Search results for: count data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25561

Search results for: count data

24271 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example

Authors: Wang Yang

Abstract:

Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.

Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map

Procedia PDF Downloads 104
24270 From Dog to Dog: Potential Probiotic and Immunomodulatory Strains Isolated from Canine Milk

Authors: Paula Buldres, Jorge Toledo

Abstract:

Objectives: This study aimed to characterize potential probiotic strains isolated from canine breast milk for use in dogs with enteropathies. Methodology: Six canine breast milk strains, one canine colostrum strain, and one control porcine breast milk strain were characterized. According to its functional properties of resistance to acids, different concentrations of bile salts, and pancreatin, its presumptive properties of safety and inhibitory effect on pathogens, non-cytotoxic characteristics, and adhesion to the intestine. The immunomodulatory effect of formulations with better probiotic characterization in vitro and in vivo was also analyzed. Results: Two strains characterized as potential probiotics were obtained, which corresponded to the canine strains (TUCO-16 and TUCO-17), presenting resistance to acidic pH, bile salts, and pancreatin, as well as an inhibitory effect on pathogenic Escherichia coli, Salmonella sp., and Clostridium perfringens. Strains TUCO-16 and TUCO-17 induced a significant increase in the expression of TNF-α and IL-8 in canine macrophages, respectively. Expression analyses of pattern recognition receptors in DH82 cells suggest that TUCO-16 and TUCO-17 might increase the TLR2 expression marker, and porcine strain (TUCO-4) increases the NOD2 expression marker. Based on the count obtained and the encapsulation yield, the best formulations correspond to FOS-Inulin for the TUCO-17 and TUCO-4 strains; Maltodextrin-Inulin for TUCO-16. All the strains are non-cytotoxic. The strain that showed the highest adhesion to intestinal epithelial cells was TUCO-17 with the FOS-Inulin formulation. On the other hand, the probiotics decreased the expression of pro-inflammatory markers in vivo, both in the intestine and in the spleen of mice. Conclusion: The combination of these three strains under study (TUCO-16, TUCO-17, and TUCO-4) would cover the probiotic properties in formulation and immunomodulation of all the markers under study.

Keywords: probiotics, gastrointestinal infec, dog, probiotic formulation, immunomodulatory probiotics

Procedia PDF Downloads 68
24269 A Proposal of Ontology about Brazilian Government Transparency Portal

Authors: Estela Mayra de Moura Vianna, Thiago José Tavares Ávila, Bruno Morais Silva, Diego Henrique Bezerra, Paulo Henrique Gomes Silva, Alan Pedro da Silva

Abstract:

The Brazilian Federal Constitution defines the access to information as a crucial right of the citizen and the Law on Access to Public Information, which regulates this right. Accordingly, the Fiscal Responsibility Act, 2000, amended in 2009 by the “Law of Transparency”, began demanding a wider disclosure of public accounts for the society, including electronic media for public access. Thus, public entities began to create "Transparency Portals," which aim to gather a diversity of data and information. However, this information, in general, is still published in formats that do not simplify understanding of the data by citizens and that could be better especially available for audit purposes. In this context, a proposal of ontology about Brazilian Transparency Portal can play a key role in how these data will be better available. This study aims to identify and implement in ontology, the data model about Transparency Portal ecosystem, with emphasis in activities that use these data for some applications, like audits, press activities, social government control, and others.

Keywords: audit, government transparency, ontology, public sector

Procedia PDF Downloads 506
24268 Design and Development of Data Mining Application for Medical Centers in Remote Areas

Authors: Grace Omowunmi Soyebi

Abstract:

Data Mining is the extraction of information from a large database which helps in predicting a trend or behavior, thereby helping management make knowledge-driven decisions. One principal problem of most hospitals in rural areas is making use of the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved; this may cause an unexpected to happen to the patient. This Data Mining application is to be designed using a Structured System Analysis and design method, which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the Design and Implementation of a Computerized medical record system. This Computerized system will replace the file management system and help to easily retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.

