invitro study using Tilley and Terry method. The study used a Completely Randomized Design (CRD) with 4 treatments of rations and 4 replications. The treatment is the composition of the use of palm kernel cake (PKC) in the ration, namely, A). 10%, B). 20%, C). 30%, D). 40%. Other feed ingredients are corn, rice bran, tofu waste and minerals. The measured variables are the characteristics of the rumen fluid (pH, VFA and NH3). Stage II was done using the best ration of stage I (Ration C), followed by testing the use of Tithonia (Thitonia difersifolia) and agricultural waste of sweet potato leaves as a source of forage for livestock by in-vitro. The study used a Completely Randomized Design (CRD) with 3 treatments and 5 replications. The treatments were: Treatment A) Best Concentrate Ration Stage I + Titonia (Thitonia difersifolia), Treatment B) Best Concentrate Ration Stage I + Tithonia (Thitonia difersifolia) and Sweet potato Leaves, Treatment C) Best Concentrate Ration Stage I + Sweet potato leaves. The data obtained were analyzed using variance analysis while the differences between treatments were tested using the Duncant Multiple Range Test (DMRT) according to Steel and Torrie. Results of Stage II showed that the use of PKC in rations as concentrate feed combined with forage originating from Tithonia (Thitonia difersifolia) and sweet potato leaves produced pH, VFA and NH3-N which were still in normal conditions. The best treatment was obtained from diet B (P <0.05) with 6.9 pH, 116.29 mM VFA and 15mM NH3-N. Conclussion From the results of the study it can be concluded that PKC can be used as feed ingredients for dairy goat concentrate with a combination of forage from Tithonia (Tithonia difersifolia) and sweet potato leaves.

Keywords: palm oil by-product, palm kernel cake, concentrate, rumen fluid, Etawa goat

Procedia PDF Downloads 174
7472 Optimization of Bio-Diesel Production from Rubber Seed Oils

Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul

Abstract:

Rubber seed oil is an attractive alternative feedstock for biodiesel production because it is not related to food-chain plant. Rubber seed oil contains large amount of free fatty acids, which causes problem in biodiesel production. Free fatty acids can react with alkaline catalyst in biodiesel production. Acid esterification is used as pre-treatment to convert unwanted compound to desirable biodiesel. Phase separation of oil and methanol occurs at low ratio of methanol to oil and causes low reaction rate and conversion. Acid esterification requires large excess of methanol in order to increase the miscibility of methanol in oil and accordingly, it is a more expensive separation process. In this work, the kinetics of esterification of rubber seed oil with methanol is developed from available experimental results. Reactive distillation process was designed by using Aspen Plus program. The effects of operating parameters such as feed ratio, molar reflux ratio, feed temperature, and feed stage are investigated in order to find the optimum conditions. Results show that the reactive distillation process is proved to be better than conventional process. It consumes less feed methanol and less energy while yielding higher product purity than the conventional process. This work can be used as a guideline for further development to industrial scale of biodiesel production using reactive distillation.

Keywords: biodiesel, reactive distillation, rubber seed oil, transesterification

Procedia PDF Downloads 351
7471 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures

Authors: Milad Abbasi

Abstract:

Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.

Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network

Procedia PDF Downloads 153
7470 The Investigation of Effectiveness of Different Concentrations of the Mycotoxin Detoxification Agent Added to Broiler Feed, in the Presence of T-2 Toxin, on Performance, Organ Mass and the Residues T-2 Toxin and His Metabolites in the Broiler Tissues

Authors: Jelena Nedeljković Trailović, Marko Vasiljević, Jog Raj, Hunor Farkaš, Branko Petrujkić, Stamen Radulović, Gorana Popvić

Abstract:

The experiment was performed on a total of 99 one-day-old broilers of Cob 500 provenance, which were divided into IX equal groups. Broilers of the E-I group were fed 0.25 mg T-2 toxin/kg feed, E-II and E-III groups 0.25 mg T-2 toxin/kg feed with the addition of 1 kg/t and 3 kg/t of the mycotoxin detoxification agent MDA, respectively. The E-IV group received 1 mg of T-2 toxin/kg of feed, and the broilers of E-V and E-VI groups received 1 mg of T-2 toxin/kg of feed with the addition of 1 kg/t and 3 kg/t of the MDA detoxification preparation, respectively. The E-VII group received commercial feed without toxins and additives, the E-VIII and E-IX groups received feed with 1kg/t and 3kg/t of the MDA detoxification preparation. The trial lasted 42 days. Observing the results obtained on the 42nd day of the experiment, we can conclude that the change in the absolute mass of the spleen occurred in the broilers of the E-IV group (1.66±0.14)g, which was statistically significantly lower compared to the broilers of the E-V and E-VI groups (2.58±0.15 and 2.68±0.23)g. Heart mass was significantly statistically lower in broilers of group E-IV (9.1±0.38)g compared to broilers of group E-V and E-VI (12.23±0.5 and 11.43±0.51)g. It can be concluded that the broilers that received 1 kg/t and 3 kg/t of the detoxification preparation had an absolute mass of organs within physiological limits. Broilers of the E-IV group achieved the lowest BM during the experiment (on the 42nd day of the experiment 1879±52.73)g, they were significantly statistically lower than the BW of broilers of all experimental groups. This trend is observed from the beginning to the end of the experiment. The protective effect of the detoxification preparation can be seen in broilers of the E-V group, that had a significantly statistically higher BM on the 42nd day of the experiment (2225±58.81)g compared to broilers of group E-IV. Broilers of E-VIII group (2452±46.71) g, which received commercial feed with the addition of 1 kg/t MDA preparation, had the highest BMI at the end of the experiment. At the end of the trial on the 42nd day, blood samples were collected from broilers of the experimental groups that received T-2 toxin and MR detoxification preparations in different concentrations. Also, liver and breast musculature samples were collected for testing for the presence and content of T-2 toxin, HT-2 toxin, T-2 tetraol and T-2 triol. Due to very rapid elimination from the blood, no remains of T-2 toxin and its metabolites were detected in the blood of broilers of groups E-I to E-VI. In the breast muscles, T-2 toxin residues below LoQ < 0.2 (μg/kg) were detected in all groups that received T-2 toxin in food, the highest value was recorded in the E-IV group (0.122 μg/kg and the lowest in E -VI group 0.096 μg/kg). No T-2 toxin residues were detected in the liver. Remains of HT-2 were detected in the breast muscles and livers of broilers from E-IV, E-V and E-VI groups, LoQ < 1 (μg/kg); for the breast muscles: 0.054, 0.044 and 0.041 μg/kg, and for the liver: 0.473, 0.231 and 0.185 μg/kg. Summing up all the results, a partial protective effect of the detoxification preparation, added to food in the amount of 1kg/t, can be seen.

Keywords: T-2 toxin, bloiler, MDA, mycotoxuns

Procedia PDF Downloads 85
7469 Non-linear Analysis of Spontaneous EEG After Spinal Cord Injury: An Experimental Study

Authors: Jiangbo Pu, Hanhui Xu, Yazhou Wang, Hongyan Cui, Yong Hu

Abstract:

Spinal cord injury (SCI) brings great negative influence to the patients and society. Neurological loss in human after SCI is a major challenge in clinical. Instead, neural regeneration could have been seen in animals after SCI, and such regeneration could be retarded by blocking neural plasticity pathways, showing the importance of neural plasticity in functional recovery. Here we used sample entropy as an indicator of nonlinear dynamical in the brain to quantify plasticity changes in spontaneous EEG recordings of rats before and after SCI. The results showed that the entropy values were increased after the injury during the recovery in one week. The increasing tendency of sample entropy values is consistent with that of behavioral evaluation scores. It is indicated the potential application of sample entropy analysis for the evaluation of neural plasticity in spinal cord injury rat model.

Keywords: spinal cord injury (SCI), sample entropy, nonlinear, complex system, firing pattern, EEG, spontaneous activity, Basso Beattie Bresnahan (BBB) score

Procedia PDF Downloads 465
7468 Evaluation of Deformation for Deep Excavations in the Greater Vancouver Area Through Case Studies

Authors: Boris Kolev, Matt Kokan, Mohammad Deriszadeh, Farshid Bateni

Abstract:

Due to the increasing demand for real estate and the need for efficient land utilization in Greater Vancouver, developers have been increasingly considering the construction of high-rise structures with multiple below-grade parking. The temporary excavations required to allow for the construction of underground levels have recently reached up to 40 meters in depth. One of the challenges with deep excavations is the prediction of wall displacements and ground settlements due to their effect on the integrity of City utilities, infrastructure, and adjacent buildings. A large database of survey monitoring data has been collected for deep excavations in various soil conditions and shoring systems. The majority of the data collected is for tie-back anchors and shotcrete lagging systems. The data were categorized, analyzed and the results were evaluated to find a relationship between the most dominant parameters controlling the displacement, such as depth of excavation, soil properties, and the tie-back anchor loading and arrangement. For a select number of deep excavations, finite element modeling was considered for analyses. The lateral displacements from the simulation results were compared to the recorded survey monitoring data. The study concludes with a discussion and comparison of the available empirical and numerical modeling methodologies for evaluating lateral displacements in deep excavations.

Keywords: deep excavations, lateral displacements, numerical modeling, shoring walls, tieback anchors

Procedia PDF Downloads 181
7467 Neural Nets Based Approach for 2-Cells Power Converter Control

Authors: Kamel Laidi, Khelifa Benmansour, Ouahid Bouchhida

Abstract:

Neural networks-based approach for 2-cells serial converter has been developed and implemented. The approach is based on a behavioural description of the different operating modes of the converter. Each operating mode represents a well-defined configuration, and for which is matched an operating zone satisfying given invariance conditions, depending on the capacitors' voltages and the load current of the converter. For each mode, a control vector whose components are the control signals to be applied to the converter switches has been associated. Therefore, the problem is reduced to a classification task of the different operating modes of the converter. The artificial neural nets-based approach, which constitutes a powerful tool for this kind of task, has been adopted and implemented. The application to a 2-cells chopper has allowed ensuring efficient and robust control of the load current and a high capacitors voltages balancing.

Keywords: neural nets, control, multicellular converters, 2-cells chopper

Procedia PDF Downloads 834