Keywords: data mining, medical record system, systems programming, computing

Procedia PDF Downloads 209
24267 A Comprehensive Framework to Ensure Data Security in Cloud Computing: Analysis, Solutions, and Approaches

Authors: Loh Fu Quan, Fong Zi Heng, Burra Venkata Durga Kumar

Abstract:

Cloud computing has completely transformed the way many businesses operate. Traditionally, confidential data of a business is stored in computers located within the premise of the business. Therefore, a lot of business capital is put towards maintaining computing resources and hiring IT teams to manage them. The advent of cloud computing changes everything. Instead of purchasing and managing their infrastructure, many businesses have started to shift towards working with the cloud with the help of a cloud service provider (CSP), leading to cost savings. However, it also introduces security risks. This research paper focuses on the security risks that arise during data migration and user authentication in cloud computing. To overcome this problem, this paper provides a comprehensive framework that includes Transport Layer Security (TLS), user authentication, security tokens and multi-level data encryption. This framework aims to prevent authorized access to cloud resources and data leakage, ensuring the confidentiality of sensitive information. This framework can be used by cloud service providers to strengthen the security of their cloud and instil confidence in their users.

Keywords: Cloud computing, Cloud security, Cloud security issues, Cloud security framework

Procedia PDF Downloads 120
24266 Using AI for Analysing Political Leaders

Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu

Abstract:

This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.

Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence

Procedia PDF Downloads 86
24265 PLGA Nanoparticles Entrapping dual anti-TB drugs of Amikacin and Moxifloxacin as a Potential Host-Directed Therapy for Multidrug Resistant Tuberculosis

Authors: Sharif Abdelghany

Abstract:

Polymeric nanoparticles have been widely investigated as a controlled release drug delivery platform for the treatment of tuberculosis (TB). These nanoparticles were also readily internalised into macrophages, leading to high intracellular drug concentration. In this study two anti-TB drugs, amikacin and moxifloxacin were encapsulated into PLGA nanoparticles. The novelty of this work appears in: (1) the efficient encapsulation of two hydrophilic second-line anti-TB drugs, and (2) intramacrophage delivery of this synergistic combination potentially for rapid treatment of multi-drug resistant TB (MDR-TB). Two water-oil-water (w/o/w) emulsion strategies were employed in this study: (1) alginate coated PLGA nanoparticles, and (2) alginate entrapped PLGA nanoparticles. The average particle size and polydispersity index (PDI) of the alginate coated PLGA nanoparticles were found to be unfavourably high with values of 640 ± 32 nm and 0.63 ± 0.09, respectively. In contrast, the alginate entrapped PLGA nanoparticles were within the desirable particle size range of 282 - 315 nm and the PDI was 0.08 - 0.16, and therefore were chosen for subsequent studies. Alginate entrapped PLGA nanoparticles yielded a drug loading of over 10 µg/mg powder for amikacin, and more than 5 µg/mg for moxifloxacin and entrapment efficiencies range of approximately 25-31% for moxifloxacin and 51-59% for amikacin. To study macrophage uptake efficiency, the nanoparticles of alginate entrapped nanoparticle formulation were loaded with acridine orange as a marker, seeded to THP-1 derived macrophages and viewed under confocal microscopy. The particles were readily internalised into the macrophages and highly concentrated in the nucleus region. Furthermore, the anti-mycobacterial activity of the drug-loaded particles was evaluated using M. tuberculosis-infected macrophages, which revealed a significant reduction (4 log reduction) of viable bacterial count compared to the untreated group. In conclusion, the amikacin-moxifloxacin alginate entrapped PLGA nanoparticles are promising for further in vivo studies.

Keywords: moxifloxacin and amikacin, nanoparticles, multidrug resistant TB, PLGA

Procedia PDF Downloads 366
24264 Hyponatremia in Community-Acquired Pneumonia

Authors: Emna Ketata, Wafa Farhat

Abstract:

Introduction: Hyponatremia is defined by a blood sodium level of ≤ 136 mmol/L; it is associated with a high risk of morbidity and mortality in the emergency room. This was explained by transit disorders, including diarrhea and inappropriate antidiuretic hormone secretion (Syndrome of inappropriate antidiuretic hormone secretion). Pneumonia can cause dyspnea, stress-causing SIADH and digestive symptoms (diarrhea and vomiting). Aim: The purpose of this study was to determine the link between pneumonia and hyponatremia as a predictor of patient’s prognosis and intra-hospital mortality. Methodology: This is a prospective observational study over a period of 3 years in the emergency department. Inclusion :patients (age > 14 years), with clinical signs in favor of pneumonia. Natremia was measured. Natremia was classified as mild to moderate with a blood sodium level between 121 and 135 mmol/L and as severe with a blood sodium level ≤ 120 mmol/L. Results: This study showed an average serum sodium value of 135 mmol/L (range 114–159 mmol/L) in these patients. Hyponatremia was observed in 123 patients (43.6%), 115 patients (97,8%) had mild to moderate hyponatremia and 2,8% had severe hyponatremia. The mean age was 65±17 years with a sex ratio of 1.05. The main reason for consultation in patients with hyponatremia was cough in 58 patients (47.2%), and digestive symptoms were present in 25 patients (20.3. An altered state of consciousness was observed in 11 patients (3%). Patients with hyponatremia had greater heart rate (p=0.02),white blood cell count (p=0.009) , plasmatic lactate (p=0.002) and higher rate of pneumonia recurrence (p=0.001) .In addition, 80% of them have a positive CURB65 score (>=2). hyponatremia had higher rates of use of oxygen therapy compared to patients with normo-natremia (54% vs. 45%). The analytical study showed that hyponatremia is significantly associated with intra-hospital mortality with( p=0.01), severe hyponatremia p=0.04. Conclusion: Hyponatremia is a predictor of mortality and worse prognosis. Recognition of the pathophysiological mechanisms of hyponatremia in pneumonia will probably allow better management of it.

Keywords: oxygenotherapy, mortality, recurrence, positif curb65

Procedia PDF Downloads 92
24263 Data Quality on Regular Immunization Programme at Birkod District: Somali Region, Ethiopia

Authors: Eyob Seife, Tesfalem Teshome, Bereket Seyoum, Behailu Getachew, Yohans Demis

Abstract:

Developing countries continue to face preventable communicable diseases, such as vaccine-preventable diseases. The Expanded Programme on Immunization (EPI) was established by the World Health Organization in 1974 to control these diseases. Health data use is crucial in decision-making, but ensuring data quality remains challenging. The study aimed to assess the accuracy ratio, timeliness, and quality index of regular immunization programme data in the Birkod district of the Somali Region, Ethiopia. For poor data quality, technical, contextual, behavioral, and organizational factors are among contributors. The study used a quantitative cross-sectional design conducted in September 2022GC using WHO-recommended data quality self-assessment tools. The accuracy ratio and timeliness of reports on regular immunization programmes were assessed for two health centers and three health posts in the district for one fiscal year. Moreover, the quality index assessment was conducted at the district level and health facilities by trained assessors. The study found poor data quality in the accuracy ratio and timeliness of reports at all health units, which includes zeros. Overreporting was observed for most facilities, particularly at the health post level. Health centers showed a relatively better accuracy ratio than health posts. The quality index assessment revealed poor quality at all levels. The study recommends that responsible bodies at different levels improve data quality using various approaches, such as the capacitation of health professionals and strengthening the quality index components. The study highlighted the need for attention to data quality in general, specifically at the health post level, and improving the quality index at all levels, which is essential.

Keywords: Birkod District, data quality, quality index, regular immunization programme, Somali Region-Ethiopia

Procedia PDF Downloads 90
24262 The Results of Longitudinal Water Quality Monitoring of the Brandywine River, Chester County, Pennsylvania by High School Students

Authors: Dina L. DiSantis

Abstract:

Strengthening a sense of responsibility while relating global sustainability concepts such as water quality and pollution to a local water system can be achieved by teaching students to conduct and interpret water quality monitoring tests. When students conduct their own research, they become better stewards of the environment. Providing outdoor learning and place-based opportunities for students helps connect them to the natural world. By conducting stream studies and collecting data, students are able to better understand how the natural environment is a place where everything is connected. Students have been collecting physical, chemical and biological data along the West and East Branches of the Brandywine River, in Pennsylvania for over ten years. The stream studies are part of the advanced placement environmental science and aquatic science courses that are offered as electives to juniors and seniors at the Downingtown High School West Campus in Downingtown, Pennsylvania. Physical data collected includes: temperature, turbidity, width, depth, velocity, and volume of flow or discharge. The chemical tests conducted are: dissolved oxygen, carbon dioxide, pH, nitrates, alkalinity and phosphates. Macroinvertebrates are collected with a kick net, identified and then released. Students collect the data from several locations while traveling by canoe. In the classroom, students prepare a water quality data analysis and interpretation report based on their collected data. The summary of the results from longitudinal water quality data collection by students, as well as the strengths and weaknesses of student data collection will be presented.

Keywords: place-based, student data collection, sustainability, water quality monitoring

Procedia PDF Downloads 156
24261 Visual Analytics of Higher Order Information for Trajectory Datasets

Authors: Ye Wang, Ickjai Lee

Abstract:

Due to the widespread of mobile sensing, there is a strong need to handle trails of moving objects, trajectories. This paper proposes three visual analytic approaches for higher order information of trajectory data sets based on the higher order Voronoi diagram data structure. Proposed approaches reveal geometrical information, topological, and directional information. Experimental results demonstrate the applicability and usefulness of proposed three approaches.

Keywords: visual analytics, higher order information, trajectory datasets, spatio-temporal data

Procedia PDF Downloads 402
24260 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals

Authors: Linghui Meng, James Atlas, Deborah Munro

Abstract:

There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.

Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers

Procedia PDF Downloads 29
24259 Plasma Pretreatment for Improving the Durability of Antibacterial Activity of Cotton Using ZnO Nanoparticles

Authors: Sheila Shahidi, Hootan Rezaee, Abosaeed Rashidi, Mahmood Ghoranneviss

Abstract:

Plasma treatment has an explosive increase in interest and use in industrial applications as for example in medical, biomedical, automobile, electronics, semiconductor and textile industry. A lot of intensive basic research has been performed in the last decade in the field of textiles along with technical textiles. Textile manufacturers and end-users alike have been searching for ways to improve the surface properties of natural and man-made fibers. Specifically, there is a need to improve adhesion and wettability. Functional groups may be introduced onto the fiber surface by using gas plasma treatments, improving fiber surface properties without affecting the fiber’s bulk properties. In this research work, ZnO nanoparticles (ZnO-NPs) were insitue synthesized by sonochemical method at room temperature on both untreated and plasma pretreated cotton woven fabric. Oxygen and nitrogen plasmas were used for pre-functionalization of cotton fabric. And the effect of oxygen and nitrogen pre-functionalization on adhesion properties between ZnO nanoparticles and cotton surface were studied. The results show that nanoparticles with average sizes of 20-100 nm with different morphologies have been created on the surface of samples. Synthesis of ZnO-NPs was varied in the morphological transformation by changes in zinc acetate dehydrate concentration. Characterizations were carried out using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Inductive coupled plasma (ICP) and Spectrophotometery. The antibacterial activities of the fabrics were assessed semi-quantitatively by the colonies count method. The results show that the finished fabric demonstrated significant antibacterial activity against S. aureus in antibacterial test. The wash fastness of both untreated and plasma pretreated samples after 30 times of washing was investigated. The results showed that the parameters of plasma reactor plays very important role for improving the antibacterial durability.

Keywords: antibacterial activity, cotton, fabric, nanoparticles, plasma

Procedia PDF Downloads 537
24258 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training

Procedia PDF Downloads 90
24257 Analyzing the Investment Decision and Financing Method of the French Small and Medium-Sized Enterprises

Authors: Eliane Abdo, Olivier Colot

Abstract:

SMEs are always considered as a national priority due to their contribution to job creation, innovation and growth. Once the start-up phase is crossed with encouraging results, the company enters the phase of growth. In order to improve its competitiveness, maintain and increase its market share, the company is in the necessity even the obligation to develop its tangible and intangible investments. SMEs are generally closed companies with special and critical financial situation, limited resources and difficulty to access the capital markets; their shareholders are always living in a conflict between their independence and their need to increase capital that leads to the entry of new shareholder. The capital structure was always considered the core of research in corporate finance; moreover, the financial crisis and its repercussions on the credit’s availability, especially for SMEs make SME financing a hot topic. On the other hand, financial theories do not provide answers to capital structure’s questions; they offer tools and mode of financing that are more accessible to larger companies. Yet, SME’s capital structure can’t be independent of their governance structure. The classic financial theory supposes independence between the investment decision and the financing decision. Thus, investment determines the volume of funding, but not the split between internal or external funds. In this context, we find interesting to study the hypothesis that SMEs respond positively to the financial theories applied to large firms and to check if they are constrained by conventional solutions used by large companies. In this context, this research focuses on the analysis of the resource’s structure of SME in parallel with their investments’ structure, in order to highlight a link between their assets and liabilities structure. We founded our conceptual model based on two main theoretical frameworks: the Pecking order theory, and the Trade Off theory taking into consideration the SME’s characteristics. Our data were generated from DIANE database. Five hypotheses were tested via a panel regression to understand the type of dependence between the financing methods of 3,244 French SMEs and the development of their investment over a period of 10 years (2007-2016). The results show dependence between equity and internal financing in case of intangible investments development. Moreover, this type of business is constraint to financial debts since the guarantees provided are not sufficient to meet the banks' requirements. However, for tangible investments development, SMEs count sequentially on internal financing, bank borrowing, and new shares issuance or hybrid financing. This is compliant to the Pecking Order Theory. We, therefore, conclude that unlisted SMEs incur more financial debts to finance their tangible investments more than their intangible. However, they always prefer internal financing as a first choice. This seems to be confirmed by the assumption that the profitability of the company is negatively related to the increase of the financial debt. Thus, the Pecking Order Theory predictions seem to be the most plausible. Consequently, SMEs primarily rely on self-financing and then go, into debt as a priority to finance their financial deficit.

Keywords: capital structure, investments, life cycle, pecking order theory, trade off theory

Procedia PDF Downloads 112
24256 Lessons Learned from Ransomware-as-a-Service (RaaS) Organized Campaigns

Authors: Vitali Kremez

Abstract:

The researcher monitored an organized ransomware campaign in order to gain significant visibility into the tactics, techniques, and procedures employed by a campaign boss operating a ransomware scheme out of Russia. As the Russian hacking community lowered the access requirements for unsophisticated Russian cybercriminals to engage in ransomware campaigns, corporations and individuals face a commensurately greater challenge of effectively protecting their data and operations from being held ransom. This report discusses two notorious ransomware campaigns. Though the loss of data can be devastating, the findings demonstrate that sending ransom payments does not always help obtain data. Key learnings: 1. From the ransomware affiliate perspective, such campaigns have significantly lowered the barriers for entry for low-tier cybercriminals. 2. Ransomware revenue amounts are not as glamorous and fruitful as they are often publicly reported. Average ransomware crime bosses make only $90K per year on average. 3. Data gathered indicates that sending ransom payments does not always help obtain data. 4. The talk provides the complete payout structure and Bitcoin laundering operation related to the ransomware-as-a-service campaign.

Keywords: bitcoin, cybercrime, ransomware, Russia

Procedia PDF Downloads 195
24255 Analysis of Cross-Sectional and Retrograde Data on the Prevalence of Marginal Gingivitis

Authors: Ilma Robo, Saimir Heta, Nedja Hysi, Vera Ostreni

Abstract:

Introduction: Marginal gingivitis is a disease with considerable frequency among patients who present routinely for periodontal control and treatment. In fact, this disease may not have alarming symptoms in patients and may go unnoticed by themselves when personal hygiene conditions are optimal. The aim of this study was to collect retrograde data on the prevalence of marginal gingiva in the respective group of patients, evaluated according to specific periodontal diagnostic tools. Materials and methods: The study was conducted in two patient groups. The first group was with 34 patients, during December 2019-January 2020, and the second group was with 64 patients during 2010-2018 (each year in the mentioned monthly period). Bacterial plaque index, hemorrhage index, amount of gingival fluid, presence of xerostomia and candidiasis were recorded in patients. Results: Analysis of the collected data showed that susceptibility to marginal gingivitis shows higher values according to retrograde data, compared to cross-sectional ones. Susceptibility to candidiasis and the occurrence of xerostomia, even in the combination of both pathologies, as risk factors for the occurrence of marginal gingivitis, show higher values ​​according to retrograde data. The female are presented with a reduced bacterial plaque index than the males, but more importantly, this index in the females is also associated with a reduced index of gingival hemorrhage, in contrast to the males. Conclusions: Cross-sectional data show that the prevalence of marginal gingivitis is more reduced, compared to retrograde data, based on the hemorrhage index and the bacterial plaque index together. Changes in production in the amount of gingival fluid show a higher prevalence of marginal gingivitis in cross-sectional data than in retrograde data; this is based on the sophistication of the way data are recorded, which evolves over time and also based on professional sensitivity to this phenomenon.

Keywords: marginal gingivitis, cross-sectional, retrograde, prevalence

Procedia PDF Downloads 161
24254 Why Do We Need Hierachical Linear Models?

Authors: Mustafa Aydın, Ali Murat Sunbul

Abstract:

Hierarchical or nested data structures usually are seen in many research areas. Especially, in the field of education, if we examine most of the studies, we can see the nested structures. Students in classes, classes in schools, schools in cities and cities in regions are similar nested structures. In a hierarchical structure, students being in the same class, sharing the same physical conditions and similar experiences and learning from the same teachers, they demonstrate similar behaviors between them rather than the students in other classes.

Keywords: hierarchical linear modeling, nested data, hierarchical structure, data structure

Procedia PDF Downloads 652
24253 The Disposable Identities; Enabling Trust-by-Design to Build Sustainable Data-Driven Value

Authors: Lorna Goulden, Kai M. Hermsen, Jari Isohanni, Mirko Ross, Jef Vanbockryck

Abstract:

This article introduces disposable identities, with reference use cases and explores possible technical approaches. The proposed approach, when fully developed as an open-source toolkit, enables developers of mobile or web apps to employ a self-sovereign identity and data privacy framework, in order to rebuild trust in digital services by providing greater transparency, decentralized control, and GDPR compliance. With a user interface for the management of self-sovereign identity, digital authorizations, and associated data-driven transactions, the advantage of Disposable Identities is that they may also contain verifiable data such as the owner’s photograph, official or even biometric identifiers for more proactive prevention of identity abuse. These Disposable Identities designed for decentralized privacy management can also be time, purpose and context-bound through a secure digital contract; with verification functionalities based on tamper-proof technology.

Keywords: dentity, trust, self-sovereign, disposable identity, privacy toolkit, decentralised identity, verifiable credential, cybersecurity, data driven business, PETs, GDPRdentity, trust, self-sovereign, disposable identity, privacy toolkit, decentralised identity, verifiable credential, cybersecurity, data driven business, PETs, GDPRI

Procedia PDF Downloads 218
24252 Best Practices to Enhance Patient Security and Confidentiality When Using E-Health in South Africa

Authors: Lethola Tshikose, Munyaradzi Katurura

Abstract:

Information and Communication Technology (ICT) plays a critical role in improving daily healthcare processes. The South African healthcare organizations have adopted Information Systems to integrate their patient records. This has made it much easier for healthcare organizations because patient information can now be accessible at any time. The primary purpose of this research study was to investigate the best practices that can be applied to enhance patient security and confidentiality when using e-health systems in South Africa. Security and confidentiality are critical in healthcare organizations as they ensure safety in EHRs. The research study used an inductive research approach that included a thorough literature review; therefore, no data was collected. The research paper’s scope included patient data and possible security threats associated with healthcare systems. According to the study, South African healthcare organizations discovered various patient data security and confidentiality issues. The study also revealed that when it comes to handling patient data, health professionals sometimes make mistakes. Some may not be computer literate, which posed issues and caused data to be tempered with. The research paper recommends that healthcare organizations ensure that security measures are adequately supported and promoted by their IT department. This will ensure that adequate resources are distributed to keep patient data secure and confidential. Healthcare organizations must correctly use standards set up by IT specialists to solve patient data security and confidentiality issues. Healthcare organizations must make sure that their organizational structures are adaptable to improve security and confidentiality.

Keywords: E-health, EHR, security, confidentiality, healthcare

Procedia PDF Downloads 57
24251 The Effect of Data Integration to the Smart City

Authors: Richard Byrne, Emma Mulliner

Abstract:

Smart cities are a vision for the future that is increasingly becoming a reality. While a key concept of the smart city is the ability to capture, communicate, and process data that has long been produced through day-to-day activities of the city, much of the assessment models in place neglect this fact to focus on ‘smartness’ concepts. Although it is true technology often provides the opportunity to capture and communicate data in more effective ways, there are also human processes involved that are just as important. The growing importance with regards to the use and ownership of data in society can be seen by all with companies such as Facebook and Google increasingly coming under the microscope, however, why is the same scrutiny not applied to cities? The research area is therefore of great importance to the future of our cities here and now, while the findings will be of just as great importance to our children in the future. This research aims to understand the influence data is having on organisations operating throughout the smart cities sector and employs a mixed-method research approach in order to best answer the following question: Would a data-based evaluation model for smart cities be more appropriate than a smart-based model in assessing the development of the smart city? A fully comprehensive literature review concluded that there was a requirement for a data-driven assessment model for smart cities. This was followed by a documentary analysis to understand the root source of data integration to the smart city. A content analysis of city data platforms enquired as to the alternative approaches employed by cities throughout the UK and draws on best practice from New York to compare and contrast. Grounded in theory, the research findings to this point formulated a qualitative analysis framework comprised of: the changing environment influenced by data, the value of data in the smart city, the data ecosystem of the smart city and organisational response to the data orientated environment. The framework was applied to analyse primary data collected through the form of interviews with both public and private organisations operating throughout the smart cities sector. The work to date represents the first stage of data collection that will be built upon by a quantitative research investigation into the feasibility of data network effects in the smart city. An analysis into the benefits of data interoperability supporting services to the smart city in the areas of health and transport will conclude the research to achieve the aim of inductively forming a framework that can be applied to future smart city policy. To conclude, the research recognises the influence of technological perspectives in the development of smart cities to date and highlights this as a challenge to introduce theory applied with a planning dimension. The primary researcher has utilised their experience working in the public sector throughout the investigation to reflect upon what is perceived as a gap in practice of where we are today, to where we need to be tomorrow.

Keywords: data, planning, policy development, smart cities

Procedia PDF Downloads 310
24250 Investigation of Delivery of Triple Play Service in GE-PON Fiber to the Home Network

Authors: Anurag Sharma, Dinesh Kumar, Rahul Malhotra, Manoj Kumar

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 733
24249 Deep-Learning Based Approach to Facial Emotion Recognition through Convolutional Neural Network

Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah

Abstract:

Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. Accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER, benefiting from deep learning, especially CNN and VGG16. First, the data is pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.

Keywords: CNN, deep-learning, facial emotion recognition, machine learning

Procedia PDF Downloads 95
24248 Comparative Assessment of Microplastic Pollution in Surface Water and Sediment of the Gomati and Saryu Rivers, India

Authors: Amit K. Mishra, Jaswant Singh

Abstract:

The menace of plastic, which significantly pollutes the aquatic environment, has emerged as a global problem. There is an emerging concern about microplastics (MPs) accumulation in aquatic ecosystems. It is familiar to everyone that the ultimate end for most of the plastic debris is the ocean. Rivers are the efficient carriers for transferring MPs from terrestrial to aquatic, further from upstream to downstream areas, and ultimately to oceans. The root cause study can provide an effective solution to a problem; hence, tracing of MPs in the riverine system can illustrate the long-term microplastic pollution. This study aimed to investigate the occurrence and distribution of microplastic contamination in surface water and sediment of the two major river systems of Uttar Pradesh, India. One is the Gomti River, Lucknow, a tributary of the Ganga, and the second is the Saryu River, the lower part of the Ghagra River, which flows through the city of Ayodhya. In this study, the distribution and abundance of MPs in surface water and sediments of two rivers were compared. Samples of water and sediment were collected from different (four from each river) sampling stations in the river catchment of two rivers. Plastic particles were classified according to type, shape, and color. In this study, 1523 (average abundance 254) and 143 (average abundance 26) microplastics were identified in all studied sites in the Gomati River and Saryu River, respectively. Observations on samples of water showed that the average MPs concentration was 392 (±69.6) and 63 ((±18.9) particles per 50l of water, whereas the sediment sample showed that the average MPs concentration was 116 (±42.9) and 46 (±12.5) particles per 250gm of dry sediment in the Gomati River and Saryu River, respectively. The high concentration of microplastics in the Lucknow area can be attributed to human activities, population density, and the entry of various effluents into the river. Microplastics with fibrous shapes were dominated, followed by fragment shapes in all the samples. The present study is a pioneering effort to count MPs in the Gomati and Saryu River systems.

Keywords: freshwater, Gomati, microplastics, Saryu, sediment

Procedia PDF Downloads 82
24247 Data and Biological Sharing Platforms in Community Health Programs: Partnership with Rural Clinical School, University of New South Wales and Public Health Foundation of India

Authors: Vivian Isaac, A. T. Joteeshwaran, Craig McLachlan

Abstract:

The University of New South Wales (UNSW) Rural Clinical School has a strategic collaborative focus on chronic disease and public health. Our objectives are to understand rural environmental and biological interactions in vulnerable community populations. The UNSW Rural Clinical School translational model is a spoke and hub network. This spoke and hub model connects rural data and biological specimens with city based collaborative public health research networks. Similar spoke and hub models are prevalent across research centers in India. The Australia-India Council grant was awarded so we could establish sustainable public health and community research collaborations. As part of the collaborative network we are developing strategies around data and biological sharing platforms between Indian Institute of Public Health, Public Health Foundation of India (PHFI), Hyderabad and Rural Clinical School UNSW. The key objective is to understand how research collaborations are conducted in India and also how data can shared and tracked with external collaborators such as ourselves. A framework to improve data sharing for research collaborations, including DNA was proposed as a project outcome. The complexities of sharing biological data has been investigated via a visit to India. A flagship sustainable project between Rural Clinical School UNSW and PHFI would illustrate a model of data sharing platforms.

Keywords: data sharing, collaboration, public health research, chronic disease

Procedia PDF Downloads 450
24246 Discrimination of Artificial Intelligence

Authors: Iman Abu-Rub

Abstract:

This research paper examines if Artificial Intelligence is, in fact, racist or not. Different studies from all around the world, and covering different communities were analyzed to further understand AI’s true implications over different communities. The black community, Asian community, and Muslim community were all analyzed and discussed in the paper to figure out if AI is biased or unbiased towards these specific communities. It was found that the biggest problem AI faces is the biased distribution of data collection. Most of the data inserted and coded into AI are of a white male, which significantly affects the other communities in terms of reliable cultural, political, or medical research. Nonetheless, there are various research was done that help increase awareness of this issue, but also solve it completely if done correctly. Governments and big corporations are able to implement different strategies into their AI inventions to avoid any racist results, which could cause hatred culturally but also unreliable data, medically, for example. Overall, Artificial Intelligence is not racist per se, but the data implementation and current racist culture online manipulate AI to become racist.

Keywords: social media, artificial intelligence, racism, discrimination

Procedia PDF Downloads 115
24245 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data

Authors: Chico Horacio Jose Sambo

Abstract:

Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.

Keywords: neural network, permeability, multilayer perceptron, well log

Procedia PDF Downloads 403
24244 Frequent Itemset Mining Using Rough-Sets

Authors: Usman Qamar, Younus Javed

Abstract:

Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.

Keywords: rough-sets, classification, feature selection, entropy, outliers, frequent itemset mining

Procedia PDF Downloads 437
24243 Application of Regularized Spatio-Temporal Models to the Analysis of Remote Sensing Data

Authors: Salihah Alghamdi, Surajit Ray

Abstract:

Space-time data can be observed over irregularly shaped manifolds, which might have complex boundaries or interior gaps. Most of the existing methods do not consider the shape of the data, and as a result, it is difficult to model irregularly shaped data accommodating the complex domain. We used a method that can deal with space-time data that are distributed over non-planner shaped regions. The method is based on partial differential equations and finite element analysis. The model can be estimated using a penalized least squares approach with a regularization term that controls the over-fitting. The model is regularized using two roughness penalties, which consider the spatial and temporal regularities separately. The integrated square of the second derivative of the basis function is used as temporal penalty. While the spatial penalty consists of the integrated square of Laplace operator, which is integrated exclusively over the domain of interest that is determined using finite element technique. In this paper, we applied a spatio-temporal regression model with partial differential equations regularization (ST-PDE) approach to analyze a remote sensing data measuring the greenness of vegetation, measure by an index called enhanced vegetation index (EVI). The EVI data consist of measurements that take values between -1 and 1 reflecting the level of greenness of some region over a period of time. We applied (ST-PDE) approach to irregular shaped region of the EVI data. The approach efficiently accommodates the irregular shaped regions taking into account the complex boundaries rather than smoothing across the boundaries. Furthermore, the approach succeeds in capturing the temporal variation in the data.

Keywords: irregularly shaped domain, partial differential equations, finite element analysis, complex boundray

Procedia PDF Downloads 140
24242 Utilising an Online Data Collection Platform for the Development of a Community Engagement Database: A Case Study on Building Inter-Institutional Partnerships at UWC

Authors: P. Daniels, T. Adonis, P. September-Brown, R. Comalie

Abstract:

The community engagement unit at the University of the Western Cape was tasked with establishing a community engagement database. The database would store information of all community engagement projects related to the university. The wealth of knowledge obtained from the various disciplines would be used to facilitate interdisciplinary collaboration within the university, as well as facilitating community university partnership opportunities. The purpose of this qualitative study was to explore electronic data collection through the development of a database. Two types of electronic data collection platforms were used, namely online questionnaire and email. The semi structured questionnaire was used to collect data related to community engagement projects from different faculties and departments at the university. There are many benefits for using an electronic data collection platform, such as reduction of costs and time, ease in reaching large numbers of potential respondents, and the possibility of providing anonymity to participants. Despite all the advantages of using the electronic platform, there were as many challenges, as depicted in our findings. The findings suggest that certain barriers existed by using an electronic platform for data collection, even though it was in an academic environment, where knowledge and resources were in abundance. One of the challenges experienced in this process was the lack of dissemination of information via email to staff within faculties. The actual online software used for the questionnaire had its own limitations, such as only being able to access the questionnaire from the same electronic device. In a few cases, academics only completed the questionnaire after a telephonic prompt or face to face meeting about "Is higher education in South Africa ready to embrace electronic platform in data collection?"

Keywords: community engagement, database, data collection, electronic platform, electronic tools, knowledge sharing, university

Procedia PDF Downloads 264